The purpose of this work is to carry out investigations of a generalized two-phase model for porous media flow. The momentum balance equations account for fluid-rock resistance forces as well as fluid-fluid drag force effects, in addition, to internal viscosity through a Brinkmann type viscous term. We carry out detailed investigations of a one-dimensional version of the general model. Various a priori estimates are derived that give rise to an existence result. More precisely, we rely on the energy method and use compressibility in combination with the structure of the viscous term to obtain $ H^1 $-estimates as well upper and lower uniform bounds of mass variables. These a priori estimates imply existence of solutions in a suitable functional space for a global time $ T>0 $. We also derive discrete schemes both for the incompressible and compressible case to explore the role of the viscosity term (Brinkmann type) as well as the incompressible versus the compressible case. We demonstrate similarities and differences between a formulation that is based, respectively, on interstitial velocity and Darcy velocity in the viscous term. The investigations may suggest that interstitial velocity seems more natural to use in the formulation of momentum balance than Darcy velocity.
Citation: Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation[J]. Networks and Heterogeneous Media, 2019, 14(3): 489-536. doi: 10.3934/nhm.2019020
The purpose of this work is to carry out investigations of a generalized two-phase model for porous media flow. The momentum balance equations account for fluid-rock resistance forces as well as fluid-fluid drag force effects, in addition, to internal viscosity through a Brinkmann type viscous term. We carry out detailed investigations of a one-dimensional version of the general model. Various a priori estimates are derived that give rise to an existence result. More precisely, we rely on the energy method and use compressibility in combination with the structure of the viscous term to obtain $ H^1 $-estimates as well upper and lower uniform bounds of mass variables. These a priori estimates imply existence of solutions in a suitable functional space for a global time $ T>0 $. We also derive discrete schemes both for the incompressible and compressible case to explore the role of the viscosity term (Brinkmann type) as well as the incompressible versus the compressible case. We demonstrate similarities and differences between a formulation that is based, respectively, on interstitial velocity and Darcy velocity in the viscous term. The investigations may suggest that interstitial velocity seems more natural to use in the formulation of momentum balance than Darcy velocity.
Water fractional flow function
Upper row: Results produced by the discrete scheme described in Appendix D (incompressible model). Three kinds of curves are plotted including the case without viscous effect, i.e.,
Simulation results with smaller viscous parameters after 10 days of water flooding. Three kinds of curves are compared: zero viscous effect, Darcy velocity
The results after 10 days with initial data are shown in Fig. 1 with interstitial velocity in viscous term. Four curves are compared: the one with large values of
Initial water saturation profile from Coclite et al. [9]
Left: The results from Coclite et al. [9] based on Darcy velocity in viscous term. Right: Numerical scheme (after 8 days) which uses interstitial velocity in viscous term with different viscous values
Comparison between the compressible model and the incompressible model for water-oil flow with
The water pressure evolution in the compressible model for the case with Darcy velocity in viscous term (left figure) and the case with interstitial velocity in viscous term (right figure). Water pressure increases with time in the water displacing part of the reservoir layer which leads to a compression effect where the magnitude of the viscous terms increase and thereby slows down the displacement of the water front
Left: Comparison of saturation profiles for water injection and gas injection, respectively, after the same time period (10 days) in the compressible model using interstitial velocity in viscous term (