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Abstract. We consider the problem of the optimal location of a Dirichlet

region in a d-dimensional domain Ω subjected to a given force f in order to

minimize the p-compliance of the configuration. We look for the optimal region
among the class of all closed connected sets of assigned length l. Then we let

the length l tend to infinity and we look at the Γ-limit of a suitable rescaled

functional, from which we get information of the asymptotic distribution of the
optimal region. We also study the case where the Dirichlet region is a discrete

set of finite cardinality.

1. Introduction. We consider the problem of finding the best location of the
Dirichlet region Σ in a d-dimensional domain Ω associated to an elliptic equation
in divergence form, namely{

−∆pu = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,

(1)

where f is a nonnegative function belonging to Lq(Ω), q being the conjugate expo-
nent of p and ∆pu stands for div(|∇u|p−2∇u). We are interested in the minimization
of the p-compliance functional defined by

C(Σ) =

∫
Ω

fuf,Σ,Ωdx,

where uf,Σ,Ω is the unique distributional solution of the equation (1). The admis-
sible class of control variables Σ considered here is the class of all closed connected
sets with given one dimensional Hausdorff measure. It is easy to obtain the opti-
mal configuration Σl which minimize the compliance functional (see Theorem 2.1 in
section 2) as a consequence of Ševerák’s result (see e.g. [4], [11]). We are interested
in the asymptotic behavior of Σl as l→ +∞; more precisely, we want to obtain the
limit distribution of Σl as a limit probability measure that minimizes the Γ-limit
functional of the suitable rescaled p-compliance functional. In the literature, there
are similar results among which we may cite location problems studied in [2], irriga-
tion problems in [10] and compliance in [6]. The present paper is an extension of the
result [5], where a two-dimensional case was studied. The proofs follow the guide-
lines of [5] and difficulties are mainly of technical nature. In [5], the two-dimensional
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setting has been used in the proofs of Γ-lim inf and Γ-lim sup inequalities. More
precisely, Lemma 1 in [5] (analogous of Lemma 3.1 in this paper), which is crucial
for the Γ-lim inf inequality, follows from the classical Poincaré inequality while in
this paper we consider the Poincaré inequality using the notion of p-capacity of a
set. For the construction of the recovering sequence of the Γ-lim sup inequality, the
analogous of Lemma 3.4 in this paper is enough in the case where the dimension
is two. The case of higher dimension requires more effort since the boundary of
the unit cube is not a one-dimensional set. To overcome this difficulty, we prove
another result (Lemma 3.5) which studies the difference between two solutions of
the p-Laplacian equation with two different Dirichlet boundary conditions. This
result together with Lemma 3.4 are sufficient for the construction of the recovering
sequence. In the last section, we deal with the case where the Dirichlet region is
a discrete set with a finite numbers of elements under the assumption that p > d.
This problem is in connection with the location problem studied in [2].

2. The p-compliance under length constraint. Let p > d − 1 be fixed and
q = p/(p − 1) be the conjugate exponent of p. For an open set Ω ⊂ Rd and a
positive real number l, we define the class Al(Ω) by

Al(Ω) := {Σ ⊂ Ω, closed and connected : 0 < H1(Σ) ≤ l}.
For a nonnegative function f ∈ Lq(Ω) and Σ a compact set with positive p-capacity,
we denote by uf,Σ,Ω the weak solution of the equation{

−∆pu = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,

that is u ∈W 1,p
0 (Ω \ Σ) and∫

Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈W 1,p
0 (Ω \ Σ). (2)

By the maximum principle, the nonnegativity of the function f implies that of
u. For f ≥ 0, we define the p-compliance functional as follows:

C(Σ) = Fp(Σ, f,Ω) =

∫
Ω

fuf,Σ,Ωdx =

∫
Ω

|∇uf,Σ,Ω|pdx

= qmax

{∫
Ω

(v − 1

p
|∇v|p)dx : v ∈W 1,p

0 (Ω \ Σ)

}
,

where q stands for the conjugate exponent of p. The existence of the minimal p-
compliance configuration is just a consequence of a generalized Šverák compactness-
continuity result (see [4]). For the convenience of the reader, we briefly describe the
existence of the optimal sets.

Let {Σn}n ⊂ Al(Ω) be a minimizing sequence of the compliance functional,
then there exists a constant A > 0 such that supn{C(Σn)} ≤ A. Since {Σn}n
is a sequence of closed connected subsets of Ω such that supnH1(Σn) ≤ l, by
Blaschke theorem (compactness of the sequence {Σn}n in the Hausdorff topology)
and by Go lab theorem (lower semicontinuity of theH1 with respect to the Hausdorff
topology), up to extracting a subsequence, {Σn}n converges in Hausdorff distance to
some Σ ∈ Al(Ω) and H1(Σ) ≤ lim infn→∞H1(Σn). For the lower semicontinuity of
the compliance functional we need the Šverák continuity-compactness result which
is stated as follow: Let {Dn}n be a sequence of open and bounded sets contained
in a fix bounded set B. If we assume that the number of the connected components
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of the complements of Dn in B is uniformly bounded by some number s, then
{Dn}n converges in the Hausdorff topology to some open and bounded set D ⊂ B
and the number of the connected components of the complement of D is less or
equal to s. Moreover, if we denote by un ∈W 1,p

0 (Dn) the distributional solution of
the p-Laplacian equation −∆pun = f in Dn for some f in W−1,q(B), then up to
subsequence, {un}n converges strongly in W 1,p(B) (un are extended by zero outside
Dn) to a function u which is the distributional solution of the equation −∆pu = f
in D. This result is interesting only in the case where p satisfies d − 1 < p ≤ d
because the case where p > d is trivial due to the fact that functions in W 1,p(B) are
continuous and the convergence of solutions follows easily. To apply this result to
our problem, we choose Dn = Ω\Σn and notice that {Ωn}n converges to D = Ω\Σ
in the Hausdorff topology where Σ is the limit of Σn (note that to avoid terminology
mix up, we did not differentiate between the Hausdorff convergence of compact sets
and of open sets). From the continuity with respect to the domains variation of
solutions, the lower semicontinuity follows easily and also the existence of an optimal
shape as given in the result below.

Theorem 2.1. For any real number l > 0, Ω bounded open subset of Rd, d ≥ 2 and
f a nonnegative function belonging to Lq(Ω), the problem

min{Cp(Σ) : Σ ∈ Al(Ω)} (3)

admits at least one solution.

As we have existence of at least one optimal set, we are interested in the asymp-
totic behavior of those optimal sets Σl of the problem (3) as l → +∞. To achieve
this, let us associate to every Σ ∈ Al(Ω) a probability measure on Ω that will be
called associated measure, given by

µΣ =
H1xΣ

H1(Σ)

and define a functional Fl : P(Ω)→ [0,+∞] by

Fl(µ) =

{
l

q
d−1Cp(Σ) if µ = µΣ,Σ ∈ Al(Ω)

+∞ otherwise.
(4)

The scaling factor l
q

d−1 is needed in order to avoid the functional degenerating
to the trivial limit functional which vanishes everywhere. Our main result deals
with the behavior as l → +∞ of the functional Fl, and we state it in terms of
Γ-convergence.

Theorem 2.2. The functional Fl defined in (4) Γ-converges, with respect to the
weak* topology on the class P(Ω) of probabilities on Ω, to the functional F defined
on P(Ω) by

F (µ) = θ

∫
Ω

fq

µ
q

d−1
a

dx. (5)

In this case µa is the density of the absolutely continuous part of µ with respect to
the Lebesgue measure, and θ is a positive constant depending only on d and p and
is defined by

θ = inf{lim inf
l→+∞

l
q

d−1Fp(Σl, 1, I
d) : Σl ∈ Al(Id)} (6)
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Id = (0, 1)d being the unit cube in Rd.

According to the general theory of Γ-convergence (see [7]), we deduce the follow-
ing consequences of Theorem 2.2:

• if Σl is an optimal set of the minimization problem (3), then up to a subse-
quence the associated measure µΣl

weak∗ converges to µ as l → +∞, where
µ is a minimizer of F (for the definition of F see (5))

• since F has a unique minimizer in P(Ω), the whole sequence µΣl
converges to

the unique minimizer µ of F given by µ = cf
q(d−1)
q+d−1Ld where c is such that µ

is a probability measure, that is c = 1/
(∫

Ω
f

q(d−1)
q+d−1 dx

)
• the minimal value of F is equal to θc

q+d−1
d−1 , and the sequence of the values

inf {Fp(Σ, f,Ω) : Σ ∈ Al(Ω)} is asymptotically equivalent to l
q

d−1 θc
q+d−1
d−1 .

3. Γ-convergence result. We will split the proof of the Γ-convergence result into
two steps corresponding to Γ-lim inf and Γ-lim sup inequalities.

3.1. Γ-lim inf inequality. Before proving the Γ− lim inf inequality, we need some
results and constructions. We start with a construction of a set Gε,l which will be
useful later. Let Ω be a domain contained in Ida where Ida is a cube of Rd of side 2a
for some positive real number a. Let M be a union of d segments of length 1 joining
at the center of the unit cube Id and connecting two parallel faces of the unit cube
in the given direction. The segments are made in such a way that their endpoints
coincide with the middle points of the faces of Id. We consider the set Gε,l to be

the homogenization of the set M of order b( εl
2ad )1/(d−1)c into Ida . It is clear that,

due to the particularity of the set M , the set Gε,l is connected and H1(Gε,l) ≈ εl.
The following Lemma justifies the scaling factor in (4)

Lemma 3.1. Let QR ⊂ Rd be a cube of side R and A ⊂ QR a closed subset of QR
of positive p-capacity, then

(1) there exists a constant C = C(d, p) such that, for all functions v ∈ C∞(QR)
with nonnegative mean value and vanishing on A, we have∫

QR

|v|pdx ≤ CRd

capp(A,Q2R)

∫
QR

|∇v|pdx,

where capp(A,Q2R) stands for the relative p-capacity of the set A inside Q2R.
(2) For any ε > 0, any 0 < l < +∞, any domain Ω and any function with non

zero mean value v ∈ W 1,p
0 (Ω \ Gε,l) ⊂ W 1,p

0 (Ω) (Gε,l is the network constructed

above) it holds ||v||Lp(Ω) ≤ C(d, ε, ε0)l
1

1−d ||v||W 1,p
0 (Ω), where ε0 = capp(M, 2Id).

(3) As a consequence, if we have a nonnegative function f ∈ Lq(Ω), then the

function uf,Gε,l,Ω satisfies ||uf,Gε,l,Ω||Lp(Ω) ≤ C(d, ε, ε0)l
q

1−d ||f ||1/(p−1)
Lq(Ω) .

Proof. The first assertion is a variant of the well-known Poincaré inequality. See [9]
for more details. For proving the second assertion, we first choose the function v
to be a nonnegative smooth function not identically zero on a large cube Ida which
vanish outside Ω \ Gε,l. We consider the subdivision of the cube Ida into subcubes

which are coming from the homogenization of order b( εl
2ad )1/(d−1)c of the unit cube

into Ida and consider the associated network Gε,l. The side of subcubes is of order

l1/(1−d). Let us denote the subcubes by Qj . The set Ida \ Gε,l can be seen as

the homogenization of order k = b( εlad )1/(d−1)c of Id \ M into Ida (M is the set
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constructed above). Let us set ε0 = capp(M, 2Id) and notice that v vanishes on
Gε,l. By applying the first statement of this Lemma (v has positive mean value), it
follows that∫

Qj

|v|pdx ≤ Ck−d

capp(k−1M, 2Qj)

∫
Qj

|∇v|pdx ≤ Clp/(1−d)

capp(M, 2Id)

∫
Qj

|∇v|pdx

and by summing up over j we get∫
Ida

|v|pdx ≤ C

ε0
lp/(1−d)

∫
Ida

|∇v|pdx.

Using the fact that v vanishes outside Ω, we may restrict the integrand to Ω, raise
each term of the inequality to the power 1/p and thus getting the result by noticing
that the Lp norm of the gradient ||∇v||Lp(Ω) stands for the norm ||v||W 1,p

0 (Ω). The

general case follows by density. For the last inequality, we use the weak version of
the PDE and the Hölder inequality to obtain∫

Ω

|∇uf,Gε,l,Ω|pdx =

∫
Ω

fuf,Gε,l,Ωdx ≤ ||uf,Gε,l,Ω||Lp(Ω)||f ||Lq(Ω).

Since uf,Gε,l,Ω ∈W
1,p
0 (Ω \Gε,l), by the second part of this Lemma we get

||uf,Gε,l,Ω||
p

W 1,p
0 (Ω)

≤ ||uf,Gε,l,Ω||Lp(Ω)||f ||Lq(Ω)

≤ C(d, ε0, ε)l
1/(1−d)||uf,Gε,l,Ω||W 1,p

0 (Ω)||f ||Lq(Ω),
,

and the desired result follows.

Before proving the Γ-lim inf inequality, we need the following estimate which will
be helpful.

Lemma 3.2. Let f, g ∈ Lq(Ω) be given and uf and ug denote the solution of p-
Laplacian equation with respective right hand side f, g and with Dirichlet boundary
condition on Σ

′

l = Σl ∪ Gε,l (where Σl is an element of Al(Ω) and Gε,l the above
constructed network), then

lq/(d−1)||uf − ug||L1(Ω) ≤ C|Ω|1/q||f − g||
1/(p−1)
Lq(Ω) ,

where C = C(d, p, ε0, ε). In particular, if Ω = Q a cube centered at x0, g = f(x0)
and x0 is a Lebesgue point for f , then

lq/(d−1)||uf − ug||L1(Q) ≤ C|Q|

(∫
Q
|f(x)− f(x0)|qdx

|Q|

)1/p

= |Q|r(Q).

Proof. For any p ≥ 2, and any pair of vectors (z, w) we have the following mono-
tonicity formula (see [8])

|z − w|p ≤ C(|z|p−2z − |w|p−2w) · (z − w).

In our setting, we have p > d − 1 and d ≥ 3 so we fulfill the requirement of the
monotonicity formula. By choosing z = ∇uf and w = ∇ug, we get

||uf − ug||pW 1,p
0 (Ω)

≤ C||uf − ug||Lp(Ω)||f − g||Lq(Ω).

From part 2 of Lemma 3.1, the inequality ||v||Lp(Ω) ≤ Cl1/(1−d)||v||W 1,p
0 (Ω) holds

for every function v vanishing on Σ
′

l. Since the function uf − ug vanishes on Σ
′

l, we
have
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||uf − ug||pW 1,p
0 (Ω)

≤ Cl1/(1−d)||uf − ug||W 1,p
0 (Ω)||f − g||Lq(Ω),

which gives

||uf − ug||W 1,p
0 (Ω) ≤ Cl

1/(1−d)(p−1)||f − g||1/(p−1)
Lq(Ω) ,

and using Hölder inequality, we get

||uf − ug||L1(Ω) ≤ |Ω|1/q||uf − ug||Lp(Ω)

≤ C|Ω|1/ql1/(1−d)||uf − ug||W 1,p
0 (Ω)

≤ C|Ω|1/qlq/(1−d)||f − g||1/(p−1)
Lq(Ω) ,

then the first part of the statement follows. The second part is an obvious conse-
quence of the first part.

Remark 1. Since x0 is a Lebesgue point for f , the number

r(Q) =

(
1

|Q|

∫
Q

|f(x)− f(x0)|qdx
)1/p

goes to zero whenever the cube Q shrinks around the point x0.

In the following proposition, we prove that the Γ-lim inf functional is bounded
below by the candidate limit functional F in (5).

Proposition 1. Under the same hypotheses of Theorem 2.2, denoting by F− the
functional Γ-lim inf l Fl, it holds F−(µ) ≥ F (µ) for any µ ∈ P(Ω). This means that
for any sequence (Σl)l ⊂ Al(Ω) such that the associated sequence of measures µΣl

weak* converges to µ, we have

lim inf
l→+∞

l
q

d−1

∫
Ω

fuf,Σl,Ωdx ≥ F (µ).

Proof. Let Σ′l = Σl ∪ Gε,l and set u′l = uf,Σ′l,Ω. Since ul ≥ u′l, it is enough to

estimate the integral l
q

d−1
∫

Ω
fu′ldx. It is obvious that 0 ≤ u′l ≤ uf,Gε,l,Ω (by the

maximum principle) and part 3 of Lemma 3.1 gives

||uf,Gε,l,Ω||Lp(Ω) ≤ C(d, ε0, ε, f)l
q

1−d .

It follows that l
q

d−1u′l is Lp bounded, so up to a subsequence l
q

d−1u
′

l ⇀ w in Lp(Ω)
for some function w. Thus

lim
l→+∞

l
q

d−1

∫
Ω

gu′ldx =

∫
Ω

gwdx, ∀g ∈ Lq(Ω).

To achieve our goal, it is enough to estimate w from below. We will show that, for
almost any x0 ∈ Ω, it holds

w(x0) ≥ θ f(x0)1/(p−1)

(µa + ε)
q

d−1

. (7)

Now, we first estimate w on a cube Q centered at the point x0 ∈ Ω. We make
the following assumption that we will refer to as assumption (A). x0 is a Lebesgue
point for f and

|Q|−1µ(Q)→ µa(x0) as Q shrinks around x0.
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We also assume that f(x0) > 0 otherwise (7) would be trivial. We have

lim
l→+∞

l
q

d−1

∫
Q

u′ldx =

∫
Q

wdx,

we use

u′l ≥ uf,Σ′l ,Q ≥ uf(x0),Σ
′
l ,Q
− |uf,Σ′l ,Q − uf(x0),Σ

′
l ,Q
| in Q,

where the first inequality comes from the fact that we add Dirichlet boundary
condition on Q. The second part of Lemma 3.2 gives∫

Q

|uf,Σ′l ,Q − uf(x0),Σ
′
l ,Q
|dx ≤ l

q
1−d |Q|r(Q),

so passing to the limsup as l→ +∞ yield

lim sup
l→+∞

l
q

1−d

∫
Q

|uf,Σ′l ,Q − uf(x0),Σ
′
l ,Q
|dx ≤ |Q|r(Q). (8)

It remains to estimate the second term. First of all let us define the number
L(l, Q) = H1(Σ

′

l ∩Q) and observe that

uf(x0),Σ
′
l ,Q

= f(x0)1/(p−1)u1,Σ
′
l ,Q
. (9)

For simplicity of the notation, we denote u1,Σ
′
l ,Q

by vl. By a change of variables, if

we assume the side of the cube Q to be λ and we define vl,λ := λ−qvl(λx) (thinking,
for instance that, both cubes are centered at the origin), we get vl,λ = u1,λ−1Σ

′
l ,I

d .

