Loading [Contrib]/a11y/accessibility-menu.js

Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients

  • Received: 01 March 2011 Revised: 01 September 2011
  • Primary: 35K58; Secondary: 35R60, 35B40, 60H15.

  • We consider a model for the propagation of a driven interface through a random field of obstacles. The evolution equation, commonly referred to as the Quenched Edwards-Wilkinson model, is a semilinear parabolic equation with a constant driving term and random nonlinearity to model the influence of the obstacle field. For the case of isolated obstacles centered on lattice points and admitting a random strength with exponential tails, we show that the interface propagates with a finite velocity for sufficiently large driving force. The proof consists of a discretization of the evolution equation and a supermartingale estimate akin to the study of branching random walks.

    Citation: Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients[J]. Networks and Heterogeneous Media, 2012, 7(1): 137-150. doi: 10.3934/nhm.2012.7.137

    Related Papers:

    [1] Mohammadjavad Hosseinpoor, Hamid Parvin, Samad Nejatian, Vahideh Rezaie, Karamollah Bagherifard, Abdollah Dehzangi, Amin Beheshti, Hamid Alinejad-Rokny . Proposing a novel community detection approach to identify cointeracting genomic regions. Mathematical Biosciences and Engineering, 2020, 17(3): 2193-2217. doi: 10.3934/mbe.2020117
    [2] Yue Hu, Xiaoqin Mei, Dong Tang . Long non-coding RNA XIST is down-regulated and correlated to better prognosis in ovarian cancer. Mathematical Biosciences and Engineering, 2020, 17(3): 2070-2081. doi: 10.3934/mbe.2020110
    [3] Ping Zhou, Yuting Zhang, Yunlei Yu, Weijia Cai, Guangquan Zhou . 3D shape measurement based on structured light field imaging. Mathematical Biosciences and Engineering, 2020, 17(1): 654-668. doi: 10.3934/mbe.2020034
    [4] Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395
    [5] Choonsung Shin, Sung-Hee Hong, Hieyoung Jeong, Hyoseok Yoon, Byoungsoo Koh . All-in-one encoder/decoder approach for non-destructive identification of 3D-printed objects. Mathematical Biosciences and Engineering, 2022, 19(12): 14102-14115. doi: 10.3934/mbe.2022657
    [6] Sukun Tian, Ning Dai, Linlin Li, Weiwei Li, Yuchun Sun, Xiaosheng Cheng . Three-dimensional mandibular motion trajectory-tracking system based on BP neural network. Mathematical Biosciences and Engineering, 2020, 17(5): 5709-5726. doi: 10.3934/mbe.2020307
    [7] Ning Bai, Rui Xu . Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Mathematical Biosciences and Engineering, 2021, 18(2): 1689-1707. doi: 10.3934/mbe.2021087
    [8] Cuicui Cai, Maosheng Fu, Xianmeng Meng, Chaochuan Jia, Mingjing Pei . Indoor high-precision visible light positioning system using Jaya algorithm. Mathematical Biosciences and Engineering, 2023, 20(6): 10358-10375. doi: 10.3934/mbe.2023454
    [9] Xianfeng Xu, Liping Wang, Xiaohong Cheng, Weilin Ke, Shenqiu Jie, Shen Lin, Manlin Lai, Linlin Zhang, Zhenzhou Li . Machine learning-based evaluation of application value of the USM combined with NIPT in the diagnosis of fetal chromosomal abnormalities. Mathematical Biosciences and Engineering, 2022, 19(4): 4260-4276. doi: 10.3934/mbe.2022197
    [10] Xudan Ma, Qijun Zhang, Haihong Zhu, Kefeng Huang, Weina Pang, Qin Zhang . Establishment and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA identifies functional genes in heart failure. Mathematical Biosciences and Engineering, 2021, 18(4): 4011-4026. doi: 10.3934/mbe.2021201
  • We consider a model for the propagation of a driven interface through a random field of obstacles. The evolution equation, commonly referred to as the Quenched Edwards-Wilkinson model, is a semilinear parabolic equation with a constant driving term and random nonlinearity to model the influence of the obstacle field. For the case of isolated obstacles centered on lattice points and admitting a random strength with exponential tails, we show that the interface propagates with a finite velocity for sufficiently large driving force. The proof consists of a discretization of the evolution equation and a supermartingale estimate akin to the study of branching random walks.


    [1] S. Brazovskii and T. Nattermann, Pinning and sliding of driven elastic systems: From domain walls to charge density waves, Adv. Phys., 53 (2004), 177-252. Availabe from: arXiv:cond-mat/0312375.
    [2] J. Coville, N. Dirr and S. Luckhaus, Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients, Networks and Heterogeneous Media, 5 (2010), 745-763.
    [3] N. Dirr, P. W. Dondl, G. R. Grimmett, A. E. Holroyd and M. Scheutzow, Lipschitz percolation, Electron. Commun. Probab., 15 (2010), 14-21.
    [4] N. Dirr, P. W. Dondl and M. Scheutzow, Pinning of interfaces in random media, Interfaces and Free Boundaries, 13 (2011), 411-421. Available from: arXiv:0911.4254.
    [5] M. Kardar, Nonequilibrium dynamics of interfaces and lines, Phys. Rep., 301 (1998), 85-112. Available from: arXiv:cond-mat/9704172. doi: 10.1016/S0370-1573(98)00007-6
    [6] L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6 (1953), 167-177.
    [7] D. Siegmund, On moments of the maximum of normed partial sums, Ann. Math. Statist., 40 (1969), 527-531. doi: 10.1214/aoms/1177697720
  • This article has been cited by:

    1. Palle E. T. Jorgensen, Unbounded graph-Laplacians in energy space, and their extensions, 2012, 39, 1598-5865, 155, 10.1007/s12190-011-0518-8
    2. Joachim von Below, José A. Lubary, Baptiste Vasseur, Some Remarks on the Eigenvalue Multiplicities of the Laplacian on Infinite Locally Finite Trees, 2013, 63, 1422-6383, 1331, 10.1007/s00025-012-0271-9
    3. Joachim Kerner, Matthias Täufer, Jens Wintermayr, Robustness of Flat Bands on the Perturbed Kagome and the Perturbed Super-Kagome Lattice, 2023, 1424-0637, 10.1007/s00023-023-01399-7
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3662) PDF downloads(83) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog