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Abstract. In this paper we establish a new class of a-priori estimates for

stationary mean-field games which have a quasi-variational structure. In par-

ticular we prove W 1,2 estimates for the value function u and that the players
distribution m satisfies

√
m ∈ W 1,2. We discuss further results for power-

like nonlinearities and prove higher regularity if the space dimension is 2. In

particular we also obtain in this last case W 2,p estimates for u.

1. Introduction. Mean field games is a recent area of research started in the
engineering community by Peter Caines and his co-workers [21], [20], and, inde-
pendently, in the context of partial differential equations and viscosity solutions by
Pierre Louis Lions and Jean Michel Lasry [22, 23, 24, 25].

Literature on mean field games and its applications is growing fast, for a recent
survey see [27] and reference therein. Applications of mean field games arise in
growth theory in economics [26] or environmental policy [2], for instance. We also
believe that in the future, mean field games will play an important rôle in economics
and population models. This is due to the fact that in many economics applications
or population models there is a very large number of indistinguishable agents which
behave in a rational but non-cooperative way. Understanding the behaviour of such
systems as the number of agents tends to infinity is one of the most fundamental
questions in these problems.

There is also a growing interest in numerical methods for mean-field problems
[2], [1], [3]. One author and his collaborators [14] have also considered the discrete
time, finite state problem, and the continuous time finite state problem [15]. Such
models are relevant in many problems where a large number of agents have a choice
among a finite number of states. Several problems have been worked out in detail
in [18], [19], including applications to growth theory and the quadratic case.
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Mean field games are frequently formulated as Hamilton-Jacobi type equation
coupled with a transport equation, the adjoint of the linearization of the Hamilton-
Jacobi equation. This class of problems, in the case the Hamilton-Jacobi equation
does not depend on the solution of the transport equation was introduced in [9].
These methods were applied to study the vanishing viscosity problem [9], the dif-
ferentiability of solutions of the infinity laplacian [6], Aubry-Mather theory in the
non-convex setting [5] and systems of Hamilton-Jacobi equations and obstacle type
problems [4], just to mention a few.

Given H : Td × Rd → R, the Evans-Aronsson problem [7], [8], consists in mini-
mizing

inf
φ

∫
Td

eH(x,Dφ)dx.

The stochastic Evans-Aronsson problem, which is a generalization of the previous
problem and was introduced in [30], consists in minimizing

inf
φ

∫
Td

eε∆φ+H(x,Dφ)dx. (1)

While studying this last problem two of the authors observed in [17] a new connec-
tion between mean-field games and a class of calculus of variations problems. In
fact, the Euler-Lagrange equation for (1) can be written as{

ε∆u+H(x,Du) = lnm+ H̄

ε∆m− div(DpHm) = 0,

which is the reference example of a stationary mean field game. Here the constant H̄
is due to an additional normalization requirement for m, i.e.

∫
m = 1. In particular

in [17] we obtained several a-priori estimates as well as the existence of smooth
solutions when H(p, x) is quadratic in p or in dimension 2.

In this paper we establish new a-priori estimates for a class of stationary mean-
field games. We consider mean-field games of the form{

∆u+H(x,Du,m) = H̄

∆m− div(DpHm) = 0,
(2)

where H : Td×Rd×P(Td)→ R (here P(Td) is the set of Borel probability measures
on Td) which satisfies suitable hypothesis. We require m to be a probability measure
absolutely continuous with respect to Lebesgue measure. The constant H̄ is chosen
so that this normalization condition holds (we do not assume, however, uniqueness
of H̄ or solutions). In particular, whenever we say that (u,m, H̄) is a solution to
(2) we assume that

∫
Td m = 1.

Our setting is the following: we assume that H is quasi-variational, this means
that there exists H0(x, p) : Td × Rd → R and g : R→ R, with g concave increasing
such that

|H(x, p,m)−H0(x, p) + g(m(x))| ≤ C. (3)

This means that H has a local component g(m(x)) but does not imply that H is a
local operator, that is, H could depend on m through convolution operators, differ-
ence operators or other non-local dependence. Note that if g is concave increasing
then g−1 is convex increasing.
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To explain the name quasi-variational, note that if we consider the variational
problem

inf
φ

∫
Td

F (∆φ+H0(x,Dφ)− H̄)dx,

where F is convex increasing, the corresponding Euler-Lagrange equation can be
written as {

∆u+H0(x,Du)− H̄ = (F ′)−1(m)

∆m− div(DpH0(x,Du)m) = 0.