It is easy to see that

λ−1Σ
′

l ∈ AL(l,Q)/λ(Id);

moreover, it holds L(l, Q)→ +∞ as l→ +∞, since

L(l, Q) ≥ H1(Gε,l ∩Q) ≈ εl|Q|. (10)

Using (10) and the fact that µl = l−1H1(Σl), we may estimate the ratio between
L(l, Q) and l. It follows from the weak* convergence of µl to µ that

lim sup
l→+∞

µl(Q) ≤ µ(Q).

So we have

lim sup
l→+∞

L(l, Q)

l
≤ µ(Q) + ε|Q|. (11)

Taking into account the definition of θ (for the definition of θ, we refer to (6))
and the change of variables y = λx we have,

lim inf
l→+∞

L(l, Q)
q

d−1

∫
Q

vl(y)dy = lim inf
l→+∞

L(l, Q)
q

d−1λd+q

∫
Id
vl,λ(x)dx

= lim inf
l→+∞

(
λ−1L(l, Q)

) q
d−1 λd+q+ q

d−1

∫
Id
vl,λ(x)dx

≥ λd+q+ q
d−1 θ

.
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hence the fact that λd = |Q| allows to get

lim inf
l→+∞

l
q

d−1

∫
Q

vl(y)dy ≥ lim inf
l→+∞

(
l

L(l, Q)

) q
d−1

lim inf
l→+∞

L(l, Q)
q

d−1

∫
Q

vl(y)dy

≥ λd+q+ q
d−1 θ

(
1

µ(Q) + ε|Q|

) q
d−1

=

(
|Q|

µ(Q) + ε|Q|

) q
d−1

|Q|θ.

This estimate and the equations (8) and (9) give

lim inf
l→+∞

l
q

d−1

∫
Q

u′ldx ≥ lim inf
l→+∞

l
q

d−1

(∫
Q

vldx−
∫
Q

|uf,Σ′l ,Q − uf(x0),Σ
′
l ,Q
|dx
)

= lim inf
l→+∞

l
q

d−1

∫
Q

vldx− lim sup
l→+∞

l
q

d−1

∫
Q

|uf,Σ′l ,Q − uf(x0),Σ
′
l ,Q
|dx

≥ |Q|
(

|Q|
µ(Q) + ε|Q|

) q
d−1

θf(x0)1/(p−1) − |Q|r(Q).

From this estimate, we deduce the lower bound of average of w on the cube Q which
is

|Q|−1

∫
Q

wdx ≥ −r(Q) +

(
|Q|

µ(Q) + ε|Q|

) q
d−1

θf(x0)1/(p−1).

By Remark 1 we know that r(Q) tends to 0 when the cube Q shrinks to x0, whenever
x0 is a Lebesgue point for f . Now we let the cube Q shrinks toward x0 with x0

satisfying assumption (A), then we get

w(x0) ≥ θf(x0)1/(p−1)

(µa(x0) + ε)
q

d−1

.

It follows that

lim inf
l→+∞

l
q

d−1

∫
Ω

fuldx ≥
∫

Ω

fwdx ≥ θ
∫

Ω

fq

(µa + ε)
q

d−1

dx.

Letting ε tend to 0 and using Fatou’s Lemma, it holds

lim inf
l→+∞

l
q

d−1

∫
Ω

fuldx ≥ θ
∫

Ω

fq

µ
q

d−1
a

dx

as desired.

3.2. Γ-lim sup inequality. For the proof of the Γ-lim sup inequality we introduce a
definition and prove some preliminary results. We start with the definition of tiling
set.

Definition 3.3. A set Σ ∈ Al(Id) is called tiling if Σ ∩ ∂Id coincides with the 2d

vertices of Id.

If Σ ∈ Al(Id) is tiling set and Σk is the homogenization of order k of Σ into Id,
then Σk remains connected and

H1(Σk) = kd−1H1(Σ).

The following result study the asymptotic behavior of the rescaled state function
associated to a homogenized set. It is a first step toward the construction of the
recovering sequence.
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Lemma 3.4. Given Σ0 ∈ Al0(Id) a tiling set, a domain Ω ⊂ Rd and f ∈ Lq(Ω),
we consider a sequence of sets

Σk =
⋃

y∈k−1Zd

(y + k−1Σ0 ∪ ∂Id) ∩ Ω

and consider a sequence of functions (uk)k given by

uk = kquf,Σk,Ω,

then uk ⇀ c(Σ0)f1/(p−1) in Lp(Ω) as k → +∞, where c(Σ0) is a constant given by∫
Ω
u1,Σ0,Iddx.

Proof. Let us set ε0 = capp(Σ0) > 0, then by part 3 of Lemma 3.1 the sequence
(uk)k is bounded in Lp(Ω). So up to a subsequence it converges weakly in Lp(Ω)
to some function. Let us consider the subsequence (denoted by the same indices)
(uk)k and its weak limit wf,Σ0,Ω. It is obvious that the pointwise value of this limit
function depends only on the local behavior of f. In fact, we may produce small
cubes around each point x ∈ Ω which do not affect each other and if f =

∑
j fj1Aj

is piecewise constant (the pieces Aj being disjoint open sets, for instance), then for k
large enough the value of uk at x ∈ Aj depends only of fj (uk vanishes on k−1∂Id).
From the rescaling property of the p-Laplacian operator ∆p, if f is a piecewise

constant function, it holds wf,Σ0,Ω = f1/(p−1)w1,Σ0,Ω. It is clear that in the case
f = 1, since we are simply homogenizing the function u1,Σ0,Id , the limit of the whole
sequence (uk)k exists and does not depend on the global geometry of Ω, but it is a
constant and it is the same constant if we have Id instead of Ω. An easy computation
shows that the constant is c(Σ0). It remains to extend the equality for non piecewise
constant functions belonging to Lq(Ω). Let f ∈ Lq(Ω) be a generic function and
(fn)n a sequence of piecewise constant functions approaching f in Lq(Ω). Up to

a subsequence it holds kquf,Σk,Ω ⇀ wf,Σ0,Ω and kqufn,Σk,Ω ⇀ f
1/(p−1)
n c(Σ0) as

k → +∞. By the first part of Lemma 3.2 it also holds

||kquf,Σk,Ω − kqufn,Σk,Ω||L1(Ω) ≤ C||f − fn||
1/(p−1)
Lq(Ω) .

Taking into account the lower semicontinuity of the L1(Ω)-norm with respect to the
Lp(Ω)-weak topology, we get, passing to the limit as k → +∞,

||wf,Σ0,Ω − f1/(p−1)
n c(Σ0)||L1(Ω) ≤ C||f − fn||

1/(p−1)
Lq(Ω) .

We now pass to the limit as n→ +∞ and using Fatou’s Lemma (up to a subsequence
fn converges pointwise a.e. to f), we get wf,Σ0,Ω = f1/(p−1)c(Σ0) and the proof is
completed.

This result remain true even if Σ0 is not tiling. In fact we have never used the
fact that Σ0 is tiling in the proof. We keep it for the up coming construction. One
problem in the previous Lemma is that, we have used the whole boundary of the
unit cube which is not a one dimensional set (if d ≥ 3) and consequently the set Σk

is not a one dimensional set. In the following Lemma, we prove that uf,Σk,Ω may

be approximated by uf,Σk
l ,Ω

where Σkl is a one dimensional closed and connected

set. This result is the second and key step for the construction of the recovering
sequence.

Lemma 3.5. Let Σ ∈ Al(Id) be a tiling set such that the corresponding rescaled

state functions l
q

1−duf,Σ,Id are uniformly Lp bounded, then there exists Tl ∈ Al(Id)
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such that H1(Tl)� l and if we denote by ul = uf,Σ∪Tl,Id and vl the solution of the
equation {

−∆pu = f in Id \ Σ ∪ Tl
u = 0 in Σ ∪ Tl,

then vl ≤ ul + cll
q

1−d on Id where cl is a constant depending on l and tends to zero
as l goes to infinity.

Proof. Let Σ ∈ Al(Id) be a tiling set such that the sequence

(ũl)l = (l
q

d−1uf,Σ,Id)l is Lp bounded and denote by ul the solution of the equation{
−∆pu = f in Id \ Σ

u = 0 on Σ ∪ ∂Id,

and by vkl the solution of the equation{
−∆pu = f in Id \ Σ ∪ Σk

u = 0 on Σ ∪ Σk,

where Σk is grid of length k contained in the boundary of Id and converges to it
in Hausdorff distance. Since Σ is tiling, we may choose Σk such that Σ ∪ Σk is
connected for all k. For l fixed, (Σ ∪ Σk)k is a sequence of connected sets which
converges to the connected set Σ∪∂Id then by generalized Šverak continuity result
(see [4]) the sequence (vkl )k converges strongly to ul in W 1,p(Iq) as k → +∞. As

consequence (l
q

d−1 vkl )l (as well as l
q

d−1 (vkl −ul)) is Lp bounded, more precisely there
exists a constant ck such that

‖l
q

d−1 (vkl − ul)‖Lp(Id) ≤ ck. (12)

Moreover ck may be as small as we want for k large enough. Now let k depend
on l say k = k(l) and consider the set Σl = Σ ∪ Σk(l). We may choose k(l) such
that k(l) � l and k(l) → +∞ as l → +∞. This makes the length of Σl to be
asymptotically equivalent to l. (Σl)l is a sequence of connected sets converging to

the connected set I
d

the closure of the unit cube then the associated sequence of

solutions converges strongly to zero in W 1,p(Id) and (l
q

d−1 v
k(l)
l )l are Lp bounded.

Moreover l
q

d−1 v
k(l)
l satisfies the inequality (12). From the maximum principle we

get vl − ul ≥ 0 (setting vl = v
k(l)
l ) and from the above boundedness and Hölder

inequality it holds

0 ≤
∫
Id

(vl − ul)dx ≤ cll
q

1−d .

We obtain easily the existence of some constant cl (it may be different from the
above constant cl but it goes to zero as l→ +∞) such that the inequality

vl − ul ≤ cll
q

1−d

holds in Id and the proof is completed.

Due to the terminology suggested in [5], the sets satisfying the hypothesis of
Lemma 3.5 that is Σ ∪ Tl will be called almost boundary-covering sets. We have
proved the Lemma for the unit cube but the result remains true for a cube of
any side as well as an open domain with Lipschitz boundary. Now, we build an
almost boundary-covering set that will be used for the construction of the recovering
sequence for the Γ-lim sup inequality.
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Lemma 3.6. For any ε > 0, there exists l0 > 0 such that for all l > l0 we find a
set Σ ∈ Al(Id) which is almost boundary-covering, with

l
q

d−1

∫
Id
u1,Σ,Iddx < (1 + ε)θ

and consequently if we denote by u1,Σ the solution of the state equation which van-
ishes only on Σ and not on the whole boundary of Id we get

l
q

d−1

∫
Id
u1,Σdx < (1 + ε)θ + cl.

Proof. Given a small positive number δ (0 < δ � 1), by definition of θ, we may
find a set Σ1 ∈ Al1(Id) such that

l
q

d−1

1

∫
Id
u1,Σ1,Iddx < (1 + δ)θ

and moreover the number l1 may be chosen as large as we want. Now, we want
enlarge the set Σ1 to get a set Σ2 which is almost boundary-covering. Let γ =

∪2d
j=1Sj where Sj is the shortest segment joining Σ1 to the jth vertice of the unit

cube Id. We set Σ2 = Σ1 ∪ Tl1 ∪ γ where Tl1 is the grid Tl in Lemma 3.5 with l
replaced by l1. Up to addition of one segment, we may assume Σ2 connected. The
length l2 = H1(Σ2) does not exceed the number l1 + H1(Tl1) + (2d + 1)

√
d. It is

possible to chose l1 so that(
l1 +H1(Tl1) + (2d + 1)

√
d

l1

) q
d−1

≤ 1 + δ.

This implies

l
q

d−1

2

∫
Id
u1,Σ2,Iddx ≤

(
l2
l1

) q
d−1

l
q

d−1

1

∫
Id
u1,Σ1,Iddx ≤ (1 + δ)2θ.

Now if we are given a large number l, we homogenize the set Σ2 of order

k = b
(
l
l2

) 1
d−1 c into Id and the homogenized set Σ belongs to Akd−1l2(Id) and is

still almost boundary-covering. For this set Σ it holds (using the rescaling property
of p-Laplacian operator)

(kd−1l2)
q

d−1

∫
Id
u1,Σ,Iddx = l

q
d−1

2

∫
Id
u1,Σ2,Iddx.

Noticing that l
q

d−1 ≤
(
k+1
k

)q (
kd−1l2

) q
d−1 , we get

l
q

d−1

∫
Id
u1,Σ,Iddx ≤

(
k + 1

k

)q
(1 + δ)2θ.

If l > l2δ
−1, using the fact that δ � 1, an easy computation shows that

1 + 1/k < 1 + δ so that we get

l
q

d−1

∫
Id
u1,Σ,Iddx ≤ (1 + δ)2+qθ.

Finally, it is sufficient if δ is chosen so small that (1 + δ)2+q < 1 + ε and
l0 = l2δ

−1, then the result follows.
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We have all the ingredients to prove the Γ-lim sup inequality. We will start from
a particular class of measures. Let us call piecewise constant probability measures
those probability measures µ ∈ P(Ω) which are of the form

µ = ρdx, with, ρ ∈ L1(Ω),

∫
Ω

ρdx = 1, ρ > 0,

for a piecewise constant function ρ =
∑m
j=1 ρjIΩj

, the pieces Ωj being disjoint

Lipschitz open subsets with the possible exception of Ω0 = Ω \ ∪mj=1Ωj .

Proposition 2. Under the same hypotheses of Theorem 2.2, we have

F+(µ) ≤ F (µ), where F+ = Γ− lim sup
l→+∞

Fl,

for any piecewise constant measure µ ∈ P(Ω). This means that for any such a
measure µ and ε > 0, there exists a family of sets (Σl)l ⊂ Al(Ω) such that the
measure µΣl

weak* converges to the measure µ and moreover

lim sup
l→+∞

l
q

d−1

∫
Ω

fuf,Σl,Ωdx ≤ (1 + ε)θ

∫
Ω

fq

ρ
q

d−1

dx.

Proof. Apply Lemma 3.6 and take an almost boundary-covering set Σ0 ∈ Al0(Id)
such that

l
q

d−1

0

∫
Id
u1,Σ0,Iddx < (1 + ε)θ.

We define the set Σjl by homogenizing into Ωj the set Σ0 of order k(l, j) that is

Σjl = Ωj ∩ k(l, j)−1(Zd + Σ0).

Since Σ0 is tiling , for k(l, j) large enough Σjl remains connected and

H1(Σjl ) = |Ωj |K(l, j)d−1H1(Σ0) ≤ |Ωj |K(l, j)d−1l0.

Let Σl1 ∈ Al1(Ω) be a set contained in the internal boundary of the union of Ωj
and converges to it in the Hausdorff topology as l1 → +∞ (Σl1 may be obtained by
homogenizing some kind of grid contained in ∂Id of some order into ∪mj=0∂Ωj). Due
to the connectedness of Σl1 , the corresponding solution converges to the solution
associated to the internal boundary of ∪mj=0Ωj as well. Then we choose Σl =

∪mj=0Σjl ∪ Σl1 . We may assume Σl connected otherwise we add some segments to
connect all the pieces. The family of sets Σl is admissible (i.e. Σl ∈ Al(Ω) and
µΣl

⇀ µ) if we have, as l→ +∞,
m∑
j=0

|Ωj |k(l, j)d−1l0 + l1 ≤ l and is asymptotic to l;

k(l, j)d−1l0
l

→ ρj for j = 0, · · · ,m.

It is easy to see that all theses conditions are satisfied if we set

k(l, j) =

⌊(
l − l1
l0

ρj

) 1
d−1

⌋
.

Let us introduce the following sets

Γjl = Ωj ∩ k(l, j)−1(Zd + ∂Id), Γl =
⋃
j

Γjl .
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Thanks to Lemma 3.5 we have∫
Ωj

fk(l, j)quf,Σj
l ,Ωj

dx ≤
∫

Ωj

fk(l, j)quf,Σl∪Γj
l ,Ωj

dx+ cll
q

1−d

0 . (13)

In fact, we consider subcubes Qk(l,j) which are obtained by the partition of Ωj
made by Γjl , then in each subcube Qk(l,j), Lemma 3.5 gives

uf,Σj
l
≤ uf,Σj

l ,Qk(l,j)
+ cl(k(l, j)l

1
d−1

0 )−q.

By multiplying this inequality by f (notice that f ≥ 0), Integrating over Qk(l,j) and
summing up, we get∫

Ωj

fuf,Σj
l ,Ωj

dx ≤
∫

Ωj

fuf,Σj
l
dx ≤

∫
Ωj

fuf,Σj
l∪Γj

l ,Ωj
dx+ cl(k(l, j)l

1
d−1

0 )−q,

where the first inequality comes from the maximum principle and the second is
obtained by observing that on each cube Qk(l,j) it holds uf,Σj

l∪Γj
l ,Ωj

= uf,Σj
l ,Qk(l,j)

.

We choose l1 to be a function of l (for example l1 = l
d−1
d ) in such a way that l1

goes to +∞ whenever l goes to +∞. We are interested in the estimate of the value
of Fl(Σl). By Lemma 3.5 and inequality (13) we get

l
q

d−1

∫
Ω

fuf,Σl,Ωdx

=

m∑
j=0

(
l

k(l, j)d−1

) q
d−1

∫
Ωj

fk(l, j)quf,Σl,Ωdx

≤
m∑
j=0

(
l

k(l, j)d−1

) q
d−1

(∫
Ωj

fk(l, j)quf,Σl,Ωj
dx+ cl1

)

≤
m∑
j=0

(
l

k(l, j)d−1

) q
d−1

(∫
Ωj

fk(l, j)quf,Σj
l∪Γj

l ,Ωj
dx+ cl1 + cll

q
1−d

0

)
,

where cl1 goes to zero as l1 tends to infinity. By applying Lemma 3.4 to each Ωj
we get the following weak convergence in Lp.

k(l, j)quf,Σj
l∪Γj

l ,Ωj
⇀ c(Σ0)f1/(p−1) as l→ +∞

and the term
(

l
k(l,j)d−1

) q
d−1

converges to
(
l0
ρj

) q
d−1

as l → +∞ for j = 0, · · · ,m.

The choice of the set Σ0 implies that l
q

d−1

0 c(Σ0) < (1 + ε)θ, so we have

lim sup
l→+∞

l
q

d−1

∫
Ωj

fuf,Σl,Ωdx ≤ (1 + ε)θρ
q

d−1

j

∫
Ωj

fqdx, for j = 0, · · · ,m

and summing up over j, it holds

lim sup
l→+∞

l
q

d−1

∫
Ω

fuf,Σl,Ωdx ≤ (1 + ε)θ

∫
Ω

fq

ρ
q

d−1

dx.

We have to extend the result to non piecewise constant measures. By the general
theory of Γ-convergence, we know that it is enough to prove the Γ-lim sup inequality
on a class which is dense in energy. Hence, due to the lower semicontinuity of the
functional F , it is sufficient to prove the following
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Proposition 3. For any measure µ ∈ P(Ω) there exists a sequence (µn)n of piece-
wise constant measures such that µn weak* converges to µ and

lim sup
n

F (µn) ≤ F (µ) = θ

∫
Ω

fq

µ
q

d−1
a

dx.

Proof. First observe that the inequality is trivial whenever F (µ) = +∞. Assume
now that F (µ) < +∞ and we shall start proving the inequality for measures which
are absolutely continuous with respect to the Lebesgue measure and have positive
densities bounded away from zero. Given a measure µ = ρdx, with ρ ≥ c > 0, it
is possible to find a sequence of measures µn = ρndx such that ρn → ρ strongly
in L1 and ρn are piecewise constant with ρn ≥ c. The pointwise a.e convergence of
ρn to ρ may be assumed and the inequality F (µ) ≥ lim supn F (µn) follows easily
(we have even an equality). So we have extended the result to any absolutely
continuous measure with density bounded below away from zero. To get the result
for any measure µ ∈ P(Ω), it is sufficient to prove that any measure µ may be
approximated weakly* by absolutely continuous measure µn with densities bounded
below away from zero and lim supn F (µn) ≤ F (µ). Let us take µ = ρdx+µs, where
µs is the singular part of the measure µ with respect to the Lebesgue measure
and ρ the density of the absolutely continuous part. We construct a sequence of
absolutely continuous measure µn by setting µn = ((1− 1/n)ρ+ an +φn)dx, where
an = n−1

∫
Ω
ρdx and φndx ⇀ µs with

∫
Ω
φndx =

∫
Ω
dµs. The fact that F (µ) < +∞

implies that ρ cannot vanish, hence an > 0 and ρn = (1−1/n)ρ+an+φn is bounded
below by the positive constant an. We have as well that µn weak* converges to µ
and

F (µn) = θ

∫
Ω

fq

((1− 1/n)ρ+ an + φn)
q

d−1

≤ θ
∫

Ω

fq

((1− 1/n)ρ)
q

d−1

dx

= (1− 1

n
)−q/(d−1).F (µ)

Passing to the lim sup on the inequality above, we get the desired result.

4. Some estimate of θ. In this section, we will prove some estimate on the con-
stant θ and in particular we will show that θ is neither 0 nor +∞ so that our limit
functional is not trivial. We have

Proposition 4.

θ < +∞.

Proof. Let Σl ∈ Al(Id) be a tiling set. For any positive integer n, let us denote by
Σnl the homogenization of the set Σl of order n into Id. Clearly, Σnl is connected
and H1(Σnl ) ≤ nd−1l. Using the rescaling property of the p-Laplacian operator, it
follows that

θ ≤ lim inf
n

(nd−1l)
q

d−1Fp(Σ
n
l , 1, I

d) = l
q

d−1Fp(Σl, 1, I
d) < +∞

which concludes the proof.

Proposition 5.

θ ≥ (d− 1)q−q

(q + d− 1)w
q

d−1

d−1

,

where wr is the volume of unit ball in Rr.
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Proof. First, we prove that

Fp(Σl, 1, I
d) ≥ q−qDq(Σl ∪ ∂Id),

where Dr(Σ) =
∫
Id
hΣ(x)rdx and hΣ(x) = d(x,Σ) is the distance from x to the set

Σ. For every real number A and for every real number r > 1, we have

Fp(Σl, 1, I
d) = qmax

{∫
Id

(v − 1

p
|∇v|p)dx : v ∈W 1,p

0 (Id \ Σl)

}
≥ q

∫
Id

(AhΣl∪∂Id(x)r − 1

p
|∇(AhΣl∪∂Id(x)r)|p)dx.

It is well known that the distance function is 1-Lipschitz and satisfies
|∇hΣl∪∂Id | = 1 (and consequently |∇(hΣl∪∂Id)r| = r(hΣl∪∂Id)r−1). Choosing r = q
the conjugate exponent of p, we get

Fp(Σl, 1, I
d) ≥ q(A−Aq

(
qp

p

)
)

∫
Id
hΣl∪∂Id(x)qdx.

The result follows by optimizing on A (the optimal choice is A = q−q). In [10] it
has been proved that for any set Σl ∈ Al(Id) it holds

lim inf
l

l
q

d−1

∫
Id
hΣl

(x)qdx ≥ d− 1

(q + d− 1)w
q

d−1

d−1

.

