Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels

  • Received: 01 July 2006 Revised: 01 December 2006
  • Primary: 76Z05, 35L50; Secondary: 74F10, 35Q30.

  • Starting from the three-dimensional Newtonian and incompressible Navier-Stokes equations in a compliant straight vessel, we derive a reduced one-dimensional model by an averaging procedure which takes into consideration the elastic properties of the wall structure. In particular, we neglect terms of the first order with respect to the ratio between the vessel radius and length. Furthermore, we consider that the viscous effects are negligible with respect to the propagative phenomena. The result is a one-dimensional nonlinear hyperbolic system of two equations in one space dimension, which describes the mean longitudinal velocity of the flow and the radial wall displacement. The modelling technique here applied to straight cylindrical vessels may be generalized to account for curvature and torsion. An analysis of well posedness is presented which demonstrates, under reasonable hypotheses, the global in time existence of regular solutions.

    Citation: Debora Amadori, Stefania Ferrari, Luca Formaggia. Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels[J]. Networks and Heterogeneous Media, 2007, 2(1): 99-125. doi: 10.3934/nhm.2007.2.99

    Related Papers:

    [1] Debora Amadori, Stefania Ferrari, Luca Formaggia . Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks and Heterogeneous Media, 2007, 2(1): 99-125. doi: 10.3934/nhm.2007.2.99
    [2] Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić . Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2(3): 397-423. doi: 10.3934/nhm.2007.2.397
    [3] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651
    [4] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
    [5] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
    [6] Jean-Marc Hérard, Olivier Hurisse . Some attempts to couple distinct fluid models. Networks and Heterogeneous Media, 2010, 5(3): 649-660. doi: 10.3934/nhm.2010.5.649
    [7] Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn . Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks and Heterogeneous Media, 2018, 13(3): 479-491. doi: 10.3934/nhm.2018021
    [8] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [9] François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald . HTTP turbulence. Networks and Heterogeneous Media, 2006, 1(1): 1-40. doi: 10.3934/nhm.2006.1.1
    [10] María Anguiano, Renata Bunoiu . Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110. doi: 10.3934/nhm.2020004
  • Starting from the three-dimensional Newtonian and incompressible Navier-Stokes equations in a compliant straight vessel, we derive a reduced one-dimensional model by an averaging procedure which takes into consideration the elastic properties of the wall structure. In particular, we neglect terms of the first order with respect to the ratio between the vessel radius and length. Furthermore, we consider that the viscous effects are negligible with respect to the propagative phenomena. The result is a one-dimensional nonlinear hyperbolic system of two equations in one space dimension, which describes the mean longitudinal velocity of the flow and the radial wall displacement. The modelling technique here applied to straight cylindrical vessels may be generalized to account for curvature and torsion. An analysis of well posedness is presented which demonstrates, under reasonable hypotheses, the global in time existence of regular solutions.


  • This article has been cited by:

    1. Nicola Cavallini, Vincenzo Coscia, 2010, Chapter 9, 978-3-642-04067-2, 147, 10.1007/978-3-642-04068-9_9
    2. Donatella Donatelli, Licia Romagnoli, Nonreflecting Boundary Conditions for a CSF Model of Fourth Ventricle: Spinal SAS Dynamics, 2020, 82, 0092-8240, 10.1007/s11538-020-00749-4
    3. N. Cavallini, V. Caleffi, V. Coscia, Finite volume and WENO scheme in one-dimensional vascular system modelling, 2008, 56, 08981221, 2382, 10.1016/j.camwa.2008.05.039
    4. Pablo J. Blanco, Sansuke M. Watanabe, Marco Aurelio R. F. Passos, Pedro A. Lemos, Raul A. Feijoo, An Anatomically Detailed Arterial Network Model for One-Dimensional Computational Hemodynamics, 2015, 62, 0018-9294, 736, 10.1109/TBME.2014.2364522
    5. Sergey S. Simakov, Spatially averaged haemodynamic models for different parts of cardiovascular system, 2020, 35, 1569-3988, 285, 10.1515/rnam-2020-0024
    6. Sergey Sergeevich Simakov, Modern methods of mathematical modeling of blood flow using reduced order methods, 2018, 10, 20767633, 581, 10.20537/2076-7633-2018-10-5-581-604
    7. Gerasim V. Krivovichev, Comparison of inviscid and viscid one-dimensional models of blood flow in arteries, 2022, 418, 00963003, 126856, 10.1016/j.amc.2021.126856
    8. A. Quarteroni, A. Veneziani, C. Vergara, Geometric multiscale modeling of the cardiovascular system, between theory and practice, 2016, 302, 00457825, 193, 10.1016/j.cma.2016.01.007
    9. Antonio Fasano, Adélia Sequeira, 2017, Chapter 1, 978-3-319-60512-8, 1, 10.1007/978-3-319-60513-5_1
    10. Tobias Köppl, Rainer Helmig, 2023, Chapter 3, 978-3-031-33086-5, 35, 10.1007/978-3-031-33087-2_3
    11. GERASIM V. KRIVOVICHEV, ANALYSIS OF ONE-DIMENSIONAL NON-NEWTONIAN MODELS FOR SIMULATION OF BLOOD FLOW IN ARTERIES, 2023, 23, 0219-5194, 10.1142/S021951942350080X
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3651) PDF downloads(89) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog