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Abstract. The purpose of this work is to carry out investigations of a general-

ized two-phase model for porous media flow. The momentum balance equations

account for fluid-rock resistance forces as well as fluid-fluid drag force effects,
in addition, to internal viscosity through a Brinkmann type viscous term. We

carry out detailed investigations of a one-dimensional version of the general

model. Various a priori estimates are derived that give rise to an existence
result. More precisely, we rely on the energy method and use compressibility

in combination with the structure of the viscous term to obtain H1-estimates

as well upper and lower uniform bounds of mass variables. These a priori es-
timates imply existence of solutions in a suitable functional space for a global

time T > 0. We also derive discrete schemes both for the incompressible and

compressible case to explore the role of the viscosity term (Brinkmann type)
as well as the incompressible versus the compressible case. We demonstrate

similarities and differences between a formulation that is based, respectively,
on interstitial velocity and Darcy velocity in the viscous term. The investiga-

tions may suggest that interstitial velocity seems more natural to use in the

formulation of momentum balance than Darcy velocity.

1. Introduction. The importance of multiphase flow in porous media has long
been recognized in many fields. Mathematical modelling of multiphase flow is
essential in practical applications like enhanced oil recovery and geological CO2

storage in depleted oil and gas reservoirs [25, 42] as well as biological processes
[29, 14, 18, 39, 40, 37]. Traditional formulations of multiphase flow describe macro-
scopic fluid fluxes with a straightforward extension, first proposed by Muskat [30, 3],
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of Darcy’s equation for single-phase flow. Unlike in the single-phase case, this ex-
tension cannot be rigorously obtained from first principles [22, 23]. The multiphase
extension of Darcy’s equation may be described as a quasi-linear relation, because
the fluid flux depends linearly on the “driving force”, which includes viscous, cap-
illary, and gravity forces, and all the nonlinearity is agglutinated in the relative
permeability and capillary pressure functions [25]. An instructive overview is given
in [32] of how generalizations of the standard Darcy’s law for single phase flow can
be derived within the context of mixture theory. Starting with more general momen-
tum balance equations and using different sets of assumptions leads to a hierarchy
of mathematical models. In particular, it can be shown that popular models due
to Brinkman, Biot and many others can be obtained via various approximations.
Interesting extensions of the classical multiphase formulation are also discussed by
Wu [42].

1.1. A compressible and viscous two-fluid model for porous media flow.
The model we are interested in describes flow of two compressible immiscible fluids,
e.g., water (w), oil (o), or gas (g), moving in a porous media and takes the following
form (we use “w” and “o” in the following as index):

(φn)t +∇ · (φnuo) = Qo, n = soρo

(φm)t +∇ · (φmuw) = Qw, m = swρw

so∇Po + ng = −k̂ouo + k̂ow(uw − uo) + εo∇ · (n∇uo)

sw∇Pw +mg = −k̂wuw − k̂ow(uw − uo) + εw∇ · (m∇uw)

(1.1)

with capillary pressure Pc defined as the difference between the non-wetting fluid
(oil) pressure Po and wetting fluid (water) pressure Pw

Pc = Po − Pw = Pc(sw), P ′c(sw) < 0. (1.2)

Herein, φ is the porosity of the medium, ρi represents density and si the volume
fraction (saturation) where i = w, o. In addition, we have the fundamental relation
that expresses that the water and oil occupy the pore space

so + sw = 1. (1.3)

Furthermore, εw, εo (assumed to be constant) characterize the magnitude of the
viscous terms. The model can be derived (or at least motivated) from general
mixture theory [11, 32] where we study a continuum composed of matrix occupying
a volume fraction (1−φ) and a pore space of volume φ that is filled with a mixture
of water and oil represented, respectively, by φsw and φso such that (1−φ)+φsw+
φso = 1. The matrix is stagnant whereas the two fluids move with (locally) averaged
interstitial velocities uw and uo. We refer to the recent work [31] for more details
leading to (1.1). See also [1, 29, 34] and references therein for interesting examples
of similar models developed in the mixture theory framework.

Note that the viscous terms εo∇ · (n∇uo) and εw∇ · (m∇uw) (Brinkman type
of term) included in (1.1)3,4 involve a mass dependent coefficient whose magnitude
is governed by the parameter εi. This reflects that we have introduced kinematic
viscosity ε that is related to dynamic viscosity µ by ερ = µ for single-phase flow of
a fluid with density ρ [28]. Combined with the two-phase momentum balance for
water and oil this gives rise to mass dependent viscosity coefficients of the form εon
and εwm. We refer to [14] (and references) therein for more details. More generally,
we may think of εon and εwm as “effective” viscosities since the model (1.1) must
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be understood as the result of a volume averaging process where variables have been
obtained through averaging over a small representative volume element, implying
that detailed information about complex interfaces between the two phases have
been lost and are represented only in an averaged sense [11, 32]. Some authors also
denote this viscosity as the “Brinkman viscosity” whereas the viscosity associated

with the rock-fluid friction term k̂i (i = o, w) is denoted the “Darcy viscosity” [27].
This issue is also discussed in [38] where it is observed by means of an up-scaling
procedure based on volume averaging methods, that the use of a slip boundary
condition gives rise to an effective viscosity different from the one corresponding to
the fluid phase.

In the following we will focus on nonlinear coupling mechanisms and we there-
fore assume physical parameters like porosity φ, absolute permeability K, Darcy
viscosity µi (will be introduced later), and Brinkman viscosity εi to be constant.

Generally, k̂o, k̂w, and k̂ow depend on the fluid composition through si and ρi.

1.1.1. Closure relations. The above model must be endowed with appropriate clo-
sure relations for densities ρi = ρi(Pi). The two phases will be treated as weakly
compressible fluids. More precisely, we represent the water and the oil by linear
pressure-density relations of the form

ρw − ρ̃w0 =
Pw
Cw

, ρo − ρ̃o0 =
Po
Co
, (1.4)

where Cw and Co reflect the compressibility of water and oil, respectively. An

essential role is played by the interaction coefficients k̂ow, k̂w, and k̂o. We will come
back with more details about the choice of these. In addition, a functional form of
the capillary pressure Pc(sw) must also be specified. Combining (1.2), (1.3), and
(1.4) it follows that ρw = ρw(m,n) and ρo = ρ(m,n) are well-defined as functions
of m and n for m,n ≥ 0, from which we also can compute sw = sw(m,n) and
so = so(m,n), see (2.17)-(2.21) for details.

1.1.2. Initial and boundary conditions. Boundary conditions are prescribed as no-
flux conditions:

ui · ν = 0, x ∈ ∂Ω, t > 0, i = w, o (1.5)

where ν is the outward normal on ∂Ω. The corresponding initial data is

n(x, t = 0) = n0(x), m(x, t = 0) = m0(x), x ∈ Ω. (1.6)

1.2. The model (1.1) as a generalization of Darcy’s equation based for-
mulation. We may ignore the effects from the viscous terms in (1.1)3,4 by setting
εo = εw = 0. In addition, we neglect the fluid-fluid interaction effect by setting

k̂ow = 0, combined with the assumption that fluid-pore resistance force coefficient

k̂i takes the form

k̂i
def
:= s2

iφ
µi
Kkri

, i = w, o (1.7)

where K is the absolute permeability (assumed here to be a scalar, i.e., we assume a
homogeneous media), kri is relative permeability, and µi viscosity. This gives from
(1.1)3,4 the following reduced momentum equations

Ui
def
:= φsiui = −Kkri

µi
(∇Pi + ρig) = −λi(∇Pi + ρig), λi := K

kri
µi
, (1.8)
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for i = w, o which is nothing but the classical Darcy law where Ui is the Darcy
velocity. When combined with (1.1)1,2 we arrive at the classical two-phase formula-
tion [42]. The model (1.1) involves two main extensions from classical formulation
based on two-phase Darcy’s equation, as elaborated upon in the following:

• The interaction forces on the RHS of (1.1)3,4 involve a fluid-fluid drag force

effect k̂ow(uw − uo) in addition to fluid-rock drag force −k̂ouo and −k̂wuw.
The only interaction force in Darcy’s equation is the latter one representing
friction between fluid and boundaries of the pores [32]. Moreover, while the
drag force depends on the velocity, it is by no means necessary that it in
general depends linearly on the relative velocity. See for example [42] for
extensions that include nonlinear dependence on fluid velocity (Forchheimer).
Moreover, it has been observed that inclusion of the fluid-fluid interaction

term k̂ow(uw − uo) can give improvements over standard Darcy’s equation
based formulation for water-oil flow in porous media. We refer to [35, 31] for
a first discussion of this in the context of core scale modelling and generalized
permeability functions and [36] for a discussion of this generalized two-phase
flow in the context of imbibition (i.e., capillary pressure driven counter-current
flow).

