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Abstract. Starting from the three-dimensional Newtonian and incompress-
ible Navier-Stokes equations in a compliant straight vessel, we derive a reduced
one-dimensional model by an averaging procedure which takes into considera-
tion the elastic properties of the wall structure. In particular, we neglect terms
of the first order with respect to the ratio between the vessel radius and length.
Furthermore, we consider that the viscous effects are negligible with respect
to the propagative phenomena. The result is a one-dimensional nonlinear hy-
perbolic system of two equations in one space dimension, which describes the
mean longitudinal velocity of the flow and the radial wall displacement. The
modelling technique here applied to straight cylindrical vessels may be gener-
alized to account for curvature and torsion. An analysis of well posedness is
presented which demonstrates, under reasonable hypotheses, the global in time
existence of regular solutions.

1. Introduction. The use of reduced models to study the fluid-structure inter-
action in compliant vessels is rather well established. Typical applications range
from the haemodynamics of large arteries to the investigation of hammer effects in
hydraulic networks. These models are quite accurate in the description of the wave
propagation phenomena typical of this type of problems and are much cheaper in
terms of computational cost compared to a full three-dimensional model.

An increased interest in these models in the context of haemodynamic applica-
tions has been driven by the “geometrical multiscale approach” for simulating the
mutual interaction between local and systemic dynamics (see [10],[12],[13]). In this
frame, reduced models play the role of representing the global behavior of the cir-
culatory system or large parts of it, which interact with local descriptions made by
means of more sophisticated models. One-dimensional models are of interest here
because of their capability of accurately representing pulse waves in large arteries
(see [24], [22]).
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Simplifying assumptions are usually necessary for their derivation. In particular,
it is assumed that the flow is mainly in the axial direction and that the effects of the
viscosity are negligible with respect to the propagative effects under study. Indeed
the viscous terms are either completely neglected, as in [22], or accounted for by a
source term, as in [23] and [4]. Here, we justify the neglect of the viscous term by
comparing its contribution against the other terms in the equations, for the typical
values of the parameter in the target application. Moreover we suppose that the
profile of the axial component of the velocity is such that the non-linear advective
term in the momentum equation can be suitably treated. Under these hypotheses we
are able to derive a system of just two equations that describe the evolution of mean
flux and pressure. With respect to the derivation of a similar model, we have avoided
to make any assumption that could impede the generalization of the model to curved
vessels. Therefore, even if the results here presented are specialized for straight
vessels, the derivation can be generalized to a different metric. Work is indeed
ongoing in this direction and this extension will be the subject of a forthcoming
paper.

The derivation of the model follows closely that of [4], the main difference being
the treatment of the equations for the wall displacement.

We mention that in [5] a different one-dimensional model for compliant vessels
is advocated, which does not require any closure assumption on the longitudinal
velocity profile. The authors show that the model is accurate to the second order
with respect to the ratio between the vessel radius length scales. However, this
model requires us to solve an additional equation and its complexity reduces its
applicability in practice.

The role of longitudinal displacements of the vessel wall has been recently pointed
out in [7]. This work shows their small relative importance for haemodynamic appli-
cations, which are the main concern of the present work. Therefore we have chosen
to describe the vessel wall in terms of a linear elastic and axi-symmetric structure
which allows only radial displacements. Differently from previous works we will
not use a shell type representation of the structure as we preferred to derive the
law governing the structure dynamics directly from the Navier equation, through
some simplifying assumptions. By our asymptotic analysis we finally obtain an
algebraic law linking the pressure to the measure of the vessel section, which is
constant on each cross-section as in [4]. The resulting expression is indeed similar
to that obtained for membrane shells, with a correction term that accounts for
moderately thick walls. This algebraic law can be used as a closing relation for our
one dimensional model.

The way of reducing the three-dimensional Navier-Stokes system and of handling
the boundary conditions proposed in the present article, has been inspired by the
derivation of the equations for shallow water flow introduced in [16] and later re-
fined in [8] and in [9]. In particular we consider the dynamic boundary conditions
prescribing the equilibrium of the stresses at the fluid-structure interface and the
kinematic conditions which guarantee the continuity of the radial velocity at the
fluid-structure interface. On the other hand, in [23] and [4] the authors force the
longitudinal and the circumferential components of the velocity to vanish at the
fluid-structure interface and they impose continuity of the radial velocity.

The more common one-dimensional models present in the literature, and our
model as well, are given by hyperbolic systems of two differential equations in one
space dimension. In [4] a rather complete mathematical analysis is carried out in the
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space-time half-plane. In particular they analyze the blow-up of regular solutions
due to the non linear effects in the case that the system is homogeneous with no
source term. They find that, the typical vessel length of an artery is much shorter
than the space required for a discontinuity to develop, the wave propagation in the
arterial system may be considered of regular type.

In this paper we present a more general well posedness analysis and prove the
global in time existence of regular solutions on a bounded spatial domain, in the
case of constant coefficients and no source term. The results is applicable to a wide
range of boundary conditions. In particular, we have considered either pressure
or velocity prescribed at one end while at the other end we account for “resistive
type” boundary conditions. The latter, which includes a non-reflecting boundary
condition as a particular case, models the resistance to the flow caused by the
peripheral circulatory system. The non-reflecting condition is obtained when the
resistance parameter is set to zero. The analysis is applicable to a wide class of
one-dimensional models, including the most commonly adopted in the biomedical
literature. Finally, we have then assessed our result with a numerical test.

The outline of this paper is as follows. In the Section 1 we introduce the three-
dimensional fluid-structure interaction model we are moving from and the rescaling
of the system needed for the successive derivations. In the Section 2 we derive
the one-dimensional system by averaging the rescaled model. In the Section 3,
we provide a complete mathematical analysis. In the Section 4 we provide some
numerical experiments in order to validate our new model and compare it with the
model previously proposed in [23]. Some conclusions are drawn in Section 5 and
some details on the geometrical framework we are dealing with are collected in the
Appendix at the end of the paper.

2. The 3D fluid-structure-interaction model. In this section we detail the
fluid and the vessel wall dynamics in cylindrical coordinates in their respective
space-time domains. We describe the wall dynamics through a linear elastic and
isotropic stress-strain law as in [14]. We also consider only radial displacements.
Furthermore, we will assume that the shear component of the Cauchy stresses at the
wall are negligible once the equations are written in the natural coordinate frame
of the vessel wall.

The imposition of the continuity of the radial velocity and of the stresses at the
fluid-structure interface completes the setting of the 3D fluid-structure interaction
model.

Finally, by introducing a suitable rescaling of the whole model we approximate
the equations to the first order with respect to the ratio between the vessel radius
and length and derive a first-order approximate expression for the pressure of the
fluid.

2.1. The fluid-dynamics. Let L > 0 be the total length of an axi-symmetric
vessel with circular cross-section, let T > 0 be the total evolution time and let

η : [0, T ]× [0, L] → R
+, η0 : [0, L] → R

+

be the radial distance of the fluid-wall interface from the centerline (see Fig. 1),
during the motion and in the reference configuration, respectively. We are here
assuming that the vessel wall allows only radial displacements. The space domain
we are dealing with may be described in cylindrical coordinates, using the notation

x1 = r, x2 = θ, x3 = z,
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where z is aligned along the vessel axis, and is assumed fixed. We refer to [2] for a
reminder of vector analysis in the cylindrical coordinate system.

At any t ∈ [0, T ] the fluid domain is given by

U = {(r, θ, z) ∈ [0, η(t, z)) × [0, 2π) × (0, L)}.
Its boundary is split into three different parts: the inlet Lin, the outlet Lout and
the vessel wall interface S (see Fig. 1)1. We have, for t ∈ [0, T ]

η

n

U

S

L
in

L
out

z=0 z=L

s

Figure 1. The time-dependent axi-symmetric domain U and its
boundary at a given time t

Lin = {(r, θ, 0) : (r, θ) ∈ [0, η(t, 0)) × [0, 2π)} ,
Lout = {(r, θ, L) : (r, θ) ∈ [0, η(t, L)) × [0, 2π)}

while

S = {(η(t, z), θ, z) : (θ, z) ∈ [0, 2π) × (0, L)}, t ∈ [0, T ]. (1)

We will indicate the outward radial normal to S by nS . It may be readily verified
that its coordinates are given in physical components by

nS = cs

(

1, 0,−∂η
∂z

)

with cs =

[

1 +

(

∂η

∂z

)2
]−1/2

. (2)

From now on we will adopt the summation convention and, whenever not otherwise
indicated, repeated indices i, j, k, l run from 1 to 3. Furthermore, we will indicate
the physical components of a tensor B in cylindrical coordinates either as B(ij) or,
alternatively, as Brr, Brθ etc.

