Citation: Al-hassem Nayam. Asymptotics of an optimal compliance-network problem[J]. Networks and Heterogeneous Media, 2013, 8(2): 573-589. doi: 10.3934/nhm.2013.8.573
[1] | G. Allaire, "Shape Optimization by the Homogenization Method," Applied Mathematical Sciences, 146, Springer-Verlag, New York 2002. |
[2] | G. Bouchité, C.Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal, C. R. Acad. Sci. Paris Sér. I, 335 (2002), 1-6. |
[3] | D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems," Progress in Nonlinear Differential Equation and their Applications, 65, Birkhäuser Boston, Inc., Boston, MA, 2005. |
[4] | D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 945-963. doi: 10.1017/S0308210500030006 |
[5] | G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks, Networks and Heterogeneous Media, 2 (2007), 761-777. doi: 10.3934/nhm.2007.2.761 |
[6] | G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752-769. doi: 10.1051/cocv:2006020 |
[7] | G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8 |
[8] | G. Dal Maso and F. Murat, Asymptotic behavior and corrector for the Dirichlet problem in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Sup. Pisa Cl. Sci Ser. (4), 24 (1997), 239-290. |
[9] | V. G. Maz'ja, "Sobolev Spaces," Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. |
[10] | S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem, J. Conv. Anal., 12 (2005), 145-158. |
[11] | V. Šverak, On optimal shape design, J. Math. Pures Appl. (9), 72 (1993), 537-551. |