By defining g = (F ′)−1, we get

H(x, p,m) = H0(x, p)− g(m). (4)

Thus we can think of quasi-variational mean-field games as perturbations of mean-
field games with a variational structure.

If H is as in (4) then the monotonicity technique by Lions and Lasry [22] can be
used to establish uniqueness. Note that, in this paper we do not require monotonic-
ity in H. We should also observe that the setting we work here is different from the
one in [22] as we do not require continuity in m with respect to weak convergence.
In fact this fails even for Hamiltonians of the form (4).

In this paper, to simplify the exposition we consider the periodic setting. In this
way the discussion of boundary conditions is avoided. We believe, however, that
the same ideas can be applied in a variety of problems which include boundary
conditions of various types.

The hypothesis under which our results hold are discussed in §2. Then in the
next section we prove various a-priori bounds, and is structured as follows:

1. a-priori bounds in H̄, Proposition 2;
2. W 1,2 integrability for u, Corollary 1;
3. regularity for m,

√
m ∈W 1,2, Proposition 2;

4. higher integrability for m, if g(m) = mγ , Corollary 3;
5. D(lnm) ∈ L2, Proposition 5;
6. W 2,2 and W 2,p estimates for u, in dimension 2, Propositions 6 and 7.

The first two bounds, namely a-priori bounds for H̄ and W 1,2 estimates for u
are immediate for variational problems in the form (4) as one can use the vari-
ational formulation to extract bounds on any possible minimizer. However for
quasi-variational problems we cannot use this technique and these are not obvious
at all. These a-priori bounds, combined with additional regularity hypothesis on H
can be used to prove a-priori bounds for higher norms of u and m, at least if d = 2.
These in turn can be combined with continuation methods to establish existence of
smooth solutions. This will be the subject of a future publication.

2. Main assumptions. We now describe the main assumptions, in addition to
quasi-variationality, that we will be working with. We suppose that H0 satisfies

|p|2 ≤ C + CH0(x, p). (5)

This is a natural coercivity condition.
Given (x, p,m) ∈ Td × Rd × P(Td) we define the Lagrangian as

L(x, p,m) = −H(x, p,m) + p ·DpH(x, p,m). (6)
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This is the natural definition of Lagrangian if one recalls that in classical mechanics
the Lagrangian corresponding to a Hamiltonian H(x, p) is given by

L(x, v) = sup
p
v · p−H(p, x),

and the supremum is achieved for

v = DpH(p, x).

Thus (6) corresponds to the Lagrangian function written in terms of the position-
momentum (x, p) coordinates rather than position-velocity (x, v) as it is customary.

We suppose that
L(x, p,m) ≥ cH0(x, p)− C. (7)

In view of (5) this is a coercivity hypothesis on L and implies

L(x, p,m) ≥ c|p|2 − C.
From (5) and (7) it follows that there exists C such that for every function

ϕ : Td → Rd, we have ∫
Td

L(x, ϕ(x),m)dm ≥ −C, (8)

note that this last fact can hold independently of (7), for instance if

L(x, v,m) =
v2

2
+ lnm

then, because
m lnm ≥ −1

we obtain (8).
We assume further that H is uniformly convex in p,

D2
ppH(x, p,m) ≥ γ > 0. (9)

We assume the following bound

|DpH(x, p,m)|2 ≤ C + CH0(x, p), (10)

which can can be relaxed to the more general bound

|DpH(x, p,m)|2 ≤ C + CH0(x, p,m) + Cmδ, (11)

for 0 < δ < 1− 2
2∗ , where 2∗ is the Sobolev conjugated exponent 1

2∗ = 1
2 −

1
d .

Set
Ĥxx(x, p,m) = Dxx(H(x, p,m) + g(m)),

and
Ĥpx = Dx(DpH(x, p,m)),

then we suppose the following estimates hold:

|Ĥxx| ≤ C + CH0, and |Ĥpx|2 ≤ C + CH0; (12)

As we will see in section 3, remark 3, this bound can sometimes be relaxed to

|Ĥxx|, |Ĥpx|2 ≤ C + CH0(x, p) + Cm2∗/2.

Finally we suppose
H0(x, p) ≤ C + C|p|2. (13)

As a model example we could consider

H(x, p,m) =
|p|2

2
+ V (x) +W (η ∗m)−mγ ,
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where V and W are smooth functions, η is a smoothing kernel and 0 < γ < 1. In
this case

L(x, p,m) =
|p|2

2
− V (x)−W (η ∗m) +mγ .

All the previous hypothesis can easily be checked. This example represents a situ-
ation in which there is a local interaction term of the form mγ(x), which is in fact
repulsive. This means that increasing local concentrations at a point x increase the
cost for a reference player located at x. The non-local term W (η ∗m) takes into
account concentration effects in a neighborhood of the position of each player, and
the potential V (x) encodes the different desirability of the various positions.

3. A-priori estimates. In this section we study several a-priori estimates for the
solutions of the mean-field game equation (2). Whereas for variational mean-field
games one has, from the variational principle, estimates for H̄ and ‖u‖W 1,2 , see [17],
these are not obvious, for general mean-field games, even with the quasi-variational
structure. As the key objective of this section is to establish a-priori estimates we
assume all solutions to be classical smooth solutions.

Proposition 1. Let (u,m, H̄) solve (2), with
∫
Td m = 1, then∫

Td

L(x,Du,m)dm = −H̄. (14)

Proof.

H̄ =

∫
Td

∆u+H(x,Du,m)dm

=

∫
Td

H(x,Du,m)−DpH(x,Du,m)Dudm

= −
∫
Td

L(x,Du,m)dm

In Aubry-Mather theory (see [10, 11, 12, 13, 28, 29], for instance) one considers
this first order case where H does not depend on m. If one looks for the unique
value H̄ for which the cell problem

H(x,Du) = H̄

has a viscosity solution, then one has∫
Td

L(x,Du)dm = −H̄.

A similar result also holds for the stochastic Mather problem [16].

Proposition 2. Let (u,m, H̄) solve (2). Assume (3), (5), and (8). Then there
exists a constant C, independent of (u,m) such that

|H̄| ≤ C. (15)

Proof. By Proposition 1 and (8)

H̄ = −
∫
Td

L(x,Du,m)dm ≤ C.
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To prove the opposite inequality, observe that by the quasi-variationality hypoth-
esis (3) we have

H̄ ≥ H0(x,Du)− g(m)− C + ∆u.

Then, using (5),

g(m) ≥ −C − H̄ + ∆u

Because g is increasing, we have

m ≥ g−1
(
−C − H̄ + ∆u

)
.

Since g−1 is a convex function, by Jensen’s inequality we have∫
Td

g−1
(
∆u− C − H̄

)
dx ≥ g−1

(∫
Td

∆u− C − H̄
)
dx = g−1

(
−C − H̄

)
.

Since m is a probability measure, it follows that

1 ≥ g−1
(
−C − H̄

)
and then

H̄ ≥ −C.

Corollary 1. Let (u,m, H̄) solve (2). Assume (3), (5), and (8). Then∫
Td

H0(x,Du)dx ≤ C,

and so, Du ∈ L2.

Proof. ∫
Td

H0(x,Du)dx ≤
∫
Td

∆u+H(x,Du,m) + g(m)dx+ C (16)

≤ H̄ +

∫
Td

g(m)dx+ C (17)

≤ C̃, (18)

where (16) comes from hypothesis (3) and the fact that
∫
Td ∆udx = 0 by periodicity,

then (17) follows from (2), (18) from Jensen’s inequality using the concavity of g,
and estimate (15) for H̄.

Proposition 3. Let (u,m, H̄) be a solution of (2). Assume (3), (5), and (7). Then∫
Td

H0(x,Du)dm ≤ C. (19)

Proof. By Proposition 1 and (7)

H̄ = −
∫
Td

L(x,Du,m)dm

≤ −c
∫
Td

H0(x,Du)dm+ C.

This, together with (15) implies (19).
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The previous a-priori estimates are valid for deterministic mean-field games of
the form {

H(x,Du,m) = H̄

div(DpHm) = 0,

with similar proofs. However, in order to obtain further regularity the presence of
the Laplacian is essential.

Corollary 2. Let (u,m, H̄) be a solution of (2). Assume (3), (5), (7), and either
(10) or (11). Then

‖
√
m‖W 1,2 ≤ C. (20)

Proof. Multiply
∆m− div(DpHm) = 0

by lnm and integrate by parts to obtain∫
Td

|Dm|2

m
dx =

∫
DpHDmdx

≤ 1

2

∫
Td

|DpH|2dm+
1

2

∫
Td

|Dm|2

m
dx.

Assuming (10) we get

4

∫
Td

|D
√
m|2dx ≤

∫
Td

|DpH|2dm ≤ C + C

∫
H0dm. (21)

From Proposition 3 and
∫
m = 1 we get (20).

Remark 1. In the proof of the last proposition we could replace the assumption
(10) by the more general hypothesis (11).

Indeed, taking into account Hölder’s inequality∫
|fh| ≤

(∫
|f |p

) 1
p
(∫
|h|q
) 1

q

;
1

p
+

1

q
= 1,

let’s consider

|f |p = |m| ; |h|q =
∣∣√m∣∣2∗

,

so that
|fh| = m1+δ.

This means that
1

p
+

2∗

2

p− 1

p
= 1 + δ,

from which we deduce
1

p
= 1− 2δ

2∗ − 2
;

1

q
=

2δ

2∗ − 2

and get ∫
m1+δ ≤

(∫
m

) 1
p
(∫ ∣∣√m∣∣2∗

) 2δ

2∗ − 2
.

Since
∫
m = 1, we have

∫
m1+δ ≤

(∫ ∣∣√m∣∣2∗
) 2δ

2∗ − 2 ≤ C
(∫ ∣∣D√m∣∣2)

2∗δ

2∗ − 2
.
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Thus instead of (21) we have

4

∫
Td

|D
√
m|2dx ≤

∫
Td

|DpH|2dm

≤ C + C

∫
H0dm+ C

∫
m1+δdx

≤ C + C

∫
H0dm+ C

(∫
|D
√
m|2

) 2∗δ

2∗ − 2

This inequality yields (20) if
2∗δ

2∗ − 2
< 1,

that is,

0 < δ < 1− 2

2∗
.

Remark 2. Under either conditions of Corollary 2, we have
√
m ∈ W 1,2 from

which it follows
√
m ∈ L2∗

and so m ∈ L2∗/2.

Proposition 4. Let (u,m, H̄) be a solution of (2). Assume (3), (5), (7), (9), and
(12). Then ∫

Td

g′(m)|Dm|2dx ≤ C,
∫
Td

|D2u|2dm ≤ C (22)

Proof. Applying the Laplacian ∆ to first equation of (2) we get

∆∆u+ Ĥxixi
(x,Du,m) + 2Ĥpkxi

(x,Du,m)uxkxi
+ Tr(D2

ppH(x,Du,m)(D2u)2)

+DpH(x,Du,m)D∆u− div(g′(m)Dm) = 0.

Integrating w.r.t. m∫
Td

g′(m)|Dm|2dx

+

∫
Td

Tr(D2
ppH(x,Du,m)(D2u)2)+Ĥxixi(x,Du,m)+2Ĥpkxi(x,Du,m)uxkxidm = 0.

By elementary estimates∫
Td

g′(m)|Dm|2dx+
γ

2

∫
Td

|D2u|2m ≤
∫
Td

|Ĥxx(x,Du,m)|+C|Ĥpx(x,Du,m)|2dm.

From (12) and Proposition 3 we have∫
Td

g′(m)|Dm|2dx+
γ

2

∫
Td

|D2u|2dm ≤ C + C

∫
Td

H0(x,Du)dm ≤ C. (23)

Hence
∫
Td g

′(m)|Dm|2dx and
∫
Td |D2u|2dm are bounded.

Remark 3. In the previous proposition we could have replaced (12) by

|Ĥxx|, |Ĥxp|2 ≤ C + CH0 + Cm2∗/2−1,

and requiring in addition (10) or (11) as in Remark 1. In this situation (23) is
replaced by∫

Td

g′(m)|Dm|2dx+
γ

2

∫
Td

|D2u|2dm ≤ C + C

∫
Td

H0(x,Du)dm+ C

∫
Td

m2∗/2dx.
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This, combined with Corollary (2), would give a similar estimate, using Remark 2.
Similarly, under the assumptions of Remark 1, using again Remark 2 we get the
same estimate.

Corollary 3. Let g(m) = mγ , with 0 < γ < 1, and (u,m, H̄) be a solution of (2).
Assume (3), (5), (7), (9), and (12). Then∫

Td

m
2∗
2 (γ+1) ≤ C (24)

where 2∗ is the Sobolev conjugate exponent 1
2∗ = 1

2 −
1
d .

If in addition

2γ + 1 ≤ 2∗

2
(γ + 1),

then ∫
Td

|Du|4dm ≤ C. (25)

Proof. Let

f = m
1
2 (γ+1).

Since γ < 1 we have

0 ≤
∫
fdx ≤ 1.

By Poincaré inequality∫
Td

f2dx−
(∫

fdx

)2

=

∫
Td

(
f −

∫
Td

fdx

)2

dx ≤ C
∫
Td

|Df |2dx.

Thus, using (22)

‖f‖W 1,2 ≤ 1 + C

∫
Td

|Df |2dx

≤ 1 + C

∫
Td

g′(m)|Dm|2dx ≤ C̃.

By Sobolev inequality

‖f‖2∗ ≤ C‖f‖W 1,2 ≤ Ĉ,
proving (24) .

Assume now

p = 2
2γ + 1

γ + 1
≤ 2∗,

then ∫
Td

g(m)2m =

∫
Td

fp ≤ C‖f‖p2∗ ≤ C̄. (26)

By (3) and Proposition 2

H0(x,Du) ≤ C −∆u+ g(m).

Then

|Du|4 ≤ C + CH0(x,Du)2

≤ K +Kg(m)2 +K|D2u|2.

Integrating w.r.t. m, and using (26), (22), we get estimate (25).
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Proposition 5. Let (u,m, H̄) be a solution of (2). Assume (3), (5), (8), and(10).
Then ∫

Td

|Dm|2

m2
≤ C. (27)

Proof. Multiply

∆m− div(DpHm) = 0

by 1
m and integrate by parts to obtain∫

Td

|Dm|2

m2
≤ C

∫
Td

|DpH(x,Du,m)|2

≤ C̃ + C̃

∫
H0(x,Du).

Corollary 1 gives the estimate.

Remark 4. Since D lnm = Dm
m , the previous proposition states that D lnm ∈ L2.

In [17] using the variational structure we also have that lnm ∈ L2. It is not clear,
however, if the same holds in the generalized setting of the present paper.

Remark 5. Note that (27) also holds under the conditions of Corollary 2 if (10)
is replaced by (11).

Proposition 6. Let (u,m, H̄) be a solution of (2). Suppose (3), (5), (7), (10) and
(13) hold. Assume g(m) = mγ with 0 < γ < 1. Suppose d = 2. Then u ∈W 2,2.

Proof. Observe that∫
T2

(∆u)2 ≤ C
∫
T2

g(m)2 + C

∫
T2

H0(x,Du)2 + C.

Because
√
m ∈W 1,2 we have ∫

T2

m2γ ≤ C.

As in [17] we have(using (13)) ∫
T2

H0(x,Du)2 ≤ C,

which then yields the result.

Proposition 7. Let (u,m, H̄) be a solution of (2). Suppose (3), (5), (7), (10) and
(13) hold. Assume g(m) = mγ with 0 < γ < 1. Suppose d = 2. Then u ∈W 2,p, for
all 1 < p <∞.

Proof. We have

|∆u| ≤ C + |H0(x,Du)|+ |g(m)|.

Since u ∈W 2,2, by Proposition (6), Du ∈ Lq for all q, by Sobolev’s Theorem.
From (13) it follows H0(x,Du) ∈ Lp, for all 1 < p <∞. Also, since

√
m ∈W 1,2,

we have g(m) ∈ Lp for all 1 < p <∞. Thus ∆u ∈ Lp for all 1 < p <∞ from which
it follows u ∈W 2,p, by standard elliptic regularity.



A-PRIORI ESTIMATES FOR STATIONARY MEAN-FIELD GAMES 313

REFERENCES

[1] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer.
Anal., 48 (2010), 1136–1162.

[2] Julien Salomon, Aimée Lachapelle and Gabriel Turinici, Computation of mean field equilibria
in economics, Math. Models Methods Appl. Sci., 20 (2010), 567–588.

[3] F. Camilli, Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for

the planning problem, SIAM J. Control Opt., 50 (2012), 77–109.
[4] F. Cagnetti, D. Gomes and H. V. Tran, Adjoint methods for obstacle problems and weakly

coupled systems of PDE, submitted.

[5] F. Cagnetti, D. Gomes and H. V. Tran, Aubry-Mather measures in the non convex setting,
submitted.

[6] Lawrence C. Evans and Charles K. Smart, Adjoint methods for the infinity Laplacian partial

differential equation, Arch. Ration. Mech. Anal., 201 (2011), 87–113.
[7] Lawrence C. Evans, Some new PDE methods for weak KAM theory, Calc. Var. Partial Dif-

ferential Equations, 17 (2003), 159–177.

[8] Lawrence C. Evans, Further PDE methods for weak KAM theory, Calc. Var. Partial Differ-
ential Equations, 35 (2009), 435–462.

[9] L. C. Evans, Adjoint and compensated compactness methods for Hamilton-Jacobi PDE , Arch.
Ration. Mech. Anal., 197 (2010), 1053–1088.

[10] A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris

Sér. I Math., 325 (1997), 649–652.
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“Paris-Princeton Lectures on Mathematical Finance 2010,” Lecture Notes in Math., 2003,

Springer, Berlin, (2011), 205–266.

http://www.ams.org/mathscinet-getitem?mr=MR2679575&return=pdf
http://dx.doi.org/10.1137/090758477
http://www.ams.org/mathscinet-getitem?mr=MR2647032&return=pdf
http://dx.doi.org/10.1142/S0218202510004349
http://dx.doi.org/10.1142/S0218202510004349
http://www.ams.org/mathscinet-getitem?mr=MR2888257&return=pdf
http://dx.doi.org/10.1137/100790069
http://dx.doi.org/10.1137/100790069
http://www.ams.org/mathscinet-getitem?mr=MR2807134&return=pdf
http://dx.doi.org/10.1007/s00205-011-0399-x
http://dx.doi.org/10.1007/s00205-011-0399-x
http://www.ams.org/mathscinet-getitem?mr=MR1986317&return=pdf
http://dx.doi.org/10.1007/s00526-002-0164-y
http://www.ams.org/mathscinet-getitem?mr=MR2496651&return=pdf
http://dx.doi.org/10.1007/s00526-008-0214-1
http://www.ams.org/mathscinet-getitem?mr=MR2679366&return=pdf
http://dx.doi.org/10.1007/s00205-010-0307-9
http://www.ams.org/mathscinet-getitem?mr=MR1473840&return=pdf
http://dx.doi.org/10.1016/S0764-4442(97)84777-5
http://www.ams.org/mathscinet-getitem?mr=MR1451248&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1650195&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1650261&return=pdf
http://dx.doi.org/10.1016/S0764-4442(98)80144-4
http://www.ams.org/mathscinet-getitem?mr=MR2601334&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1901094&return=pdf
http://dx.doi.org/10.1088/0951-7715/15/3/304
http://www.ams.org/mathscinet-getitem?mr=MR2555180&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2352434&return=pdf
http://dx.doi.org/10.1109/TAC.2007.904450
http://dx.doi.org/10.1109/TAC.2007.904450
http://dx.doi.org/10.1109/TAC.2007.904450
http://www.ams.org/mathscinet-getitem?mr=MR2346927&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2269875&return=pdf
http://dx.doi.org/10.1016/j.crma.2006.09.019
http://www.ams.org/mathscinet-getitem?mr=MR2271747&return=pdf
http://dx.doi.org/10.1016/j.crma.2006.09.018
http://dx.doi.org/10.1016/j.crma.2006.09.018
http://www.ams.org/mathscinet-getitem?mr=MR2295621&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2295621&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2762362&return=pdf


314 DIOGO A. GOMES, GABRIEL E. PIRES AND HÉCTOR SÁNCHEZ-MORGADO
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