2.2. The Navier-Stokes equations. The physical components of the rate of de-
formation tensor D in (physical) cylindrical coordinates are

Drr =
∂ur

∂r
, Dθθ =

1

r

∂uθ

∂θ
+
ur

r
, Dzz =

∂uz

∂z
, Drz =

1

2

(

∂ur

∂z
+
∂uz

∂r

)

,

Drθ =
1

2

(

r
∂

∂r

(uθ

r

)

+
1

r

∂ur

∂θ

)

, Dzθ =
1

2

(

1

r

∂uz

∂θ
+
∂uθ

∂z

)

while the components of the Cauchy stress tensor TN for a Newtonian fluid are
given by

TN(ij) = −Pδij + σ̂(ij),

1In haemodynamic applications the terms proximal and distal are usually referred to as inlet
and outlet, respectively
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being P the pressure, δij the Kronecker symbol and σ̂(ij) = 2µ̂D(ij), where µ̂ is
the viscosity of the fluid. It is a common practice to divide the momentum equation
by the constant density. We will therefore indicate

TN (ij)

̺
= −pδij + σ(ij)

where σ(ij) = 2µD(ij), while µ is here the kinematic viscosity and p is the pres-
sure scaled by the fluid density. Finally, the Navier-Stokes equations in cylindrical
coordinates may be written as
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∂θ
+

∂
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∂t
+

1

r

∂
(

ru2
r

)

∂r
+

1

r

∂ (uruθ)

∂θ
+
∂(uruz)

∂z
− 1

r
u2

θ =

−∂p
∂r

+
1

r

∂ (rσrr)

∂r
+

1

r

∂σrθ

∂θ
+
∂σrz

∂z
− σθθ

r
,

∂uθ

∂t
+
∂(uruθ)

∂r
+

1

r

∂(u2
θ)

∂θ
+
∂(uθuz)

∂z
+

2

r
uθur =

−1

r

∂p

∂θ
+
∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+
∂σθz

∂z
+

2

r
σrθ ,

∂uz

∂t
+

1

r

∂(ruruz)

∂r
+

1

r

∂(uzuθ)

∂θ
+

1

r

∂
(

ru2
z

)

∂z
=

−∂p
∂z

+
1

r

∂(rσrz)

∂r
+

1

r

∂σzθ

∂θ
+

1

r

∂ (rσzz)

∂z
.

(3)

2.3. The dynamics of the vessel wall. We will consider here the equations
necessary to account for the wall compliance. Following the route usually taken to
derive reduced models we will assume that the wall inertia is negligible, that is the
wall is instantaneously in equilibrium. However, differently from [4], we here derive
the reduced model directly from the basic equations of continuum mechanics, under
suitable hypothesis. The configuration at time t of the vessel wall is given by:

W = {(r, θ, z) : (θ, z) ∈ [0, 2π) × (0, L), r ∈ [η(t, z), η(t, z) + k(t, z)]}
where k = k(t, z) > 0 indicates the thickness of the wall. The inner part of the vessel
wall coincides with the fluid-structure interface S introduced in (1) (see Figure 2).
More precisely W|r=η = S. The current and the reference position of a point of the
wall is given respectively by:

w : (0, T )×W → R
3, w0 : W → R

3

where w depends on the dynamics of the wall, while w0 is a known function. For
a complete description of function w see (66) in the Appendix. On the wall it
is also possible to identify a different coordinate system, (s, θ, l), aligned with the
current configuration. Its definition is detailed in the Appendix as well. Since we
are considering only radial displacements, we may write

wθ = w0θ, wz = w0z .

Furthermore, we have the following identities, for (t, θ, z) ∈ (0, T )× (0, 2π]× (0, L):

η(t, z) = wr(t, η(t, z), θ, z), η0(z) = w0r(η0(z), θ, z) .

Let ψi be the 1-contravariant displacement vector given by
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η
W

S

η+κ

Figure 2. The time-dependent axi-symmetric domain W

ψ1 = wr − w0r, ψ2 = wθ − w0θ = 0, ψ3 = wz − w0z = 0.

The general formulation of the infinitesimal strain tensor in 2-covariant form (see
[14]) is

eij =
1

2

(

ψi,|j + ψj,|i
)

=
1

2

(

∂ψi

∂xj
+
∂ψj

∂xi

)

− Γl
ijψl

where Γl
ij are the Christoffel symbols connected to the orthogonal metric (68). The

familiar linear elastic relation that provides the Cauchy stress tensor is given by

Tij = 2Geij + λekkgij

and, in physical components,

T (ij) = 2Ge(ij) + λekkδij (4)

where G and λ are, in general, functions of z. It is worth recalling the usual
relationships

G =
E

2(1 + ξ)
, λ =

ξE

(1 − 2ξ)(1 + ξ)
(5)

where E ≥ 0 is the Young modulus and ξ ∈ (0, 1/2) the Poisson ratio. We will
consider the following hypotheses:

1. The thickness of the vessel is uniform, that is k(t, z) = k0 and is small in
comparison with the radius of the vessel.

2. As a consequence of the previous assumption we consider that eθθ is constant
across the thickness of the vessel wall. In particular we will set eθθ = η−η0

η .

3. The Cauchy stress tensor is aligned with the local reference frame t, n, b (see
the Appendix). That is, in this reference frame shears are negligible (see [15]).
This assumption derives from the fact that the fibers that form the structural
part of the wall of a blood vessel are approximately aligned with the local
frame and show little resistance to bending. As a consequence, the Cauchy
stress tensor in the local reference frame, here indicated by T , is assumed to
be diagonal.

4. We neglect the inertial effects in the wall structure, that is the wall structure
is always in static equilibrium.

5. We finally assume that the pressure external to the vessel is zero. This is not a
restrictive hypothesis since the isotropic contribution of the external pressure
may be added a-posteriori.

Exploiting (4) and recalling the usual relationship between the traces Tkk =
(2G + λ)ekk and assumption 3, we can express the components of the (diagonal)
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elastic stress tensor T in the local reference frame t, n, b as
{

Tθθ(η) = 2Gη−η0

η + ξ
1+ξ (Tss(η) + Tθθ(η) + Tll(η))

Tll(η) = ξ
1+ξ (Tss(η) + Tθθ(η) + Tll(η)),

(6)

on the fluid structure interface r = η. In order to close the system we evaluate
Tss(η) by solving the equation of static equilibrium along the direction n. By using
the symbols s, θ and l to denote the physical components, as described in the
Appendix, the equilibrium in the s direction gives

0 = [div(T )]s =
1

hθhl

∂

∂s

(

hθhl

hs
Tss

)

+
1

hs
Γs

ssTss +
hs

h2
θ

Γs
θθTθθ +

hs

h2
l

Γs
llTll. (7)

In our case

hs = 1, hθ = r = η + s cosψ, hl = 1 + sχ,

and

Γs
ss = 0 Γs

θθ = −r cosψ Γs
ll = −χ(1 + sχ),

where the quantities cosψ and χ depend on the geometry and are defined in (67).
Therefore, (7) gives

1

r

[

∂

∂s
(r(1 + sχ)Tss) − cosψ(1 + sχ)Tθθ

]

− χTll = 0. (8)

Integrating (8) over the wall thickness 0 ≤ s ≤ k0 and recalling that a zero external
pressure implies that Tss = 0 for s = k0, we obtain a relation between Tss(η), Tθθ(η)
and Tll(η). Taking relations (6) into account, it is possible to obtain an explicit form
for Tss(η), Tθθ(η) and Tll(η). However, we will postpone this calculation after an a-
dimensionalization procedure which points out the terms which are proportional to
the ratio between the scales of the vessel radius and the length, which are supposed
to be small and then negligible by our asymptotic analysis.