Here the same proof may be adapted by doing some modification and getting the
same result even if Σl ∪ ∂Id is not a one dimensional set i.e.

lim inf
l

l
q

d−1

∫
Id
hΣl∪∂Id(x)qdx ≥ d− 1

(q + d− 1)w
q

d−1

d−1

,

and the desired result holds.

5. Asymptotics of p-compliance-location problem. In this section, we con-
sider the case where the control variable is a discrete set of finite elements. Let
p > d be fixed and q = p/(p − 1) the conjugate exponent of p. For an open set
Ω ⊂ Rd and n a given positive integer, we define

An(Ω) := {Σ ⊂ Ω : 0 < H0(Σ) ≤ n}.

For a nonnegative function f ∈ Lq(Ω) and Σ a compact set with positive p-
capacity(since p > d, every point has positive p-capacity), we denote as before
by uf,Σ,Ω the weak solution of the equation{ −∆pu = f in Ω \ Σ

u = 0 in Σ ∪ ∂Ω,

that is u ∈W 1,p
0 (Ω \ Σ) and∫

Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈W 1,p
0 (Ω \ Σ). (14)

For f ≥ 0, we define the p-compliance functional as before and the existence of the
minimal p-compliance configuration is a consequence of the continuity of Sobolev
functions when p > d.
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Theorem 5.1. For any integer n > 0, Ω bounded open subset of Rd, d ≥ 2 and f
a nonnegative function belonging to Lq(Ω), the problem

min{Cp(Σ) : Σ ∈ An(Ω)} (15)

admits at least one solution.

As before, we are interested in the asymptotic behavior of the optimal set Σn of
the problem (15) as n → +∞. Let us associate to every Σ ∈ An(Ω) a probability
measure on Ω, given by

µΣ = n−1δΣ

and define a functional Gn : P(Ω)→ [0; +∞] by

Gn(µ) =

{
n

q
dCp(Σ) if µ = µΣ,Σ ∈ An(Ω)

+∞ otherwise.
(16)

The scaling factor n
q
d is needed in order to avoid the sequence of functionals Gn

to converges to the trivial limit functional which vanishes everywhere. Again the
main result deals with the behavior as n→ +∞ of the functional Gn, and is stated
in terms of Γ-convergence.

Theorem 5.2. The functional Gn defined in (16) Γ-converges, with respect to the
weak* topology on the class P(Ω) of probabilities on Ω, to a functional G defined
on P(Ω) by

G(µ) = θ1

∫
Ω

fq

µ
q
d
a

dx, (17)

where µa stands for the density of the absolutely continuous part of µ with respect
to the Lebesgue measure, and θ1 is a positive constant depending only on d and p
and is defined by

θ1 = inf{lim inf
n→+∞

n
q
dFp(Σn, 1, I

d) : Σn ∈ An(Id)} (18)

Id = (0, 1)d being the unit cube in Rd.

We deduce the following consequences of Theorem 5.2:

• if Σn is an optimal set of the minimization problem (15), then up to a sub-
sequence the associated sequence of measures µΣn

converges weak* to the
measure µ as n→ +∞, where µ is a minimizer of G;

• since G has a unique minimizer in P(Ω), the whole sequence µΣn
converges

to the unique minimizer µ of G given by µ = cf
qd

q+dLd where c is such that µ

is a probability measure, that is c = 1/
(∫

Ω
f

qd
q+d dx

)
;

• the minimal value of G is equal to θ1c
q+d
d , and the sequence of values

inf {Fp(Σ, f,Ω) : Σ ∈ An(Ω)} is asymptotically equivalent to

n
q
d inf

{
G(µ) : µ ∈ P(Ω)

}
.

This problem is in connection with the location problem, that is, the minimization
of the average distance functional

∫
Ω
f(x)dΣ(x)dx where dΣ(x) is the distance from

x to the set Σ and Σ ∈ An(Ω) (see [2] for more details) . We will not prove Theorem
5.2 since its proof follows the line of the proof of Theorem 2.2 but we will point out
some necessary modifications. Lemma 3.1 is crucial for the proof of the Γ-lim inf
inequality. This Lemma remains valid in the case of discrete set provided that the
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power d−1 is replaced by d. In that case it suffices that v vanishes on one point since
point has positive p-capacity (remember that p > d). Another important element
in the proof of the Γ-lim inf inequality is the set Gε,l. Here, we will call it Gε,n and

its construction is obtained by the homogenization of order b
(
εn
2ad

)1/dc of the center

of the unit cube into the cube Ida = (−a, a)d which contains Ω. For the Γ-lim sup
inequality, proofs are essentially the same except the fact that we do not need tiling
set and replace l by n. We conclude this section with the estimate of the constant
θ1. To prove the finiteness it suffice to use the set Σn which is the homogenization
of order n of the center of the unit cube into the unit cube. For the lower bound,
the proof follows that of Proposition 5 and gives

θ1 ≥
d

(q + d)w
q
d

d

.
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[11] V. Šverak, On optimal shape design, J. Math. Pures Appl. (9), 72 (1993), 537–551.

Received October 2012; revised March 2013.

E-mail address: anayam@ictp.it

http://www.ams.org/mathscinet-getitem?mr=MR1859696&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2150214&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1642112&return=pdf
http://dx.doi.org/10.1017/S0308210500030006
http://www.ams.org/mathscinet-getitem?mr=MR2357768&return=pdf
http://dx.doi.org/10.3934/nhm.2007.2.761
http://dx.doi.org/10.3934/nhm.2007.2.761
http://www.ams.org/mathscinet-getitem?mr=MR2266816&return=pdf
http://dx.doi.org/10.1051/cocv:2006020
http://dx.doi.org/10.1051/cocv:2006020
http://www.ams.org/mathscinet-getitem?mr=MR1201152&return=pdf
http://dx.doi.org/10.1007/978-1-4612-0327-8
http://www.ams.org/mathscinet-getitem?mr=MR1487956&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR817985&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2135803&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1249408&return=pdf
mailto:anayam@ictp.it

	1. Introduction
	2. The p-compliance under length constraint
	3. Lg
	3.1. Lg
	3.2. Lg

	4. Some estimate of Lg
	5. Asymptotics of p-compliance-location problem
	Acknowledgments
	REFERENCES