It is possible to obtain the Cauchy stress tensor T with respect to the global
(cylindrical) reference frame. To this purpose it is sufficient to perform a rotation
around the θ-axis, that is

T = RT RT ,

where the rotation matrix R is given by

R =







nr 0 −nz

0 1 0

nz 0 nr






. (9)

Here nr and nz are the radial and longitudinal components of the outward normal
to the fluid-structure interface nS introduced in (2).

2.4. Boundary conditions at the fluid-structure interface. At the fluid-
structure interface we have the continuity of the normal stresses, that is we may
write

TN · nS − T · nS = 0. (10)

Thanks to (9) and the definition of the normal vector we have

T · nS = RT RT · nS =





nrTss

0
nzTss



 = cs





Tss

0

−∂η
∂zTss.





where we posed Tss = Tss(η). In fact T · nS is equal to the first column of RT .
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Relation (10) may then be rewritten componentwise as


























−p+ σrr −
∂η

∂z
σrz = ̺−1Tss,

σrθ −
∂η

∂z
σθz = 0,

σrz − ∂η

∂z
(−p+ σzz) = ̺−1

(

−∂η
∂z

Tss

)

.

(11)

The term ̺−1 is linked to the fact that the Navier-Stokes equations have been
divided by the density. The continuity of the radial component of the velocity at
the fluid-structure interface S implies

ur =
∂η

∂t
+ uz

∂η

∂z
. (12)

The Navier-Stokes equations (3) coupled with boundary conditions on S (11) and
(12), form a consistent 3D fluid-structure interaction system (four unknowns and
four boundary conditions) we will refer to throughout this paper. At this stage we
will skip the problem of posing boundary conditions at the inlet and at the outlet
surfaces and initial conditions. The issue will be analyzed later on for the reduced
system.

2.5. Scaling the equations. We introduce the following scales:

vessel length: L, vessel radius: R, uz: V .

The associated dimensionless ratios are

ε =
R

L
, ν = 1/Re =

µ

V R
, (13)

where µ is the kinematic viscosity and Re is the Reynolds number, while the corre-
sponding derived scales are

ur and uθ: εV , p: V 2, Tss, Tθθ, Tll: V 2, t: L/V .

The derivation of the reduced model is based on the assumption that ε be small.
With an abuse of notation that helps to reduce the number of symbols, in this
section we will still denote by r, z, t, ur, uθ, uz, η, p the corresponding scaled
quantities. The scaled components of σ are

σrr = 2νεV 2[[Drr]] , σθθ = 2νεV 2[[Dθθ]] , σzz = 2νεV 2[[Dzz]] ,

σrθ = ενV 2[[Drθ]] , σzθ = νV 2[[Dzθ]] , σrz = νV 2[[Drz]] ,

where we set

[[Drr]] =
∂ur

∂r
, [[Drz]] = ε2

∂ur

∂z
+
∂uz

∂r
, [[Drθ]] = r

∂

∂r

(uθ

r

)

+
1

r

∂ur

∂θ

[[Dzz]] =
∂uz

∂z
, [[Dzθ]] =

1

r

∂uz

∂θ
+ ε2

∂uθ

∂z
, [[Dθθ]] =

∂uθ

∂θ

1

r
+
ur

r
.

The only component of the elastic stress tensor that comes into play in the boundary
conditions is Tss/̺, which scales as

Tss/̺ = V 2[[Tss/̺]] (14)

where [[Tss/̺]] denotes the a-dimensional part of Tss/̺. Similarly we have Tθθ/̺ =
V 2[[Tθθ/̺]] and Tll/̺ = V 2[[Tll/̺]].
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The three-dimensional Navier-Stokes system (3) is now rewritten using the scaled
quantities in order to put into evidence how the terms scale with ε. The continuity
equation is formally unaltered, that is

∂

∂r
(rur) +

∂uθ

∂θ
+

∂

∂z
(ruz) = 0. (15)

After scaling and multiplication by
R

V 2
the radial and circumferential equations

become

ε2
[

∂ur

∂t
+

1

r

∂

∂r

(

ru2
r

)

+
1

r

∂

∂θ
(uruθ) +

∂

∂z
(uruz) −

1

r
u2

θ

]

=

− ∂p

∂r
+

2νε

r

∂

∂r

(

r
∂ur

∂r

)

+
νε

r

∂

∂θ

(

r
∂

∂r

(uθ

r

)

+
1

r

∂uz

∂θ

)

+

+ νε
∂

∂z

(

∂ur

∂z
ε2 +

∂uz

∂r

)

− 2νε

r2

(

∂uθ

∂θ
+ ur

)

(16)

and

ε2
[

∂uθ

∂t
+

∂

∂r
(uruθ) +

1

r

∂

∂θ

(

u2
θ

)

+
∂

∂z
(uθuz) +

2

r
uθur

]

=

− 1

r

∂p

∂θ
+ νε

∂

∂r

(

r
∂

∂r

(uθ

r

)

+
1

r

∂uz

∂θ

)

+
2νε

r2
∂

∂θ

(

∂uθ

∂θ
+ ur

)

+

+ νε
∂

∂z

(

1

r

∂uz

∂θ
+ ε2

∂uθ

∂z

)

+
2νε

r

(

r
∂

∂r

(uθ

r

)

+
1

r

∂uz

∂θ

)

,

(17)

respectively. Finally, the axial momentum equation after scaling and multiplication
by L/V 2 becomes

∂uz

∂t
+

1

r

∂

∂r
(ruruz) +

1

r

∂

∂θ
(uzuθ) +

1

r

∂

∂z

(

ru2
z

)

=

− ∂p

∂z
+

ν

εr

∂

∂r

[

r

(

∂ur

∂z
ε2 +

∂uz

∂r

)]

+
ν

εr

∂

∂θ

(

1

r

∂uz

∂θ
+ ε2

∂uθ

∂z

)

+ 2νε
∂2uz

∂z2
.

(18)
For the derivation of our reduced model we will make use of the first of the

dynamical conditions (11), which after scaling and dividing by V 2 is equivalent to

− p+ 2νε[[Drr]] − ε
∂η

∂z
ν[[Drz]] = [[Tss/̺]]. (19)

The kinematic condition (12) remains formally unaltered.

2.6. Approximation to the first order. We now rewrite the Navier-Stokes equa-
tions (15)–(18) neglecting all the terms which are O(ε). We have



















































∂

∂r
(rur) +

∂

∂θ
uθ +

∂

∂z
(ruz) = 0

∂p

∂r
=
∂p

∂θ
= 0

∂uz

∂t
+

1

r

∂

∂r
(ruruz) +

1

r

∂

∂θ
(uzuθ) +

∂

∂z
(u2

z) +

+
∂p

∂z
− ν

rε

∂

∂r

(

r
∂uz

∂r

)

− ν

r2ε

∂2uz

∂θ2
= 0 .

(20)
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From (20) we infer that the pressure remains constant on each cross-section, as
already pointed out in [4]. The axial momentum conservation equation gives infor-
mation about the flow-convection. This is consistent with the fact that in long and
thin vessels the flow develops mainly in the longitudinal direction.

The kinematic condition (12) remains identical after dropping out the terms
which are O(ε).

Now we evaluate with an approximation of the first order with respect to ε the
component Tss of the elastic stress tensor. We rescale (8), approximate to the first
order, recover dimensions and integrate over the wall thickness. Then, we exploit
relations (6). To this purpose, recalling (67) and denoting by [[cosψ]] and by [[χ]]
the rescaled expressions of cosψ and χ, we have that:

[[cosψ]] =

[

1 + ε2
(

∂η

∂z

)2
]−1/2

, [[χ]] = − ε

L

∂2η

∂z2

[

1 + ε2
(

∂η

∂z

)2
]−3/2

.

We remark that the previous relation in addition with the hypothesis of a small
ε guarantees that hl in (69) remains positive during motion. Therefore, with an
approximation of the first order with respect to ε, relation (8) becomes:

∂ (rTss)

∂s
− Tθθ = 0.

We now integrate for 0 ≤ s ≤ k0, being k0 the thickness and recalling that r(s) =
η+ s cosψ. A zero external pressure implies that Tss = 0 outside the wall and thus

we obtain that on the fluid-structure interface Tss(η) = −k0

η
Tθθ(η). Since in our

target applications η− η0 is bounded by a quantity of the same order of magnitude
as k0 we may linearize the previous expression around η = η0 and obtain

Tss = −k0

η0
Tθθ . (21)

From (6) and (21) we finally have that at the fluid-structure interface,

Tss = −β̂ss
η − η0
η

, Tθθ = β̂θθ
η − η0
η

, Tll = β̂ll
η − η0
η

,

where

β̂θθ = 2G
1−C , β̂ss = k0

η0
β̂θθ, β̂ll = Cβ̂θθ, (22)

with C = ξ

(

1 − k0

η0

)

. Remark that these quantities may be functions of z, as

the Young modulus and the reference radius η0 may vary along the longitudinal
direction. They are strictly positive under the conditions k0/η0 < 1 (consistent
with the hypothesis of a thin wall) and ξ > 0. We note that the relations are valid
also for incompressible materials, where ξ = 1/2.

We remark that the negative sign in the expression for Tss reproduces the phys-
ical fact that an expansion of the vessel corresponds to a compression of the wall
structure in the radial direction. It is worth to notice that, in accordance to [15],
for thin walls we have a dominance of the circumferential stress with respect to the

radial stress, since in this case β̂θθ >> β̂ss. To ease notation, in the following we

will put βij = β̂ij/̺.
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2.7. First order approximation of the pressure. We will calculate the pressure
using the dynamic condition at the interface which expresses the equilibrium of fluid
and structure forces in the radial direction. By dropping out all terms which are
O(ε) in (19) and recovering dimensions, we obtain that ∀ t ∈ [0, T ] and z ∈ [0, L],

p = p(η, z) = −Tss/̺ = βss(z)
η − η0(z)

η
. (23)

Using (5) and (22) we obtain that

βss(z) =
E(z)k0

η0(z)̺
[

(1 − ξ2) + ξ(1 + ξ) k0

η0(z)

] .

We recall that we have assumed the external pressure pext = 0. This is not a
limitation since we can interpret p as the difference between the fluid pressure
and the external pressure (what is often called transmural pressure). It may be
convenient for further developments to introduce the quantities A = πη2 and A0 =
πη2

0 , which represent the measure of the vessel axial section in the current and in the
reference configuration, respectively. Furthermore, for the sake of notation, we will
indicate in the following βss simply by β. This way, relation (23) may be written
in the form

p = β

(

1 −
√

A0

A

)

, where β =
Ek0

√
π

̺
√
A0

[

(1 − ξ2) + ξ(1 + ξ)k0

√
π√

A0

] . (24)

With respect to the expression proposed in [23], which may be rewritten in the form

p = β0

(

√

A

A0
− 1

)

, with β0 =
Ek0

√
π

̺
√
A0(1 − ξ2)

, (25)

the differences are that (25) has been obtained through a linearization procedure
and that the expression for β accounts also for a moderately thick vessel wall, while
β0 neglects terms of the order of k0/η0. The latter difference is however, less relevant
and may be neglected. It is easy to verify that the expression for the pressure given
in (24) satisfies the hypothesis of admissibility illustrated in [23], namely that p = 0

whenever η = η0 (remember that here p is the transmural pressure) and ∂p
∂A > 0 for

all A > 0.

Remark 1. Expression (25) may be formally obtained from (24) by neglecting
the term proportional to k0/η0 and taking a Young modulus function of η, namely

E = Ē
√

A√
A0

, being Ē a constant (possibly depending on z). This can be justified

to account for large arteries which tend to stiffen when expanded. We point out
that this is just an heuristic remark: a variable elastic parameter would imply a
non-linear elastic constitutive equation and require us to revise the whole derivation
of the simplified model. However, it helps to explain why a formally less correct
formula is so used in practice for haemodynamic simulations.

To broad our analysis to cover different possible pressure-area relationships, we
will consider a general relation of the type

p(A, z) = C(z)

[

(

A

A0(z)

)d(z)

− 1

]

, (26)
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where C(z) and d(z) are known parameters which satisfy C(z)d(z) > 0 and |d| < 2.
We obtain, as special cases, (24) by setting C(z) = −β(z) and d(z) = − 1

2 , and (25)

by setting C(z) = β0(z) and d(z) = 1
2 .

3. The 1D-reduced fluid-structure-interaction model. In this section we de-
rive a one-dimensional model, performing term by term cross-section integration of
the continuity equation and of the longitudinal momentum equation in (20). The
pressure is assigned through formula (23). We will use the following notation.

Notation. Let f : [0, T ]× R
+ × [0, 2π) × [0, L] → R. Then:

f̄(t, z) =̇

∫ 2π

0

∫ η

0

f(t, r, θ, z)rdrdθ, f(t, z) =̇
1

πη2
f̄(t, z) .

Remark 2. Observe that, if g : [0, T ] × R
+ × [0, 2π) × [0, L] → R is a sufficiently

smooth function, the following identities hold:

∂g

∂t
=

∂g

∂t
− η

∂η

∂t

∫ 2π

0

g|r=ηdθ,

(

1

r

∂(rg)

∂r

)

= η

∫ 2π

0

g|r=η dθ .

Moreover, if g is continuous w.r.t. the coordinate θ, for any α ∈ R we have
(

rα
∂g

∂θ

)

=

∫ η

0

rα+1

(
∫ 2π

0

∂g

∂θ
dθ

)

dr = 0 and

(

rα
∂g

∂z

)

=
∂

∂z
grα − ηα+1 ∂η

∂z

∫ 2π

0

g|r=η dθ .

Let us consider the continuity equation in (20) and average each term on the
cross-section. Then, using the expressions in Remark 2 and taking (12) we obtain
that

∂(η2)

∂t
+
∂(η2uz)

∂z
= 0. (27)

3.1. Assumptions on the velocity profile. We will assume that

uz
2
(t, z) − u2

z(t, z) = O(ε).

This implies that the velocity profile is mainly flat.

Remark 3. Sometimes one accounts for a different velocity profile by introducing
a coefficient in the quadratic advective term, the so-called momentum correction
coefficient, like in [23]. However, this is not the route we have followed here. In-
deed, the correct value of the coefficient is difficult to find in general. Moreover, in
practice, it has been found that in haemodinamic applications its value would be
proximal to one [25], and its influence in the solution is negligible.

3.2. Averaging the axial momentum equation. Let us first consider the con-
vective term of the axial momentum equation in (20) and average each term on the
cross-section. Then, thanks to Remark 2, taking (12) into account, in view of the
assumption on the velocity and dropping out the terms which are O(ε), we may
write

∂(η2uz)

∂t
+
∂
(

η2u2
z

)

∂z
=
∂(η2uz)

∂t
+
∂
(

η2uz
2
)

∂z
. (28)
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The remaining terms after averaging give

∂

∂z

∫ 2π

0

∫ η

0

prdrdθ −
∫ 2π

0

η

[

∂η

∂z
p+ ν

∂uz

∂r

1

ε

]

|r=η

dθ (29)

The last term in the previous expression will be modelled as in [4, 25] and [23]
by assuming that the velocity in cylindrical coordinates of the form uz(t, r, z) =
uz(t, z)s(r/η), with s a suitable chosen profile satisfying s′(1) < 0. This hypothesis
is akin to that used for the shallow water equations and gives rise to a friction term
[9]. More precisely, we assume that

∫ 2π

0

ην
∂uz

∂r

1

ε

]

|r=η

dθ ≃ −2π

ε
νγuz = −Kεuz, (30)

where Kε = 2π
ε νγ and the positive constant γ depends on the particular velocity

profile chosen. Typically γ may vary from 4 to around 20. For instance in [25]
the authors adopt a profile to fit the experimental data which gives γ = 11. By
taking into account the fact that the pressure is considered constant on each section,
thanks to relation (26), the term (29) becomes

πη2 ∂p

∂z
+Kεuz. (31)

Remark 4. The size of the coefficient Kε in the friction term becomes arbitrarily
large as ε → 0. It is important then to assess its relative importance for the
application to hand. If we consider relation (26) in the hypothesis of constant
coefficients, the terms in the expression (31) may be rewritten as (we recall that we
are still considering the scaled variables)

c21
V 2

∂A

∂z
+Kεuz.

Here, A = πη2 is the (scaled) section measure while c21 = A
∂p

∂A
is the square of a

characteristic speed whose significance will be made clear in the next paragraph.
The latter does not depend on ε if we consider pressure laws of the type (24) or
(25), under the reasonable assumption that the ratio k0/

√
A0 is independent of ε.

We can then consider that the friction term is not dominant whenever Kε ≤ c2
1

V 2 ,

i.e. 2πγV 2

c2
1
εRe

≤ 1 (we recall that here ν = Re−1). In the case of blood flow in large

and medium sized arteries, which is the target application of this work, we have
that Re ≃ 100 − 1000, c1 ≃ 1 − 10 m/s, V ≃ 10−2 − 10−1 m/s and ε ≃ 0.01 − 0.1.
Therefore, here the inequality is largely satisfied.

In fact, in this case the viscous term is rather small. This justifies the fact that in
many studies of blood flow in arteries, friction is neglected [4, 22]. Indeed numerical
studies [19] have shown that the introduction of the friction term does not change
the behavior of the solution significantly.

For the sake of notation we will indicate in the following u = uz.

3.3. The 1D model. Recovering dimensions, in terms of the variables A and

Q =̇ πη2u = Au ,
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after simple computations we obtain the following reduced model on (0, T )× (0, L):


































∂A

∂t
+
∂Q

∂z
= 0

∂Q

∂t
+

∂

∂z

(

Q2

A

)

+A
∂p

∂z
+K

Q

A
= 0

p(A, z) = C(z)

[

(

A

A0(z)

)d(z)

− 1

]

(32)

with K = 2πµγ being the friction constant, while d(z) and C(z), are subject to the
limitations stated in Remark 1.

We will see in the next section that system (32) is hyperbolic and that for our
target application the associated eigenvalues have different signs. This implies that
a single boundary condition should be imposed at z = 0 and z = L, respectively. In
haemodynamic applications we normally distinguish between proximal and distal
boundaries. A proximal boundary corresponds to the axial section of the artery
nearer to the heart, the distal boundary is instead the farther. Since the action
driving the flow is coming from the heart, in the proximal boundary one normally
prescribes either velocity or pressure, obtained from measurements or available med-
ical literature. The proximal boundary is more critical because it is at the interface
with the peripheral circulation. Several approaches can be followed. A possibility
is to impose ’non-reflecting’ boundary conditions, since these conditions will not
allow any spurious reflection at the boundary. In fact, from a physical point of view
this corresponds to an open end. However, a more realistic action of the peripheral
circulation is accounted for by a resistance relation of the type p = Ru, being R
a given resistance parameter. In [24] it is shown how this relation can in fact be
expressed in terms of the characteristic variables of system (32), and this is indeed
the form we consider in the sequel, where we will assume that z = 0 and z = L are
the proximal and the distal boundaries, respectively.

We mention that more complex boundary relations may be considered to better
account of the global action of the circulatory system, where the boundary data is
governed by ordinary differential equations [13, 11], a case that will not be covered
here.

4. Mathematical analysis. In this section we write a conservation form and point
out some analytical properties of the system (32). Then, in the constant coefficients
case and assuming K = 0, we consider the initial boundary value problem on a
finite space with suitable boundary conditions and discuss the existence of regular
solutions which are defined globally in time.

4.1. The conservation form. In terms of variables A, Q, the system (32) in
conservation form is given by:















∂A

∂t
+

∂Q

∂z
= 0

∂Q

∂t
+

∂

∂z

(

Q2

A
+

Cd

Ad
0(d+ 1)

Ad+1

)

= S(z,A) −K
Q

A

(33)

where Cd > 0, |d| < 2, d 6= −1, A > 0, A0 > 0. The source term S depends on the
known parameters C(z), d(z), A0(z) and vanishes if these parameters are constant.
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Its explicit form may be derived following the computations illustrated in [23]. If
we use expression (24) for the pressure term, the source term becomes

S(z,A) = β

√

A

A0

dA0

dz
+
√
A
(

2
√

A0 −
√
A
) dβ

dz
.

4.2. The eigenvalues. The Jacobian of the flux in the system (33) is given by:




0 1

−Q
2

A2
+ c21

2Q

A



 ; (34)

its eigenvalues are given by γ = u− c1, µ = u+ c1, where

c1(z,A) =

[

A
∂p

∂A

]1/2

=
√
Cd

(

A

A0

)
d
2

. (35)

The quantity c1 in (35) has already been introduced in Remark 4 and is a char-
acteristic speed of our system. Since we required Cd > 0, the eigenvalues are well
defined for A,A0 > 0 and real with µ > γ and then (33) is strictly hyperbolic.
Moreover, the system is genuinely nonlinear. Indeed we have that

Rγ = −[1, γ]t, Rµ = [1, µ]t

are right eigenvectors of (34); then, setting U = [A,Q]t, we obtain

∇Uγ ·Rγ = ∇Uµ · Rµ =
∂c1
∂A

+
c1
A

=
c1
A

(

1 +
d

2

)

> 0 since |d| < 2 .

4.3. The Riemann invariants. Following [6], chap. VII, we compute the two
Riemann invariants associated to the system (33), as the scalar functions r(z, U),
s(z, U) such that:

∂r

∂U
= Lγ ,

∂s

∂U
= Lµ

where Lγ , Lµ are the left eigenvectors of the matrix (34):

Lγ(z,A, u) = [−µ, 1]ξ(A,Q), Lµ(z,A, u) = [−γ, 1]ξ(A,Q)

and ξ(A,Q) is a scalar smooth function of its arguments. Choosing ξ(A,Q) = 1/A
we find

r(z, U) = u− F , s(z, U) = u+ F , (36)

where

F = F (z,A) =

∫ A

A0

c1(z, α)

α
dα =

2

d

(

c1(z,A) − c1(z,A0(z))
)

. (37)

Here we used the fact that c1

A = 2
d · ∂c1

∂A . Observe that ∂F/∂A > 0. Using (36) and
(37), we can express u, c1 and then γ, µ in terms of r, s:

u =
r + s

2
, c1 =

d

4
(s− r) +

√
Cd ,

γ =
r(2 + d) + s(2 − d)

4
−
√
Cd , µ =

r(2 − d) + s(2 + d)

4
+
√
Cd . (38)

Observe that it must be c1 > 0; this gives a constraint on r, s. In Riemann coordi-
nates, the system (33) rewrites as

∂r

∂t
+ γ(z, r, s)

∂r

∂z
= E1(z, r, s) ,

∂s

∂t
+ µ(z, r, s)

∂s

∂z
= E2(z, r, s)
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with suitable E1 and E2.

4.4. The special case where K = 0 and the parameters are constant. From
now on, we assume that the parameters A0, C and d are constant. Furthermore,
following Remark 4 we neglect the friction term. Therefore, the source terms in (33)
vanish and the system becomes homogeneous. We then consider an initial–boundary
value problem on the interval [0, L] for the system















∂A

∂t
+

∂Q

∂z
= 0

∂Q

∂t
+

∂

∂z

(

Q2

A
+

Cd

Ad
0(d+ 1)

Ad+1

)

= 0

(39)

where C, d 6= −1 and A0 are constant, Cd > 0, provided with initial data

A(0, z) = A0, u(0, z) = u0(z), z ∈ [0, L] . (40)

As for the boundary conditions, we prescribe at z = 0 either the vessel area A(0, t) =
Ain(t) (which is in fact equivalent to impose the pressure) or the velocity u(0, t) =
uin(t), while at the outlet boundary z = L we impose that r = −ks, where k ∈ [0, 1).

The latter condition is used to simulate the presence of a resistance to the flow.
If k = 0 we have a non reflecting condition which physically coincides with an
open ending. The limit case k = 1 instead corresponds to u = 0, and therefore
to a complete blockage. Indeed, we can link k to the resistance R in the classical
relation p = Ru at z = L [24]. By simple computations, assuming that |r − s| is
small (which is the case here), we have R ≃ 1+k

1−k c1(A0).

To summarize, we consider either

z = 0 : A(t, 0) = Ain(t) , z = L : u− αF (A) = 0 , (41)

or

z = 0 : u(t, 0) = uin(t) , z = L : u− αF (A) = 0 , (42)

where α = 1−k
1+k , 0 < α ≤ 1 , 0 ≤ k < 1 , and

F (A) = F (A;A0) =
2
√
Cd

d

[

(

A

A0

)
d
2

− 1

]

.

We point out that, if d > 0, the system (39) reduces to the classical p-system
of gas-dynamics with exponent d + 1. In diagonal coordinates, the system can be
rewritten as

∂r

∂t
+ γ(r, s)

∂r

∂z
= 0 ,

∂s

∂t
+ µ(r, s)

∂s

∂z
= 0 . (43)

Since F (A0) = 0, the initial data for r, s are

r(0, z) = s(0, z) = u0(z) , z ∈ [0, L] (44)

while the boundary conditions (41), (42) become, respectively

z = 0 : s = r + v , v(t) = 2F (Ain(t)) , z = L : r = −ks (45)

z = 0 : s = −r + v , v(t) = 2uin(t) , z = L : r = −ks . (46)

We analyze the above IBV problems for (43) with smooth data. For the Cauchy
problem, in general, classical solutions exist only locally in time, since the first order
derivatives may blow up, even for arbitrarily small data ([1], [18], [21]).
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On the other hand, on a fixed bounded domain, smooth solutions may exist if
the boundary conditions are suitably dissipative ([17], [20]). See [3] for a review on
the subject and for a classification of possible behaviors of the solutions in presence
of boundary damping but not-too-small data.

The problem studied here falls within the framework considered in [20], Chapter
5, Th. 1.1. The result is the following.

Theorem 1. ([20]) Consider the system (43) with initial data r0, s0 and b.c.

z = 0 : s = g(r) + v(t) , z = L : r = f(s) .

Assume that γ, µ, f , g, r0, s0 are C1 and that the C1 compatibility conditions

z = 0 :

{

s0(0) = g(r0(0)) + v(0)

µ(r0(0), s0(0))s′0(0) = g′(r0(0))γ(r0(0), s0(0))r′0(0) − v′(0)

z = L :

{

r0(L) = f(s0(L)),

γ(r0(L), s0(L))r′0(L) = f ′(s0(L))µ(r0(L), s0(L))s′0(L)

are satisfied with γ(0, 0) < 0 < µ(0, 0), f(0) = g(0) = 0 and |f ′(0)g′(0)| < 1.

Then there exists εo > 0 such that: for all 0 < ε ≤ εo there exists δ = δ(ε) such
that, if ‖v‖C1, ‖r0‖C1, ‖s0‖C1 are less than δ, then the IBV problem above admits
a C1 solution on [0,+∞) × [0, L]. Moreover, ‖(r, s)(t, ·)‖C1 ≤ ε.

In our case, g(r) = ±r and f(s) = −ks, thus |f ′(0)g′(0)| = k < 1. Since we
are interested in having explicit bounds on the data, we give a proof of Theorem 1
suited for our problem.

Proposition 1. (I) Let Ain : [0,+∞) → R
+ be of class C1, A0 > 0, u0 ∈

C1([0, L]) and assume the following compatibility conditions:

Ain(0) = A0, A0u
′
0(0) +A′

in(0) = 0, u0(L) = u′0(L) = 0 . (47)

Moreover, set v(t) = 2F (Ain(t)). Assume that

‖u0‖C0([0,L]) +
1

1 − k
‖v‖C0([0,∞)) <

1 −
√
k

1 +
√
k

√
Cd (48)

and that

bo = max{‖u′0‖C0([0,L]), ‖v′‖C0([0,∞))} (49)

is sufficiently small (see (55) below). Then the IBV problem (39)–(41) admits
a unique C1 solution (A(t, z), u(t, z)) on [0,∞) × [0, L].

(II) Let uin ∈ C1([0,+∞)), A0 > 0, u0 ∈ C1([0, L]), and assume the compatibility
conditions

uin(0) = u0(0), u0(0)u′0(0) + u′in(0) = 0, u0(L) = u′0(L) = 0 . (50)

Moreover, set v(t) = 2uin(t). Assume (48) and that bo, defined at (49), is
sufficiently small (see (55) below).

Then the same conclusion of (I) holds for the IBV problem (39), (40), (42).

Proof. We consider the problem in Riemann coordinates, (43)–(45) for case (I) and
(43), (44), (46) for case (II). The eigenvalues at t = 0 are given by

γ0(z) = u0(z) −
√
Cd , µ0(z) = u0(z) +

√
Cd .
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The C1 compatibility conditions here become

(I), z = 0 : F (Ain(0)) = 0 , (µ0(0) − γ0(0)) u′0(0) + 2F ′(A0)A
′
in(0) = 0

(II), z = 0 : u0(0) = uin(0) , (µ0(0) + γ0(0)) u′0(0) + 2u′in(0) = 0

z = L : u0(L) = 0 , (γ0(L) + kµ0(L))u′0(L) = 0

that easily follow from (47), (50).
The existence and uniqueness of a local in time C1 solution is guaranteed by

classical results. Let us now seek the a priori estimates on r, s and their derivatives.

Estimates on r, s. Recall that r is constant along γ-characteristics and s is con-
stant along µ-characteristics. Consider the µ-characteristics issued at the left corner
(t = 0, z = 0). Assuming that the solution exists long enough, the characteristics
will reach the right boundary at a time t1; at that point, a γ-characteristics is issued
and it will reach the boundary z = 0 at a time T2, and so on. Let {t2j−1}j=1,2,...

and {T2j}j=1,2,... be the sequences of increasing times at which the µ-characteristics
issued at (0, 0) hits the boundary z = L and z = 0, respectively.

Similarly, consider the γ-characteristics issued at (t = 0, z = L). It will reach the
boundary line z = 0 at a time T1, then a µ-characteristics is issued at that point,
and so on. Let {T2j−1}j=1,2,... and {t2j}j=1,2,... be the sequences of increasing times
at which the γ-characteristics issued at (0, L) hits the boundary z = 0 and z = L,
respectively. Finally, set t0 = T0 = 0.

One can verify easily that the sequences {Tj}j∈N, {tj}j∈N are strictly increasing,
as soon as the solution is C1. Define

Rj = max
[Tj ,Tj+1]

|r(t, 0)| , Sj = max
[tj ,tj+1]

|s(t, L)| , j = 0, 1, . . . .

Recalling (44), one has

R0 = max
z∈[0,L]

|r(0, z)| = ‖u0‖C0([0,L]) = max
z∈[0,L]

|s(0, z)| = S0

and, in both cases (I), (II)

Rj+1 ≤ kSj , Sj+1 ≤ Rj + V , j = 0, 1, . . .

where V = ‖v‖C0([0,∞)). Iterating the above formulas, one gets

Rj+1 ≤ kRj−1 + kV , Sj+1 ≤ kSj−1 + V , j = 1, 2, . . .

Hence one has R1 ≤ kS0 ≤ R0 and for all j ≥ 1

R2j ≤ kjR0 +
kV

1 − k
, R2j+1 ≤ kjR1 +

kV

1 − k

and we obtain

max{R2j, R2j+1} ≤ kjR0 +
kV

1 − k
, j = 1, 2, . . .

Similarly, one has S1 ≤ R0 + V = S0 + V . Then for all j ≥ 1

S2j ≤ kjS0 +
V

1 − k
,

S2j+1 ≤ kjS1 + V

j−1
∑

ℓ=0

kℓ ≤ kjS0 + V

j
∑

ℓ=0

kℓ ,

hence we obtain

max{S2j, S2j+1} ≤ kjS0 +
V

1 − k
, j = 1, 2, . . .
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Now we can easily get global bounds on r, s. Indeed

max
ℓ≥0

Rℓ ≤ max

{

R0, kR0 +
kV

1 − k

}

=̇ R̃

max
ℓ≥0

Sℓ ≤ max

{

S0 + V, kS0 +
V

1 − k

}

=̇ S̃ .

If k = 0, then R̃ = R0, S̃ = S0 + V , while for k → 1− the second term prevails.
In conclusion, as soon as the C1 solution exists, one has |r(t, z)| ≤ R̃, |s(t, z)| ≤ S̃.

Observe that R̃ ≤ S̃ ≤ S0 + V
1−k . Now, we claim that if (48) hold, that is, if

S0 +
V

1 − k
<

1 −
√
k

1 +
√
k

√
Cd ≤

√
Cd ,

then A is well defined and the eigenvalues do not change sign. Indeed one has

r(2 + d) + s(2 − d)

4
≤ S̃ <

√
Cd ,

r(2 − d) + s(2 + d)

4
≥ −S̃ > −

√
Cd

which implies, by recalling (38), that γ < 0 < µ. To show that A is well defined,
we need to invert F . We recall that F is strictly increasing; moreover, if d < 0
F (A) → −∞ as A → 0+ and F (A) → 2

√

C/d as A → +∞, while if d > 0

F (A) → +∞ as A → +∞, and F (A) → −2
√

C/d as A → 0+. Since |d| < 2 and
Cd > 0, we have

|F (A)| =

∣

∣

∣

∣

s− r

2

∣

∣

∣

∣

≤ S̃ <
√
Cd < 2

√

C

d
,

then we deduce that A is well defined and is bounded away from 0.

Estimates on ∂zr, ∂zs. Define

h(r, s) =
d− 2

2d
log

(

c1(r, s)

c1(r, r)

)

=
d− 2

2d
log

(

1 +
d(s− r)

4
√
Cd

)

.

This function has the following properties: h|r=s = 0,

∂h

∂r
= −∂h

∂s
=

1

µ− γ

∂γ

∂s
=

1

µ− γ

∂µ

∂r
.

Hence the functions

U = eh(r,s) ∂r

∂z
, V = eh(r,s) ∂s

∂z

satisfy, recalling that ∂γ/∂r = ∂µ/∂s = (2 + d)/4,
{

(∂t + γ(r, s)∂z)U = − 2+d
4 e−h(r,s)U2 ,

(∂t + µ(r, s)∂z)V = − 2+d
4 e−h(r,s)V 2 .

with initial condition U(0, z) = rz(0, z) = u′0(z), V (0, z) = sz(0, z) = u′0(z) and b.c.

z = 0 : V =
γ

µ
U − eh

µ
v′(t) , z = L : U = k

µ

|γ|V , (51)

in case (I), while in case (II)

z = 0 : V =
|γ|
µ
U − eh

µ
v′(t) , z = L : U = k

µ

|γ|V . (52)
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Assumptions on the data. We observe again that, thanks to (48), one has

S̃ <
√
Cd(1 −

√
k)/(1 +

√
k). Hence there exists a constant α > 0 such that

k

(√
Cd+ S̃√
Cd− S̃

)2

< α2 < 1 . (53)

Clearly, if we set

M1 = max
|r|,|s|≤S̃

µ/|γ| = max
|r|,|s|≤S̃

|γ|/µ =

√
Cd+ S̃√
Cd− S̃

,

we have

β =̇
kM2

1

α2
∈ [0, 1) . (54)

Our main assumption on bo, the quantity defined at (49), is that

bo ≤ 1

B(M1 + 2M2)
max√

kM1≤α≤1
α(1 − α)(1 − β) (55)

where

B = L · 2 + d

4
· max
|r|,|s|≤S̃

{

1

µ
,

1

|γ|

}

· max
|r|,|s|≤S̃

e−h(r,s) ,

M2 = max
|r|,|s|≤S̃

eh(r,s)

µ(r, s)
.

In the following, we choose α ∈ (
√
kM1, 1) such that the maximum in (55) is

attained.

Iterative estimates. Now define

Uj = max
[Tj ,Tj+1]

|U(t, 0)| , Vj = max
[tj ,tj+1]

|V (t, L)| , j ≥ 0 .

Let t ∈ [0, T1]. Solving the Riccati equation, one finds

U(t, 0) = U(0, ξ) ·
[

1 + U(0, ξ)
2 + d

4

∫ t

0

e−h(τ) dτ

]−1

for some ξ ∈ [0, L]; here h is evaluated along the γ-characteristics joining (0, ξ) with
(t, 0). After (55), one has boB ≤ 1 − α, hence

|U(t, 0)| ≤ |U(0, ξ)|
1 − |U(0, ξ)|B ≤ bo

1 − boB
≤ bo
α
.

The argument for V is similar. Hence one has U0, V0 ≤ bo/α . Now let t ∈ [T1, T2].
Using (51), one finds

U(t, 0) = k
µ

|γ|V (t̃, L) ·
[

1 + k
µ

|γ|V (t̃, L)
2 + d

4

∫ t

t̃

e−h(τ) dτ

]−1

for some t̃ ∈ [0, t1]. Hence

U1 ≤ kM1|V (t̃, L)|
1 − kM1|V (t̃, L)|B ≤ kM1V0

1 − kM1V0B
if V0BkM1 < 1 .

Similarly, one finds for j ≥ 0

Uj+1 ≤ kM1Vj

1 − kM1VjB
provided that VjkM1B < 1 . (56)
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Now, let us give estimates on Vj , j = 1, 2, . . .. Let t ∈ [t1, t2], then

V (t, L) = V (t̃, 0) ·
[

1 + V (t̃, 0)
2 + d

4

∫ t

t̃

e−h(τ) dτ

]−1

for some t̃ ∈ [0, T1], where now h is evaluated along the µ-characteristics joining
(t̃, 0) with (t, L). Using (51), (52), one finds

|V (t̃, 0)| ≤ M1 U0 + M2bo ,

hence

V1 ≤ M1 U0 + M2bo
1 − (M1 U0 + M2bo)B

, (M1 U0 + M2bo)B < 1

and, for j = 0, 1, . . .

Vj+1 ≤ M1 Uj + M2bo
1 − (M1 Uj + M2bo)B

provided that (M1 Uj + M2bo)B < 1 . (57)

For the moment, assume that

VjkM1B ≤ 1 − α j ≥ 0 (58)

(M1 Uj + M2bo)B ≤ 1 − α j ≥ 0 . (59)

These assumptions will be justified later. Hence from (56), (57) we get

Uj+1 ≤ kM1

α
Vj , Vj+1 ≤ M1

α
Uj +

M2

α
bo , j ≥ 0 . (60)

Iterating the above formulas, and recalling (54), we get

Uj+1 ≤ β Uj−1 +
kM1M2

α2
bo , Vj+1 ≤ β Vj−1 +

M2

α
bo , j ≥ 1 .

Then for j ≥ 1

max{U2j,U2j+1} ≤ βj max{U0,U1} +
kM1M2

α2(1 − β)
bo ,

max{V2j,V2j+1} ≤ βj max{V0,V1} +
M2

α(1 − β)
bo .

Using the bounds on U0, V0 and (60) for j = 0, we get

max{U0,U1} ≤ bo
α
, max{V0,V1} ≤

(

M1

α
+M2

)

bo
α
. (61)

Hence we obtain global bounds on U , V . Indeed,

max
ℓ≥2

Uℓ ≤ bo
α

{

β +
kM1M2

α(1 − β)

}

=̇ Ũ

max
ℓ≥2

Vℓ ≤ bo
α

{

β
M1

α
+M2

(

β +
1

1 − β

)}

=̇ Ṽ .

Now we claim that, if bo is sufficiently small, then (58), (59) are satisfied for all
j ≥ 0. First, we check for j = 0, 1, using (61). Then (58), (59) are satisfied
respectively if

boB
kM1

α

[

M1

α
+M2

]

≤ 1 − α , boB

[

M1

α
+M2

]

≤ 1 − α . (62)
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Since kM1 <
√
kM1 < α, the second condition implies the first. For j ≥ 2, (58) is

satisfied if ṼkM1B ≤ 1 − α , that is

boB

{

β2 +M2
kM1

α

(

β +
1

1 − β

)}

≤ boB
1 + 2M2

α(1 − β)
≤ 1 − α , (63)

while condition (59) is satisfied if M1B Ũ + M2Bbo ≤ 1 − α , that is

boB

{

M1
β

α
+

M2

1 − β

}

≤ boB
M1 +M2

α(1 − β)
≤ 1 − α . (64)

After some calculations, one verifies that the assumption (55) implies (62)–(64).

Remark 5. The bound on the derivatives of the data, see (55), is proportional to
1/L. We remark that (55) is a sufficient condition for the global existence and the
proof is the same for both cases (I), (II), that is, it is treated in the same way
the sign ±1 in (45), (46) at z = 0. A more detailed analysis could be performed
following the arguments presented in [3].

5. Numerical results. In this section we present a numerical validation of a model
governed by the pressure relation (24) (here referred for simplicity as the ”new
model”), comparing it with the numerical results obtained by the model introduced
in [23], in the inviscid case. We consider the case where all the parameters are
constant.

For both models, we set A(0, z) = A0 > 0, Q(0, z) = 0, z ∈ [0, L]. At the left
boundary z = 0 we impose an area variation given by

Ain(t) = A0(1 + 0.1 sin(2πt/Tper)), t > 0

which guarantees that Ain(t)
A0

∈ [0.9, 1.1], ∀ t ≥ 0 and that
∥

∥

∂Ain

∂t

∥

∥

C0([0,+∞))
≤

0.2·π·A0

Tper
. At the right boundary z = L we are imposing r = 0. That is, we are

considering boundary conditions in the form (41) with α = 1/2 (i.e. k = 0). The
data in the unit system CGS (centimeters, grams, seconds) are

L = 60 , E = 4 · 106 , k0 = 0.065 , ξ = 0.5 , A0 = 1.76715 , Tper = 0.8 , ̺ = 1 .

It may be verified that with this set of data inequality (48) is satisfied.
To discretize the two models we have adopted the second order Taylor-Galerkin

scheme described in [13], which is a second-order accurate numerical scheme in the
case of smooth solutions. The scheme has been implemented using the lifeV finite
element library (www.lifev.org).

We consider a uniform mesh both in space and time with steps ∆z = 1 and
∆t = 10−4, respectively. The numerical solution is smooth for both the cross-
section area and the velocity (see Figures 4 and 5), for all simulation time. The
simulation has been extended until the wave has completely left the domain.

A smooth solution has been obtained despite the fact that (55) is not satisfied,
since in this case bo = 990.69 while the right-hand side of (55) is equal to 126.55.
This confirms that the inequality is only a sufficient condition. If we compare the
characteristic speed for the new model and for the old model when A = A0, we have

char-speed-new =

√

β

2
≈ 461.17 , char-speed-old =

√

β0

2
≈ 480.74 ,

which show that the two models are almost equivalent, with a slight slower propa-
gation speed for the new one.
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Figure 3. An axial section of the vessel at a given time t

We compare at t = 0.1, 0.3, 0.5, 0.7 the cross-section area in Figure 4 and the
velocity in Figure 5 for both the new and the old model and remark that the
numerical results are quite similar for the areas, while there are slight differences
for the velocity. In fact, the two models have a different expression for the current
characteristic speed (35). In the new model the coefficient d = − 1

2 < 0, causes
a decrement of the characteristic speed with the increase of A, which is consistent
with the elastic behavior. The old model has an opposite behavior, being d = 1

2 > 0.
This could be more appropriate to simulate the stiffening characteristics of the wall
of large arteries. In the following table we display the values of the C0-norm of the
ratio A/A0 and of the velocity at the given times:

t
∥

∥

∥

Anew(t,·)
A0

∥

∥

∥

C0([0,L])
‖unew(t, ·)‖C0([0,L])

∥

∥

∥

Aold(t,·)
A0

∥

∥

∥

C0([0,L])
‖uold(t, ·)‖C0([0,L])

0.1 1.0344 15.51 1.0345 14.19
0.3 1.0477 21.68 1.0479 19.98
0.5 1.0112 17.01 1.0157 15.01
0.7 0.9635 24.67 0.9637 21.82

6. Conclusions and further developments. In this paper we have obtained a
one-dimensional system describing the mean axial motion of a Newtonian incom-
pressible fluid moving into a compliant straight vessel and the radial displacement of
its isotropic and linearly elastic wall. The methodology can be extended to account
for curvature and torsion. This extension is a subject of current research.

The analysis has demonstrated the well posedness of the problem under realistic
data. This has been confirmed by numerical experiments.

Appendix A. The metric of the wall. In Figure 3 an axial section of the vessel
at a given time t ∈ [0, T ] is presented.

Let us consider the vector-position of a point at the fluid-structure interface at
a fixed time t given by:

p(t, θ, z) = zez + η(t, z)er(θ). (65)

We recall that

ez = (0, 0, 1), er(θ) = (cos θ, sin θ, 0), eθ(θ) = ez × er = (− sin θ, cos θ, 0)
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Figure 4. Cross-section area. Comparison between old model
(dashed line) and new model (solid line).

where θ ∈ [0, 2π] is the phase angle around the vessel. We have that the local
tangent to the fluid-structure interface profile is given by:

t(t, θ, z) =

∣

∣

∣

∣

∂p

∂z

∣

∣

∣

∣

−1(
∂p

∂z

)

=

[

1 +

(

∂η

∂z

)2
]−1/2

(

ez +
∂η

∂z
er(θ)

)

.

This relation is consistent with the expression of the local outward normal to the
fluid-structure interface, given in (2) by:

ns(t, θ, z) =

[

1 +

(

∂η

∂z

)2
]−1/2

(

−∂η
∂z

ez + er(θ)

)

.



FLUID-DYNAMICS IN THIN ELASTIC VESSELS 123

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16
Velocity at t=0.1

z

u

new model
old model

0 10 20 30 40 50 60
14

15

16

17

18

19

20

21

22
Velocity at t=0.3

z

u

new model
old model

(a) Flux at t = 0.1 sec (b) Flux at t = 0.3 sec

0 10 20 30 40 50 60
−20

−15

−10

−5

0

5

10
Velocity at t=0.5

z

u

new model
old model

0 10 20 30 40 50 60
−25

−24

−23

−22

−21

−20

−19

−18

−17

−16

−15
Velocity at t=0.7

z

u

new model
old model

(c) Flux at t = 0.5 sec (d) Flux at t = 0.7 sec

Figure 5. Velocity. Comparison between old model (dashed line)
and new model (solid line).

Let us consider on the vessel wall the three independent variables s, θ, l: θ ∈ [0, 2π]
is the usual circumferential variable, l is the arc-length on the vessel wall profile,
given by:

l(z) =

∫ z

0

[

1 +

(

∂η

∂z

)2
]1/2

dz , z ∈ [0, L]

while s ∈ [0, k(t, z)] is the position along the local normal ns to the vessel wall
surface. Here k = k(t, z) is the thickness of the vessel wall. The position of a
general point Q in the wall is given by (see Figure 3):

w(s, θ, l) = Q− 0 = zez + ηer(θ) + sns(t, θ, z) (66)



124 D. AMADORI, S. FERRARI AND L. FORMAGGIA

The derivatives of the position vector (66) with respect to the local variables s, θ, l
are given at time t by:

a1 =
∂w

∂s
= ns(t, θ, z)

a2 =
∂w

∂θ
= (η + s cosψ)eθ(θ)

a3 =
∂w

∂l
= t(t, θ, z) = (1 + sχ(t, z))t(t, θ, z)

where we posed:

cosψ =

[

1 +

(

∂η

∂z

)2
]−1/2

, χ(t, z) = −∂
2η

∂z2

[

1 +

(

∂η

∂z

)2
]−3/2

. (67)

Remark that χ(t, z) is the curvature of the line described by the point p introduced
in (65) as z varies at fixed t while the quantity η + s cosψ represents the radial
distance of the point Q determined by the vector position (66) from the centerline
of the vessel.

The metric induced by w is orthogonal and given in covariant form by:

G = gij = ai · aji,j∈{1,2,3} =







h2
s 0 0

0 h2
θ 0

0 0 h2
l






(68)

where:

hs = 1, hθ = r = η + s cosψ, hl = 1 + sχ(t, z) . (69)
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