• The viscous terms εo∇ · (n∇uo) and εw∇ · (m∇uw) in (1.1)3,4 can account
for frictional forces within the fluid due to its viscosity. Ignoring these terms
essentially imply that the viscosity of the fluid and the roughness of the solid
surface lead to far greater frictional resistance (and hence dissipation) at the
porous boundaries of the solid in comparison to the frictional resistance in
the fluid [32]. Note that (1.1)3,4 can naturally be interpreted as a two-phase
version of Brinkman’s equation. Brinkman’s equation amounts to using a
momentum balance equation that takes the following form for a fluid-matrix
system [32]:

∇p+ ρg = −α0u + µ∇ · (∇u), (1.9)

where the quantities refer to the fluid phase, i.e., p is fluid pressure and u is
pore velocity, ρ phase density and µ phase viscosity. g denotes the external
gravity force and α0 the magnitude of the fluid-matrix drag force. The final
term, involving second order derivatives of velocity, marks a clear distinction
from Darcy’s law for single phase flow. This may be relevant for porous media
having large permeability and/or being dominated by a network of fractures
[27].

Some more precise remarks seem useful in order to set the model (1.1) into a
broader context.

Remark 1.1. We may replace the viscous term in (1.1)3,4 that accounts for the
fluid viscous shear effects that oppose the flow through the porous structure by a
more general term

∇ · (εi,eff∇ui),

where the effective viscosity coefficient εi,eff depends on other variables than the
mass. We refer to [38] for a discussion of this, both from theoretical and numer-
ical investigations. For example, from physical considerations and experimental
investigations it seems clear that it could depend on pressure [32]. It is concluded
that it might be reasonable to include dependence on pressure both in modelling
of fluid-pore friction force as well as frictional effects within the fluid itself [32].
More generally, one should also account for the possibility that the flow may not be
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steady implying that one should add a term ρut to (1.9) in the single-phase case or
(φsiρiui)t in the more general two-phase model (1.1). Moreover, nonlinear inertial
effects in the fluid cannot be ignored if the flow is not sufficiently slow.

Remark 1.2. An interesting study of a two-phase Brinkman type of model is found
in [9]. A two-phase formulation based on Darcy’s equations of the following form is
studied with s = sw

st +∇ · (Uw) = 0, Uw = f(s)UT = −λw(s)∇P
∇ ·UT = 0

UT = −λT (s)∇P,
(1.10)

where φ ≡ 1, Pw = Po = P (zero capillary pressure), λT (s) = λw(s) +λo(s) is total
mobility and f(s) = λw(s)/λT (s) is the fractional flow function for water phase.
UT is the total Darcy velocity UT = Uw + Uo. The following two-phase version of
Brinkman’s equation based on Darcy’s velocity Ui is proposed as a generalization
of Darcy’s equation:

− µ∆Ui + Ui = −λi∇P, i = w, o. (1.11)

Summing the two momentum equations in (1.11) gives rise to a Brinkman type of
momentum equation for the mixture of the two phases expressed in terms of the
total Darcy velocity UT = Uw + Uo:

− µ∆UT + UT = −λT (s)∇P. (1.12)

Taking the divergence of (1.12) gives in light of the total mass balance equation
(1.10)2 the following Brinkman based approximation of (1.10)

st +∇ · (Uw) = 0, Uw = f(s)UT

−∇ · (λT (s)∇P ) = 0

−µ∆Uw + Uw = −λw(s)∇P, λw(s) = f(s)λT (s).

(1.13)

In [9] a notion of weak solutions to the Brinkman model (1.13) is introduced and
convergence of an iterative approximation as well as full numerical scheme is demon-
strated. Numerical experiments show that the numerical approximation is quite
sensitive to the choice of µ and creates oscillatory behavior. Interestingly, numeri-
cal experiments also indicate that this solution may not converge to the solution of
the model (1.10) corresponding to µ = 0.

Remark 1.3. In the literature there seems to be an ongoing interesting discus-
sion of various formulations of two-phase versions of porous media flow based on
Brinkman’s equation. See for example the work [41] for a discussion of this. Tra-
ditionally, the superficial phase velocity (Darcy velocity) Ui has been used in two-
phase versions of Brinkman’s equation similar to (1.11). In [41] it is argued that the
most natural choice, at least for the flow system they consider with creeping flow
inside moving permeable particles, is to use interstitial (intrinsic) phase velocity ui
in the macroscopic equations. Their conclusion is based on numerical computations
and comparison of the model based on, respectively, phase velocity Ui = siui and
interstitial phase velocity ui.

1.3. Purpose of this work and brief review of related works. The aim of
this paper is three-fold: (i) Present an example of stability analysis motivated by
the study of compressible Navier-Stokes equation (and different from traditional



494 YANGYANG QIAO, HUANYAO WEN AND STEINAR EVJE

two-phase porous media stability analysis) which exploits the structure of the vis-
cous term in the momentum balance and accounts for compressibility; (ii) Present
an example of a numerical scheme both for the compressible and incompressible
version of (1.1) in a one-dimensional setting and demonstrate similarities and dif-
ferences through some specific simulations; (iii) Gain some insight into the impact
the viscosity terms have on the solution.

We end this section by giving a brief review of other works on the two-phase
porous media model based on Darcy’s law. Most works focus on the incompress-
ible, immiscible two-phase flow case. For example, [2] studied the existence of weak
solutions for the incompressible two-phase model in fractured porous media based
on a dual-porosity formulation. Regularity and stability results were obtained in
[8] when analysing a coupled system involving a saturation and a global pressure.
In [6, 5] the authors showed existence of a solution for an incompressible two-phase
flow within a heterogeneous porous medium made of two rock types. Considering
dynamic capillary pressure [24] for the incompressible two-phase flow in porous me-
dia, [7] proved the existence of a weak solution to a degenerate elliptic parabolic
system whereas in [13, 12] existence conditions for the traveling wave solution were
derived. In particular, non-monotone weak solutions for the Buckley-Leverett equa-
tion were obtained. Interesting contributions have also been made concerning the
compressible immiscible two-phase flow in porous media where phase densities are
assumed to depend on their own pressure. Without using the feature of global pres-
sure, Khalil and Saad [26] established an existence result for a three-dimensional
model. In addition, the implicit finite volume scheme was studied in [33] to obtain
convergence to a weak solution.

2. Stability analysis and existence of solution in the one-dimensional set-
ting. The purpose of this section is to derive a priori estimates of the solution of
(1.1). The approach is quite different from the approach used for the incompressible
model and formulation based on Darcy velocity Ui where the first step is to derive
estimate for pressure [9]. It is also different from mathematical analysis of com-
pressible two-phase models that are based on global pressure [19, 20, 21]. We rely
on the energy method where we first derive an energy-type of estimate. In addi-
tion, the special structure of the viscous terms allows one to obtain estimate of m,n
in H1 along the lines of the Bresch-Desjardin method [4] for a two-phase Navier-
Stokes model. For analysis of related models we refer the interesting reader to
[15, 16, 17, 18], and references therein. In the following we consider the 1D version of
(1.1) where source terms have been set such that water is injected and possibly pro-
duced whereas oil is produced only, i.e., Qo = −nQp whereas Qw = −mQp + ρwQI
for constant Qp, QI . The model takes the following form with (n,m, uw, uo) as the
main variables

(n)t + (nuo)x = −nQp, n = soρo

(m)t + (muw)x = −mQp + ρwQI , m = swρw

so(Po)x = −k̂ouo + k̂(uw − uo) + ng + εo(nuox)x,

sw(Pw)x = −k̂wuw − k̂(uw − uo) +mg + εw(muwx)x,

Pc = Po − Pw = Pc(sw),

(2.14)

subject to the boundary condition

uw(x = 0, t) = uo(x = 0, t) = 0
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uw(x = 1, t) = uo(x = 1, t) = 0, t > 0 (2.15)

and initial condition

n(x, t = 0) = n0(x), m(x, t = 0) = m0(x), x ∈ [0, 1]. (2.16)

Note that the gravity constant g can take both signs depending on the orientation
of the x-coordinate axis. Above we assume that positive direction of x-axis points

downward and g > 0. We also use the notation k̂ = k̂ow in (2.14), for simplicity
reason only.

Definition of (ρo, ρw, so, sw). Let us first see how we can obtain ρw and ρo as a
function of masses m and n. We focus on the situation where m,n > 0. The cases
where m = 0 or n = 0 are treated separately. We rewrite so + sw = 1 as

mρo + nρw = ρwρo (i.e. ρo =
nρw

ρw −m
). (2.17)

On the other hand, from (1.2) we have

Pc(sw) = Po − Pw = Coρo − Cwρw + Cwρ̃w0 − Coρ̃o0. (2.18)

Combining (2.18) with (2.17), we get

Po−Pw−Pc(sw) = Co
( nρw
ρw −m

)
−Cwρw+Cwρ̃w0−Coρ̃o0−Pc(

m

ρw
)

def
:= F (ρw;m,n),

(2.19)
where we have introduced the function F (ρw;m,n) where m,n are thought of as
parameters. Clearly, for any choice of m,n > 0, we want to verify that F (u;m,n)
(where we use u as the main variable) has a unique zero point which we denote as
ρw(m,n). Let us check some basic properties of F (u;m,n) as a function of u.

By the definition of m, it is natural to look for ρw which belongs to (m,+∞).
Moreover, from (2.19) we observe that (i) F (u → m+;m,n) = +∞; (ii) F (u →
+∞;m,n) = −∞. Next, we check monotonicity properties of F (u;m,n) as a
function of u.

F ′u(u;m,n) = Co
−mn

(u−m)2
− Cw + P ′c(

m

u
)(
m

u2
). (2.20)

Since F ′u(u,m, n) < 0 in (m,+∞) for any given m,n > 0, and F : (m,+∞) 7→
(−∞,+∞) as observed above, it follows (from the intermediate value theorem)
that there is a unique ρw = ρw(m,n) ∈ (m,+∞) such that F (ρw;m,n) = 0. In
addition, since F ′u(ρw;m,n) 6= 0, it concludes that the function ρw is differentiable
with respect to m or n (from the implicit function theorem). Furthermore, ρo, so,
and sw are then obtained as follows:

ρo(m,n) =
nρw

ρw −m
, sw =

m

ρw
, so = 1− m

ρw
=

n

ρo
. (2.21)

For the limit case when m = 0, there are two options: (i) sw = 0, which implies
that ρo = n and ρw is found from (2.18); (ii) sw > 0, which implies that ρw = 0
and where ρo is found from (2.18). Similarly, we can compute ρw and ρo for the
case n = 0.

Notation. We first give some notation.

• Lp = Lp([0, 1]) for p ∈ [1,∞]
• We define

m̃(t) =

∫ 1

0

m(x, t) dx; ñ(t) =

∫ 1

0

n(x, t) dx. (2.22)
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Assumptions. The following assumptions are made:

• Capillary pressure Pc(sw):
We assume that for Φ(sw) such that Φ′(sw) = Pc(sw), the following property
holds:

Φ(sw) ≤ Pc(s̃w)sw, 0 ≤ sw ≤ 1 (2.23)

where s̃w = sw(m̃, ñ) and m̃ and ñ refer to the total masses given by (2.22),
which are constant due to Remark 2.1. Moreover, we assume that

sup
sw∈(0,1)

|Pc(sw)| <∞, inf
sw∈(0,1)

[−P ′c(sw)] ≥ 0 (2.24)

and that

Cwρ̃w0 − Coρ̃o0 − sup
sw∈(0,1)

Pc(sw) ≥ 0. (2.25)

Note that these constraints on the capillary pressure Pc(sw) are all mild and
physical reasonable conditions.

• Source terms in (2.14)1,2 are ignored by setting Qp = 0 = QI .

• Interaction term k̂w, k̂o, and k̂ are set as follows:

k̂w = Iw
m2

m+ n
, k̂o = Io

n2

m+ n
, k̂ = Iwo

mn

m+ n
. (2.26)

Remark 2.1. Clearly, in view of (2.14)1,2, the condition (2.15), and assumption
Qp = QI = 0, it follows from (2.22) that

m̃(t) =

∫ 1

0

m0(x) dx = m̃0, ñ(t) =

∫ 1

0

n0(x) dx = ñ0 (2.27)

where m̃0, ñ0 are constant.

Remark 2.2. As far as the condition on capillary pressure Pc(sw) as given by (2.23)
is concerned, we may observe that this appears to be a weak structural constraint.
Consider for example a capillary pressure curve of the form Pc(sw) = −P ∗c ln(δ+ sw

a ),
for some δ, a > 0 as a typical example of a physical relevant function. Clearly, from
the relation Φ′(sw) = Pc(sw) we can introduce two positive constants C1 and C2 to
be determined such that

Φ(sw) = −P ∗c
∫ sw

0

ln(
x

a
+ δ)dx− C1 − C2

= −P ∗c a
∫ sw/a+δ

δ

ln(u)du− C1 − C2 = P ∗c a(u− u ln(u))
∣∣∣sw/a+δ

δ
− C1 − C2

= P ∗c sw + P ∗c a
[
δ ln(δ)− (sw/a+ δ) ln(sw/a+ δ)

]
− C1 − C2.

(2.28)

Since x ln(x) is an increasing function for x ≥ e−1 whereas for x ∈ [0, e−1) decreases
from zero for x = 0 and takes a minimum −e−1, it is clear that we can secure that

P ∗c a
[
δ ln(δ)− (sw/a+ δ) ln(sw/a+ δ)

]
− C1 ≤ 0, sw ∈ [0, 1]

for an appropriate choice of C1 such that we conclude from (2.28) that

Φ(sw) ≤ P ∗c sw − C2.

What remains to show then is that

P ∗c sw − C2 ≤ Pc(s̃w)sw, 0 ≤ sw ≤ 1.
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Clearly, (P ∗c − Pc(s̃w))sw ≤ C2 for an appropriate choice of the constant C2 =
C2(P ∗c , s̃w) since sw ∈ [0, 1].

2.1. Main results. First, we present a local (in time) existence result whose proof
is presented in Appendix A. Then, we state an (almost) global in time existence
result which relies on the local existence result combined with certain a priori esti-
mates, see (2.29). Section 2.2 is devoted to these estimates.

Theorem 2.1. (Local existence) Assume that m0 ∈ H1, n0 ∈ H1 and inf
x∈[0,1]

n0 > 0,

inf
x∈[0,1]

m0 > 0, and that
Iwok1
εwk0

+ Iwok1
εok0

≤ 1
4 ,

max
{
Iwok1
k0εo

+ Eεo,1,
Iwok1
k0εw

+ Eεw,1

}
≤ 1

2 ,

where Iwo refers to the coefficient in (2.26), k0 = min
{

inf n0

e , inf m0

e

}
and k1 =

max
{
e supm0, e supn0

}
, and

Eεw,1 = 1
εw

[
10C
(k0)2 (1 + 10C

k0
) Iwok1

2k0
+ 10IwIwok1

εwk0
+ 20IwIwok1

εwk0
+ 20IwIwok1

εwk0

]
,

Eεo,1 = 1
εo

[
10C
(k0)2 (1 + 10C

k0
) Iwok1

2k0
+ 20(Iwo)2k1

εok0
+ 10IoIwok1

εok0
+ 20(Iwo)2k1

εok0

]
,

where Iw, Io are coefficients given by (2.26) and C is a positive constant depending
on k0,k1 and some other known data but independent of εo and εw (see Step 2 in
Appendix A for more details). Then there exists a positive constant T0, such that
the system (2.14) with initial-boundary conditions (2.15) and (2.16) has a unique
solution (m,n, uw, uo) on [0, 1]× [0, T0] in the sense that

(m,n) ∈ C([0, T0];H1) ∩ C1([0, T0];L2), (uw, uo) ∈ C([0, T0];H2 ∩H1
0 ),

inf m > 0, inf n > 0.

Now we are in the position to state our second result on the almost global exis-
tence.

Theorem 2.2. (Almost global existence) In addition to the assumptions of Theorem

2.1, for any given T > 0, if K1 < min
{
εwm̃, εoñ

}
, then the system (2.14) with

initial-boundary conditions (2.15) and (2.16) has a unique solution (m,n, uw, uo)
on [0, 1]× [0, T ] in the sense that

(m,n) ∈ C([0, T ];H1) ∩ C1([0, T ];L2), (uw, uo) ∈ C([0, T ];H2 ∩H1
0 ),

where K1 is given by (2.45).
Moreover, we have the following estimates:∫ 1

0

[
(sw)2

x + (so)
2
x + (ρw)2

x + (ρo)
2
x

]
dx ≤ C(T ),

∫ 1

0

[
(sw)2

t + (so)
2
t + (ρw)2

t + (ρo)
2
t

]
dx ≤ C(T ),

for any t ∈ [0, T ].
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Remark 2.3. The constraint K1 < min
{
εwm̃, εoñ

}
where K1 is given by (2.45),

implies smallness of initial data combined with assumption about sufficiently large
viscosity εw and εo. More precisely, from the definition of K1 for a fixed T > 0 we
may choose m0 and n0 such that K1 ≤ 2[g2(m̃+ ñ)T +K0] exp(T ) where εw, εo are
chosen sufficiently large to ensure that

(i) āmax{ 1
εw
, 1
εo
} ≤ 1; (ii) 2[g2(m̃ + ñ)T + K0] exp(T ) < min

{
εwm̃, εoñ

}
. Note

that this constraint is only used to get the positive lower bound of m and n. See
Corollary 2.3 for more details. Hence, the obtained estimates cannot be used to
investigate the limit when εw, εo → 0.

2.2. Proof of Theorem 2.2. Equipped with Theorem 2.1, we are going to prove
Theorem 2.2. More precisely, let T ∗ denote the maximum time for the existence of
solutions as in Theorem 2.11. Then Theorem 2.1 implies that T ∗ > 0. To prove
the almost global existence, it suffices to show that T ∗ is larger than the given T
which can be taken as large as possible. For otherwise, i.e., T ∗ ≤ T , it will lead to
a contradiction based on the following estimates uniformly for t, i.e.,

‖(m,n, sw, so, ρw, ρo)(t)‖H1 + ‖(uw, uo)(t)‖H2 ≤ C(T ),

‖
(
mt, nt, (sw)t, (so)t, (ρw)t, (ρo)t

)
(t)‖L2 ≤ C(T ),

inf
(x,t)∈QT∗

m(x, t) > 0, inf
(x,t)∈QT∗

n(x, t) > 0,

(2.29)

for any t ∈ [0, T ∗), where QT∗ = [0, 1] × [0, T ∗). In fact, (2.29) implies that T ∗ is
not the maximum time for the existence which is the desired contradiction.

To get (2.29), we need the following lemmas. To simplify the proof, we let C(T )
denote a generic positive constant depending on the initial data and T. Moreover,
for any given T > 0, C(T ) < ∞. We let t < T ∗ ≤ T throughout the rest of this
section, i.e., in Lemma 2.2–Corollary 2.5. Note that C(T ) ≥ C(T ∗) and K1 =
K1(T ) ≥ K1(T ∗) in Lemma 2.2.

(a) Energy estimate.

Lemma 2.1. For any t ∈ [0, T ∗), it holds that

E(t) +

∫ t

0

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dxdt

+

∫ t

0

∫ 1

0

k̂(uw − uo)2 dxdt+

∫ t

0

∫ 1

0

k̂wu
2
w dxdt+

∫ t

0

∫ 1

0

k̂ou
2
o dxdt = E(0),

(2.30)

where E(t) is given by

E(t) =Cw

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx+ Co

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx

+

∫ 1

0

[
Pc(s̃w)sw − Φ(sw)

]
dx+

∫ 1

0

∫ x

0

g(n+m) dy dx,

(2.31)

where ρ̃w = ρw(m̃, ñ), ρ̃o = ρo(m̃, ñ), and s̃w = sw(m̃, ñ).

1It means that the solution exists on [0, T ∗) but not on [0, T ∗].
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Proof. From the two momentum equations of (2.14)3,4 we get after a multiplication,
respectively, by uo and uw, followed by integration over [0, 1], integration by parts
and use of (2.15)∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+

∫ 1

0

k̂(uw − uo)2 dx+

∫ 1

0

k̂wu
2
w dx+

∫ 1

0

k̂ou
2
o dx

= (

∫ 1

0

nguo dx+

∫ 1

0

mguw dx)−
∫ 1

0

(soPoxuo + swPwxuw) dx := I0 + I1.

(2.32)

For I0, integrating the two mass equations (2.14)1,2 on (0, x) for any given x ∈
(0, 1), and using the boundary condition, we have

d

dt

∫ x

0

n(y, t) dy = −nuo(x, t),

d

dt

∫ x

0

m(y, t) dy = −muw(x, t).

Thus we have

I0 = − d

dt

∫ 1

0

∫ x

0

g(n+m) dy dx. (2.33)

As to I1, we observe that by using (1.4) and (2.14)1,2 we can compute as follows∫ 1

0

souoPox dx = Co

∫ 1

0

souo(ρo)x dx = Co

∫ 1

0

nuo(ln(ρo))x dx

= −Co
∫ 1

0

(nuo)x ln(ρo) dx = Co

∫ 1

0

nt ln(ρo) dx

= Co
d

dt

∫ 1

0

n ln(ρo) dx− Co
∫ 1

0

so(ρo)t dx

= Co
d

dt

∫ 1

0

n ln(ρo) dx− Co
d

dt

∫ 1

0

ndx+ Co

∫ 1

0

(so)tρo dx

= Co
d

dt

∫ 1

0

n ln(ρo) dx+

∫ 1

0

(so)tPo dx+ Coρ̃o0

∫ 1

0

(so)t dx,

(2.34)

and, by similar calculations∫ 1

0

swuwPwx dx = Cw

∫ 1

0

swuw(ρw)x dx = Cw

∫ 1

0

muw(ln(ρw))x dx

= −Cw
∫ 1

0

(muw)x ln(ρw) dx = Cw

∫ 1

0

mt ln(ρw) dx

= Cw
d

dt

∫ 1

0

m ln(ρw) dx− Cw
∫ 1

0

sw(ρw)t dx

= Cw
d

dt

∫ 1

0

m ln(ρw) dx− Cw
d

dt

∫ 1

0

mdx+ Cw

∫ 1

0

(sw)tρw dx

= Cw
d

dt

∫ 1

0

m ln(ρw) dx+

∫ 1

0

(sw)tPw dx+ Cwρ̃w0

∫ 1

0

(sw)t dx.

(2.35)
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Note that here we have also used (2.27). Consequently, using that Pw = Po − Pc
and (1.3), we find from summing (2.34) and (2.35)

−I1 = Co
d

dt

∫ 1

0

n ln(ρo) dx+ Cw
d

dt

∫ 1

0

m ln(ρw) dx−
∫ 1

0

swtPc(sw) dx

+ Coρ̃o0
d

dt

∫ 1

0

so dx+ Cwρ̃w0
d

dt

∫ 1

0

sw dx.

That is,

−I1 = Co
d

dt

∫ 1

0

n ln(ρo) dx+ Cw
d

dt

∫ 1

0

m ln(ρw) dx−
∫ 1

0

Φ(sw)t dx

+ Coρ̃o0
d

dt

∫ 1

0

so dx+ Cwρ̃w0
d

dt

∫ 1

0

sw dx, Φ′(sw) = Pc(sw).

Moreover, we see that∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx =

∫ 1

0

m
[
ln(s) +

ρ̃w
s

]∣∣∣ρw
ρ̃w
dx

=

∫ 1

0

m
[
ln(ρw)− ln(ρ̃w) +

ρ̃w
ρw
− ρ̃w
ρ̃w

]
dx

=

∫ 1

0

m ln(ρw) dx− ln(ρ̃w)

∫ 1

0

mdx+ ρ̃w

∫ 1

0

sw dx−
∫ 1

0

mdx,

(2.36)

for some reference density ρ̃w > 0. Hence, again by using (2.27)

Cw
d

dt

∫ 1

0

m ln(ρw) dx = Cw
d

dt

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx−Cwρ̃w
d

dt

∫ 1

0

sw dx (2.37)

and

Co
d

dt

∫ 1

0

n ln(ρo) dx = Co
d

dt

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx− Coρ̃o
d

dt

∫ 1

0

so dx. (2.38)

Thus, it follows that

− I1 +
d

dt

∫ 1

0

Φ(sw) dx

= Co
d

dt

∫ 1

0

n ln(ρo) dx+ Cw
d

dt

∫ 1

0

m ln(ρw) dx

+ Coρ̃o0
d

dt

∫ 1

0

so dx+ Cwρ̃w0
d

dt

∫ 1

0

sw dx

= Cw
d

dt

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx+ Co
d

dt

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx

+ Co[ρ̃o0 − ρ̃o]
d

dt

∫ 1

0

so dx+ Cw[ρ̃w0 − ρ̃w]
d

dt

∫ 1

0

sw dx.

(2.39)

Note that in view of (1.4), the last line of (2.39) gives us

Co[ρ̃o0 − ρ̃o]
d

dt

∫ 1

0

so dx+ Cw[ρ̃w0 − ρ̃w]
d

dt

∫ 1

0

sw dx

= −Po(ρ̃o)
d

dt

∫ 1

0

so dx− Pw(ρ̃w)
d

dt

∫ 1

0

sw dx
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= −Po(ρ̃o)
d

dt

∫ 1

0

so dx− Po(ρ̃o)
d

dt

∫ 1

0

sw dx+ Pc(s̃w)
d

dt

∫ 1

0

sw dx

= Pc(s̃w)
d

dt

∫ 1

0

sw dx,

where ρ̃o, ρ̃w, and s̃w are related to each other by common masses m̃, ñ, i.e., we
have that
(i) ρ̃o = ρo(m̃, ñ), ρ̃w = ρw(m̃, ñ), and s̃w = sw(m̃, ñ);
(ii) Po(ρ̃o) = Pw(ρ̃w) + Pc(s̃w).
Hence, it follows from (2.39) that

−I1 = Cw
d

dt

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx+ Co
d

dt

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx

+
d

dt

∫ 1

0

[Pc(s̃w)sw − Φ(sw)] dx.

(2.40)

Inserting (2.40) and (2.33) in (2.32) we get

Cw
d

dt

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx+ Co
d

dt

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx

+
d

dt

∫ 1

0

[Pc(s̃w)sw − Φ(sw)] dx+
d

dt

∫ 1

0

∫ x

0

g(n+m) dy dx

+

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+

∫ 1

0

k̂(uw − uo)2 dx+

∫ 1

0

k̂wu
2
w dx+

∫ 1

0

k̂ou
2
o dx

= 0.

(2.41)

We can rewrite (2.41) to be

d

dt
E(t) +

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+

∫ 1

0

k̂(uw − uo)2 dx

+

∫ 1

0

k̂wu
2
w dx+

∫ 1

0

k̂ou
2
o dx = 0

(2.42)

with E(t) as given by (2.31). Hence, we conclude that (2.30) holds and where it is

also clear from (2.23) that
∫ 1

0
[Pc(s̃w)sw − Φ(sw)] dx ≥ 0.

Lemma 2.1 implies the following corollary.

Corollary 2.1. For any t ∈ [0, T ∗), it holds that∫ t

0

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx ds+

∫ t

0

∫ 1

0

[
k̂(uw − uo)2 + k̂wu

2
w + k̂ou

2
o

]
dx ds ≤ K0

where

K0 =g(ñ0 + m̃0) + Cw

∫ 1

0

m0

∫ ρw0

ρ̃w

s− ρ̃w
s2

ds dx+ Co

∫ 1

0

n0

∫ ρo0

ρ̃o

s− ρ̃o
s2

ds dx

+

∫ 1

0

[
Pc(s̃w)sw0 − Φ(sw0)

]
dx,

where ρi0 and si0 refer to initial states.
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Remark 2.4. The energy equality as expressed by (2.30) contains several dissipa-
tion terms on its left-hand-side. The three last terms reflect that there is a loss of
energy (i.e., an energy transformation) through the three different friction terms,

respectively, with coefficients k̂, k̂w, and k̂o and is a consequence of the viscous
property of the involved fluids leading to drag force effects. Similarly, the internal
viscosity of each fluid also creates resistance to move and is reflected by the two
viscous terms, respectively, with coefficients εw and εo.

Remark 2.5. The energy E(t) defined in (2.31) contains different terms each hav-
ing a specific physical meaning. The use of compressible fluids implies that energy
can be stored and released in the fluid due to pressure variations. An intuitive
example of this is when there is influx of gas (oil) in a low reservoir layer where
pressure is high. As this gas migrates towards a higher zone where pressure is lower,
the gas (oil) will expand. That is, ρo decreases according to (1.4) and so increases
since mass mo is conserved and mo = soρo and therfore typically will displace the
surrounding water phase represented by sw. This energy exchange is accounted for
through the two first terms of E(t). Capillary pressure Pc = Po − Pw, accounts
for the difference between the water and oil pressure Pw and Po, and also acts as
a driver (an additional pressure effect) for fluid motion. It naturally occurs in the
energy functional E(t) similar to the gravitational energy, see the last line of (2.31).

(b) More regularity estimates.

Lemma 2.2. For any t ∈ [0, T ∗), it holds that∫ 1

0

[εw
m2
x

m
+ εo

n2
x

n
] dx ≤ K1, (2.43)

and ∫ t

0

∫ 1

0

so[(ρ
1/2
o )x]2 dx ds+

∫ t

0

∫ 1

0

sw[(ρ1/2
w )x]2 dx ds

−
∫ t

0

∫ 1

0

P ′c(sw)s2
wx dx ds ≤ C(T ),

(2.44)

where

K1 =[ ∫ 1

0

[εw
(m0)2x
m0

+ εo
(n0)2x
n0

] dx+ g2(m̃+ ñ)T +K0

]
exp

{
amax{ 1

εw
,

1

εo
}T
}
,

(2.45)

and a = max{1 + Iwo + Iw, 1 + Iwo + Io}.

Proof. Note that from (2.14)2 we get the following reformulated equation after
expanding the advective term and taking a derivative in space:

(mx)t + (mxuw)x = −(muwx)x. (2.46)

Note the appearance of the viscosity term on the RHS of (2.46). Combining (2.46)
with (2.14)4 we arrive at

(εwmx)t + (εwmxuw)x = −εw(muwx)x = −swPwx − k̂wuw − k̂(uw − uc) +mg.

This is the same as[
m(εw

mx

m
)
]
t

+
[
m(εw

mx

m
)uw

]
x

= −swPwx − k̂wuw − k̂(uw − uc) +mg
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or

[εwmw]t + [εwmwuw]x = −swPwx − k̂wuw − k̂(uw − uc) +mg

for

w =
mx

m

which clearly, by using (2.14)2, is the same as

εwmwt + εwmuwwx = −swPwx − k̂wuw − k̂(uw − uc) +mg. (2.47)

Now, we test (2.47) with w and combine it with (2.14)2 and (2.15) which leads us
to

εw
2

d

dt

∫ 1

0

mw2 dx = −
∫ 1

0

swPwxw dx−
∫ 1

0

k̂wuww dx

−
∫ 1

0

k̂(uw − uc)w dx+

∫ 1

0

mgw dx

(2.48)

Similarly, for the oil phase we obtain

εo
2

d

dt

∫ 1

0

nv2 dx = −
∫ 1

0

soPoxv dx−
∫ 1

0

k̂ouov dx

+

∫ 1

0

k̂(uw − uo)v dx+

∫ 1

0

ngv dx

(2.49)

with

v =
nx
n
.

Next, we focus on the terms appearing on the RHS of (2.48):

−
∫ 1

0

swPwxw dx = −
∫ 1

0

swPwx(
mx

m
) dx := Jw,1.

We note that

Jw,1 = −
∫ 1

0

swPwx
mx

m
dx = −

∫ 1

0

swxPwx dx−
∫ 1

0

swPwx
swρwx
m

dx

= −
∫ 1

0

swxPwx dx− 4Cw

∫ 1

0

sw[(ρ1/2
w )x]2 dx.

(2.50)

Similarly, for Jo,1 associated with (2.49)

Jo,1 = −
∫ 1

0

soPox
nx
n
dx = −

∫ 1

0

soxPox dx−
∫ 1

0

soPox
αoρox
n

dx

= −
∫ 1

0

soxPox dx− 4Co

∫ 1

0

so[(ρ
1/2
o )x]2 dx.

(2.51)

To conclude, we see that by summing (2.48) and (2.49), using (2.50), and (2.51),
we get

1

2

d

dt

∫ 1

0

[εwmw
2 + εonv

2] dx+ 4Co

∫ 1

0

so[(ρ
1/2
o )x]2 dx+ 4Cw

∫ 1

0

sw[(ρ1/2
w )x]2 dx

= −
∫ 1

0

swxPwx dx−
∫ 1

0

soxPox dx+

∫ 1

0

mgw dx+

∫ 1

0

ngv dx
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−
∫ 1

0

k̂(uw − uo)w dx+

∫ 1

0

k̂(uw − uo)v dx−
∫ 1

0

k̂wuww dx−
∫ 1

0

k̂ouov dx

=

∫ 1

0

s2
wxP

′
c(sw) dx+

∫ 1

0

mgw dx+

∫ 1

0

ngv dx

−
∫ 1

0

k̂(uw − uo)w dx+

∫ 1

0

k̂(uw − uo)v dx−
∫ 1

0

k̂wuww dx−
∫ 1

0

k̂ouov dx

(2.52)

where we again have used Pc(sw) = Po − Pw and sw + so = 1. That is,

1

2

d

dt

∫ 1

0

[εwmw
2 + εonv

2] dx

+ 4Co

∫ 1

0

so[(ρ
1/2
o )x]2 dx+ 4Cw

∫ 1

0

sw[(ρ1/2
w )x]2 dx−

∫ 1

0

s2
wxP

′
c(sw) dx

=

∫ 1

0

g(mx + nx) dx−
∫ 1

0

k̂(uw − uo)(
mx

m
) dx+

∫ 1

0

k̂(uw − uo)(
nx
n

) dx

−
∫ 1

0

k̂wuw(
mx

m
) dx−

∫ 1

0

k̂ouo(
nx
n

) dx

:= Kow0 +Kw1 +Ko1 +Kw2 +Ko2.

(2.53)

For Kow0, we use Cauchy inequality and the mass equations and have

Kow0 = g

∫ 1

0

mx√
m

√
mdx+ g

∫ 1

0

nx√
n

√
ndx

≤
∫ 1

0

(
m2
x

m
+
n2
x

n
)dx+

1

4
g2

∫ 1

0

(m+ n)dx =

∫ 1

0

(mw2 + nv2)dx+
1

4
g2(m̃+ ñ).

(2.54)

In the following we make use of the functional form of the interaction coefficients

k̂w, k̂o, and k̂ as expressed in (2.26).

Kw1 = −
∫ 1

0

k̂(uw − uo)(
mx

m
)dx

≤ 1

4

∫ 1

0

k̂(uw − uo)2dx+

∫ 1

0

k̂
m2
x

m2
dx

≤ 1

4

∫ 1

0

k̂(uw − uo)2dx+ Iwo

∫ 1

0

m2
x

m
dx =

1

4

∫ 1

0

k̂(uw − uo)2dx+ Iwo

∫ 1

0

mw2dx

(2.55)

and

Ko1 =

∫ 1

0

k̂(uw − uo)(
nx
n

)dx

≤ 1

4

∫ 1

0

k̂(uw − uo)2dx+

∫ 1

0

k̂
n2
x

n2
dx

≤ 1

4

∫ 1

0

k̂(uw − uo)2dx+ Iwo

∫ 1

0

n2
x

n
dx =

1

4

∫ 1

0

k̂(uw − uo)2dx+ Iwo

∫ 1

0

nv2dx.

(2.56)
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Furthermore,

Kw2 = −
∫ 1

0

k̂wuw(
mx

m
)dx

≤ 1

4

∫ 1

0

k̂wu
2
wdx+

∫ 1

0

k̂w
m2
x

m2
dx

=
1

4

∫ 1

0

k̂wu
2
wdx+ Iw

∫ 1

0

m2
x

m
dx =

1

4

∫ 1

0

k̂wu
2
wdx+ Iw

∫ 1

0

mw2dx

(2.57)

and

Ko2 = −
∫ 1

0

k̂ouo(
nx
n

)dx

≤ 1

4

∫ 1

0

k̂ou
2
odx+

∫ 1

0

k̂o
n2
x

n2
dx

=
1

4

∫ 1

0

k̂ou
2
odx+ Io

∫ 1

0

n2
x

n
dx =

1

4

∫ 1

0

k̂ou
2
odx+ Io

∫ 1

0

nv2dx.

(2.58)

Putting the estimates (2.54)–(2.58) into (2.53), integrating the result over (0, t),
and using Corollary 2.1, we have∫ 1

0

[εwmw
2 + εonv

2] dx+ 4Co

∫ t

0

∫ 1

0

so[(ρ
1/2
o )x]2 dx ds

+ 4Cw

∫ t

0

∫ 1

0

sw[(ρ1/2
w )x]2 dx ds−

∫ t

0

∫ 1

0

P ′c(sw)s2
wx dx ds

≤
∫ 1

0

[εwm0w
2
0 + εon0v

2
0 ] dx+ a

∫ t

0

∫ 1

0

(mw2 + nv2)dx ds+
1

4
g2(m̃+ ñ)t

+
1

2

∫ t

0

∫ 1

0

k̂(uw − uo)2dx ds+
1

4

∫ t

0

∫ 1

0

k̂wu
2
wdx ds+

1

4

∫ t

0

∫ 1

0

k̂ou
2
odx ds

≤
∫ 1

0

[εwm0w
2
0 + εon0v

2
0 ] dx+ amax{ 1

εw
,

1

εo
}
∫ t

0

∫ 1

0

(εwmw
2 + εonv

2)dx ds

+ g2(m̃+ ñ)T +K0,

(2.59)

where a = max{1 + Iwo + Iw, 1 + Iwo + Io}.
Using Gronwall’s inequality and (2.59), we get (2.43). (2.44) is given by (2.43)

and (2.59).

In view of Lemma 2.2 it follows that
√
m,
√
n ∈ H1(0, 1). Combined with the

Sobolev inequality H1(0, 1) ↪→ C([0, 1]) we have the following corollary.

Corollary 2.2. It holds that
m(x, t) + n(x, t) ≤ C(T ),∫ 1

0

(m2
x + n2

x) dx ≤ C(T ),
(2.60)

for any (x, t) ∈ [0, 1]× [0, T ∗).
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(c) Upper and lower bounds of density and related quantities.

Lemma 2.3. It holds that n ≤ ρo ≤ C(T ),

m ≤ ρw ≤ C(T ),
(2.61)

for any (x, t) ∈ [0, 1]× [0, T ∗).

Proof. Since

ρo =
Cw
Co

ρw −
Cw
Co

ρ̃w0 + ρ̃o0 +
1

Co
Pc(sw), (2.62)

we have

ρo = (so + sw)ρo = n+ sw

[Cw
Co

ρw −
Cw
Co

ρ̃w0 + ρ̃o0 +
1

Co
Pc(sw)

]
, (2.63)

ρw = (sw + so)ρw = m+ so

[ Co
Cw

ρo + ρ̃w0 −
Co
Cw

ρ̃o0 −
1

Cw
Pc(sw)

]
. (2.64)

Armed with the upper bounds of m and n from Corollary 2.2, we get the upper
bounds of ρo and ρw from (2.63) and (2.64). Note that the term ρi appearing on
the right-hand-side is grouped with the corresponding si which gives either m or
n. In addition, we make use of the uniform bound on Pc(sw) given by (2.24). The
lower bounds can be derived from the definitions n = soρo and m = swρw combined
with (1.3).

Corollary 2.3. The following uniform lower bound holds

m,n ≥ 1

C
, for any (x, t) ∈ [0, 1]× [0, T ∗), (2.65)

subject to the constraint that K1 < min{εwm̃, εoñ} where K1 is given by (2.45).

Proof.

|m(x, t)− m̃| =|
∫ 1

0

[m(x, t)−m(y, t)] dy| = |
∫ 1

0

∫ x

y

mξ(ξ, t) dξ dy|

≤
∫ 1

0

|mx(x, t)| dx =

∫ 1

0

√
m(x, t)| mx(x, t)√

m(x, t)
| dx

≤
(∫ 1

0

m(x, t) dx

) 1
2
(∫ 1

0

|mx(x, t)|2

m
dx

) 1
2

≤
(
m̃K1

εw

) 1
2

.

Letting
(
m̃K1

εw

) 1
2

< m̃, i.e., K1 < εwm̃, we have

m ≥ 1

C

on [0, 1]× [0, T ∗) for some positive constant C. Similarly, letting
(
ñK1

εo

) 1
2

< ñ, i.e.,

K1 < εoñ, we get the positive lower bound of n.
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(d) Higher-order estimates.

Lemma 2.4. The following estimate holds∫ 1

0

[
(sw)2

x + (so)
2
x + (ρw)2

x + (ρo)
2
x

]
dx ≤ C(T ) (2.66)

for any t ∈ [0, T ∗).

Proof. Differentiating (2.64) with respect to x, we have

(ρw)x =mx +
Co
Cw

(soρo)x + ρ̃w0(so)x −
Co
Cw

ρ̃o0(so)x

− 1

Cw
(so)xPc(sw)− 1

Cw
soP

′
c(sw)(sw)x

=mx +
Co
Cw

nx − (ρ̃w0 −
Co
Cw

ρ̃o0)(sw)x

+
[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]
(sw)x,

(2.67)

where we have used so + sw = 1 such that (so)x = −(sw)x.
With (2.67), we proceed to estimate (sw)x.

(sw)x =(
m

ρw
)x =

mx

ρw
− sw(ρw)x

ρw

=
mx

ρw
− sw
ρw

[mx +
Co
Cw

nx] +
sw
ρw

(ρ̃w0 −
Co
Cw

ρ̃o0)(sw)x

− sw
ρw

[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]
(sw)x,

which implies that

(sw)x

[
ρw − sw(ρ̃w0 −

Co
Cw

ρ̃o0) + sw
[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]]
=mx − sw(mx +

Co
Cw

nx).

(2.68)

By (2.62), we have

ρw =
Co
Cw

ρo + ρ̃w0 −
Co
Cw

ρ̃o0 −
1

Cw
Pc(sw).

Substituting this identity and that 1− sw = so into (2.68), we have

(sw)x =(somx − sw
Co
Cw

nx)
[
ρw − sw(ρ̃w0 −

Co
Cw

ρ̃o0)

+ sw
[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]]−1

.

(2.69)

Since

ρw =
Co
Cw

ρo + ρ̃w0 −
Co
Cw

ρ̃o0 −
1

Cw
Pc(sw), (2.70)

we have

ρw − sw(ρ̃w0 −
Co
Cw

ρ̃o0) + sw
[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]
=
Co
Cw

ρo + so

[
ρ̃w0 −

Co
Cw

ρ̃o0 −
1

Cw
Pc(sw)

]
− 1

Cw
swsoP

′
c(sw).

(2.71)
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Combining (2.71) with (2.69), (2.61), (2.65), and the assumptions (2.24) and (2.25),
allow us to conclude that∫ 1

0

(sw)2
x dx ≤C

∫ 1

0

1

ρ2
o

(m2
x + n2

x) dx

≤C
∫ 1

0

s2
o

n2
(m2

x + n2
x) dx ≤ C(T ).

(2.72)

This combined with (2.67) and (2.60) gives∫ 1

0

(ρw)2
x dx ≤ C(T ). (2.73)

By virtue of (2.70), the fact that (sw)x = −(so)x, (2.72), and (2.73), we get the
estimates of (so)x and (ρo)x.

Lemma 2.5. For any t ∈ [0, T ∗), it holds that∫ 1

0

[
(uw)2

x + (uo)
2
x

]
dx ≤ C(T ). (2.74)

Proof. By virtue of (2.32), we have∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+

∫ 1

0

[
k̂(uw − uo)2 + k̂wu

2
w + k̂ou

2
o

]
dx

=− (

∫ 1

0

nguo dx+

∫ 1

0

mguw dx)−
∫ 1

0

(soPoxuo + swPwxuw) dx

≤C(‖uo‖L∞ + ‖uw‖L∞) + C‖(ρo)x‖L2‖uo‖L2 + C‖(ρw)x‖L2‖uw‖L2

≤C(T )
(
‖(uo)x‖L2 + ‖(uw)x‖L2

)
≤ C(T )

(
‖
√
n(uo)x‖L2 + ‖

√
m(uw)x‖L2

)
≤1

2

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+ C(T ),

(2.75)

where we use

∫ 1

0

mdx = m̃,

∫ 1

0

ndx = ñ and Hölder inequality in the first inequal-

ity, and use the inequality ‖ui‖∞ ≤ C‖uix‖L2 , (2.66), (2.65), and Cauchy inequality
in the rest.

Using (2.65) again, and (2.75), we get∫ 1

0

(u2
wx + u2

ox) dx ≤ C(T ). (2.76)

Corollary 2.4. For any t ∈ [0, T ∗), it holds that∫ 1

0

[
(uw)2

xx + (uo)
2
xx

]
dx ≤ C(T ). (2.77)

Proof. From the equation of uw, we have

εwm(uw)xx = −εwmxuwx + swPwx + k̂wuw + k̂(uw − uo) +mg,
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which together with (2.65), (2.60), (2.66), and (2.74) gives∫ 1

0

(uw)2
xx dx ≤C(T )

∫ 1

0

m2
xu

2
wx dx+ C(T )

≤C(T )‖u2
wx‖L∞

∫ 1

0

m2
x dx+ C(T )

≤C(T )
(
‖(uw)x‖2L2 +

∫ 1

0

|(uw)x(uw)xx| dx
)

+ C(T )

≤1

2

∫ 1

0

(uw)2
xx dx+ C(T ),

where we use W 1,1(0, 1) ↪→ L∞(0, 1) in the third inequality, and use
∫
ab dx ≤

C
∫
a2 dx+ ε

∫
b2 dx with appropriate choice of ε in the last one. This implies∫ 1

0

(uw)2
xx dx ≤ C(T ).

Similarly, we get the estimate of (uo)xx.

Corollary 2.5. For any t ∈ [0, T ∗), it holds that∫ 1

0

[
m2
t + n2

t + (sw)2
t + (so)

2
t + (ρw)2

t + (ρo)
2
t

]
dx ≤ C(T ). (2.78)

Proof. By using the equation of m, Cauchy inequality, (2.60), and (2.74), we have∫ 1

0

m2
t dx ≤2

∫ 1

0

[
m2(uw)2

x +m2
xu

2
w

]
dx

≤2‖m‖2L∞
∫ 1

0

(uw)2
x dx+ 2‖uw‖2L∞

∫ 1

0

m2
x dx

≤C(T ).

(2.79)

Similarly we get ∫ 1

0

n2
t dx ≤ C(T ). (2.80)

We consider (2.69) with ∂x replaced by ∂t, and use similar analysis as (2.72).
Then ∫ 1

0

(sw)2
t dx ≤C

∫ 1

0

1

ρ2
o

(m2
t + n2

t ) dx

≤C
∫ 1

0

s2
o

n2
(m2

t + n2
t ) dx ≤ C(T ),

(2.81)

where we use (2.65), (2.79), and (2.80). Since (so)t = −(sw)t, we get∫ 1

0

(so)
2
t dx ≤ C(T ).

By virtue of (2.67) where ∂x is replaced by ∂t, (2.79), (2.80), and (2.81), we have∫ 1

0

(ρw)2
t dx ≤ C(T ).
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This combined with (2.70) and (2.81) gives∫ 1

0

(ρo)
2
t dx ≤ C(T ).

With the above estimates, we get (2.29). Thus the proof of Theorem 2.2 is
complete.

3. Numerical results. The main objective of this section is to carry out some
testing of the numerical schemes presented in Appendix D, respectively, for the
compressible and incompressible version of (1.1). First, we want to test general
stability properties. Second, we seek some insight into the role played by using
Darcy velocity Ui = siui versus interstitial fluid velocity ui (i = w, o) in the viscous
terms. In other words, we modify (4.145)3,4 and use the following momentum
equations for the compressible case

so(Pw + Pc)x = −(k̂o + k̂)uo + k̂uw + ng + εo(ρoUox)x

sw(Pw)x = −(k̂w + k̂)uw + k̂uo +mg + εw(ρwUwx)x,
(3.82)

and modify (4.165)3,4 as follows for the incompressible case

so(Pw + Pc)x = −(k̂o + k̂)uo + k̂uw + ng + (εoρo)Uoxx

sw(Pw)x = −(k̂w + k̂)uw + k̂uo +mg + (εwρw)Uwxx.
(3.83)

Third, we also test the behavior of the scheme as the coefficients εw, εo are varied
to see what kind of impact this term will have on the solution. This also allows us
to get some understanding of whether the viscous model seems to converge to the
inviscid version obtained by letting εw, εo → 0. We conduct numerical tests similar
to those reported in [9]. We refer to Remark 1.2 for more details regarding the
model they solve. Most importantly, the viscous term in their model depends on the
Darcy velocity Uw, Uo. We apply the scheme for the incompressible model for these
investigations, see Section 3.1. However, in Section 3.2 we also include examples
where we use the scheme derived for the compressible model (see Appendix D) and
do some comparison with the results from the incompressible model. The following
input data are chosen for the numerical examples.

We choose parameters as specified in Table 1. In particular, when combined with
the relations (4.132) it gives rise to a fractional flow function given by

fw =
kw/µw

kw/µw + ko/µo
=

s2
w

s2
w + (1− sw)2

= fw(sw).

The function is illustrated in Fig. 1 (left figure). The initial data of water saturation
is set to be as in [9]:

sw(x, t = 0) =

{
0.8 0 ≤ x ≤ 2,
0.8 exp(−150(x− 2)2) 2 < x ≤ 100.

(3.84)

A horizontal reservoir layer is considered in this case and porosity is also assumed to
be 1. The whole test is a 10-day flooding process with a constant interstitial water
injection rate at left boundary, Q = 8.004m3/d. The relevant boundary values are:
sw(x = 0, t) = 0.8 and uw(x = 0, t) = 8.004m/d. In addition, 2001 grids are used to
simulate this displacement. Water and oil have the same properties such as density
and viscosity. Fluid-fluid interaction effect is ignored here by setting I = 0 in the



COMPRESSIBLE AND VISCOUS TWO-PHASE FLOW IN POROUS MEDIA 511

Parameter Dimensional Value Parameter Dimensional Value
L 100 m Iw 1.5
φ 1 Io 1.5
A 1 m2 I 0 (Pa·s)−1

ρ̃w0 1 g/cm3 α 0
ρ̃o0 1 g/cm3 β 0
Cw 106 m2/s2 εw 107, 106, 105, 104, 103, 102 cP
Co 5 · 105 m2/s2 εo 107, 106, 105, 104, 103, 102 cP
µw 1 cP K 1000 mD
µo 1 cP kmaxrw = 1/Iw 0.667
Q 8.004 m3/day kmaxro = 1/Io 0.667
PwL 106 Pa T 10 days
Nx 2001 4t 8640 s

Table 1. Input parameters of reservoir and fluid properties used
for for the below simulations. Note that PwL is the boundary pres-
sure at left for the incompressible model whereas for the compress-
ible model it represents the initial pressure distribution.

Figure 1. Water fractional flow function f̂w(sw) as given by
(4.127) for the incompressible model obtained by using the param-
eters specified in Table 1 (left figure) and initial water saturation
(3.84) profile (right), both similar to that used in [9].

correlations (4.132). The corresponding initial water saturation profile is shown in
Fig. 1 (right figure).

3.1. The incompressible model.

Case 1. First, we want to compare the numerical results obtained by using the
scheme from Appendix D (incompressible variant) and compare with similar results
presented in [9], which are based on the model (1.13). We also mimic their scheme
by slightly modifying the scheme prescribed in Appendix D (incompressible variant)
where siuix is replaced by Uix in the viscous term, as described by (3.83). Results
are illustrated in Fig. 2. We show water saturation profiles after 10 days flooding
with, respectively, εw = εo = 107 and εw = εo = 106 (upper row) and compare with
the corresponding results from Coclite et al. [9] (lower row). Main observations are:
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Figure 2. Upper row: Results produced by the discrete scheme
described in Appendix D (incompressible model). Three kinds of
curves are plotted including the case without viscous effect, i.e.,
εw = εo = 0, the one based on using Darcy velocity Ui (i = w, o) in
the viscous term, and the one with interstitial velocity ui (i = w, o)
in the viscous term. The left figure shows results with ε = εw =
εo = 107 whereas the right figure shows results with ε = εw =
εo = 106. Lower row: The results of two corresponding cases
with εw = εo = 107 and εw = εo = 106 after a dimensionless
time, 0.65, produced by the numerical scheme described in [9] to
solve the model (1.13). From these computations we see that the
solution is sensitive to whether the interstitial velocity ui or the
Darcy velocity Ui appear in the viscous term. In particular, the use
of Darcy velocity seems to generate considerably more oscillatory
behavior behind the “water bank” formed at the front.

(i) A new “water bank” is formed behind the front of the water as a result of the
viscous terms. This is a local effect restricted to the region right behind the water
front where large gradients in velocity are present;
(ii) Internal viscous forces slow down the transport effect, especially at the satura-
tion front where velocity involves dramatic changes. Right behind the water bank,
the model with Darcy velocity involved in the viscous term tends to develop oscil-
latory behavior;
(iii) The solution shows a clear sensitivity to the magnitude of εo, εw (i.e., 107

versus 106) for the scheme based on Darcy velocity Ui in the viscous terms. The
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Figure 3. Simulation results with smaller viscous parameters
after 10 days of water flooding. Three kinds of curves are compared:
zero viscous effect, Darcy velocity Ui in viscous term and interstitial
velocity ui in viscous term. It shows that the viscous constant water
level gradually vanishes when ε is as low as 103 and 102.

scheme with viscous term based on interstitial velocity ui shows less sensitivity to
this change in εo, εw.

The classical Buckley-Leverett model solution (i.e., εw = εo = 0) is composed of
a sharp water front followed by a rare-faction wave which is due to a viscous effect
associated with resistance forces between fluid (water and oil) and walls of the pore
space. The new water bank is a consequence of internal viscosity within the fluid felt
at the region behind the water front. The difference between solution when viscous
term is based on Darcy velocity Ui versus solution when viscous term is based on
interstitial velocity ui, can be naturally understood in light of the expansion

∂x(∂x(siui)) = ∂x(si∂x(ui)) + ∂x(ui∂x(si)).

Clearly, the viscous term based on Ui = siui gives rise to an additional term that
naturally can be linked to the observed difference between the two schemes used
to produce solutions in Fig. 2. It should be noted that Brinkman equation was
developed empirically for single phase flow and afterwards has been extended to
the multiphase setting in a heuristic manner. As noted in Remark 1.3 there seems
to be an ongoing discussion in the literature whether to base the viscous term on
Darcy velocity or interstitial velocity. Finally, in Fig. 3 is shown the result for the
two schemes as εw, εo get smaller. Both schemes seem to reflect convergence toward
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Figure 4. The results after 10 days with initial data are shown
in Fig. 1 with interstitial velocity in viscous term. Four curves are
compared: the one with large values of εw and εo, 106; the second
one with large εo, 106 and small εw, 104; the third one with large
εw, 106 and small εo, 104 and the last one with small values of εw
and εo, 104. It shows that the displaced oil influences significantly
on the constant level of water which displaces oil.

the solution of the inviscid model (i.e., εw = εo = 0) with a considerably faster
convergence produced by the scheme with viscous term based on interstitial fluid
ui.

Case 2. In Fig. 4 we show simulation results when we vary the internal relation
between εw and εo. It is intuitively understandable that oil viscous effects can
have a strong impact on the constant water level right behind the water front.
Apparently, the same change of magnitude of water viscous parameter εw from 104

to 106 with a constant εo has a dramatic effect when εo is small (i.e., 104) whereas
the effect is rather small when εo is large (i.e., 106). We refer to Fig. 4 for simulation
results.

Case 3. Now, we move to another case which has a different initial condition but
still with the same injection rate of water, 8.004m3/d, as interstitial velocity at left
boundary. The initial water saturation is illustrated in Fig. 5. Numerical results are
shown in Fig. 6 where we compare the scheme based on interstitial viscosity (right
figure) with the simulation result reported in [9] (left figure). In particular, it seems
that the numerical solution based on using Darcy velocity produces an unphysical
water saturation value near the left boundary. The numerical solution illustrated
in Fig. 6 (right) does not contain this “defect”. In addition, apparently the solution
converges to the classical Buckley-Leverett type result with a small ε such as 103.
This behavior seems different from the conclusion in [9].

3.2. The compressible model. Next, we use the numerical scheme described in
Appendix D (compressible variant) to compute and illustrate the numerical behavior
for the compressible model. Comparison is made with the cases shown in Fig. 2
for the incompressible model. The compressible fluids are assumed to be given by
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Figure 5. Initial water saturation profile from Coclite et al. [9].

Figure 6. Left: The results from Coclite et al. [9] based on Darcy
velocity in viscous term. Right: Numerical scheme (after 8 days)
which uses interstitial velocity in viscous term with different viscous
values ε = 0, 103, 104, 105 and εw = εo = ε.

the pressure-density relation (1.4). The initial water saturation is also the same as
shown in Fig. 1. The water saturation sw at left boundary is constrained with 0.8
and the initial water pressure at left boundary is 106 Pa. The numerical behavior is
shown in Fig. 7. The essential difference is a delay in the solution of the compressible
model.

In order to shed light on the difference observed in Fig. 7, we explore the pressure
profiles at various times (shown in Fig. 8). It is clear from these plots that water
pressure keeps increasing, especially for the water displacing part. Water can be
compressed in the compressible model therefore the water density will also increase,
which leads to a larger viscous effect since density is included in the coefficient of
the viscous term. Water will feel more resistance forces and it is more difficult to
displace oil resulting in a delay effect.

Injection of water versus gas. Finally, a numerical example is shown with gas in-
jection to displace oil in the compressible model instead of water. The parameters
of gas are the same as for water, as described in Table 1, except using the pressure-
density relation: ρg = Pg/Cg where Cg = 105. The left figure of Fig. 9 compares
the results of gas injection and water injection. As expected, it is a much slower
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Figure 7. Comparison between the compressible model and the
incompressible model for water-oil flow with εw = εo = ε =
107, 106. After the same period of 10 days, water flow in the com-
pressible model is delayed compared with water profiles in the in-
compressible model, for both situations with interstitial velocity
and Darcy velocity in viscous terms.

Figure 8. The water pressure evolution in the compressible model
for the case with Darcy velocity in viscous term (left figure) and
the case with interstitial velocity in viscous term (right figure).
Water pressure increases with time in the water displacing part of
the reservoir layer which leads to a compression effect where the
magnitude of the viscous terms increase and thereby slows down
the displacement of the water front.

process for gas to displace oil. This is a natural consequence of the fact that gas
is much more compressible than water. The high gas pressure which results from
the increased viscous effect will generate a strong compression of gas. It is also
interesting to see that the fluctuation in the gas saturation profile becomes stronger
as time elapses, which is not observed in the case of water injection. However, the
elevated constant water level is almost the same in both cases (compare the left and
the right subfigures in Fig. 9).
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Figure 9. Left: Comparison of saturation profiles for water injec-
tion and gas injection, respectively, after the same time period (10
days) in the compressible model using interstitial velocity in vis-
cous term (εw = εo = ε = 107). Right: The gas saturation profile
shown at different times.

4. Concluding remarks. Some main observations from the investigations of the
present manuscript are:

• We have found that exploiting the fact that the viscous term depends on the
interstitial fluid flow velocity uw, uo, we can derive stability estimates (energy-
type estimate and BD-estimate) that also naturally deal with the capillary
pressure term Pc(sw). This approach seems strongly linked to the special
structure of the viscous coefficients.

• We formulated finite difference schemes, both for the incompressible and com-
pressible version of the model. These schemes allow us to systematically gain
some insight into the effect of compressibility as well as the effect from the
viscous terms that account for the frictional resistance within the fluid. We
also observe that by using Darcy velocity in the viscous term, the resulting
scheme tends to give more oscillatory behavior similar to that reported in [9].

• In particular, when the viscous coefficients εw, εo become small enough, the
numerical experiments carried out in a one-dimensional setting indicate that
the approximate solution converges to the solution of the inviscid model. The
stability estimates for the model based on interstitial fluid velocity, however,
do depend on εw, εo and cannot be used to ensure convergence to the inviscid
model. Hence, this remains an interesting open problem.

Acknowledgments. We are grateful for instructive comments from the anony-
mous reviewers that helped improving certain parts of a first version of this manu-
script.

Appendix A: Proof of Theorem 2.1. We apply a method similar to the one
used in our previous work [16] to prove the local existence and uniqueness. Hence,
in order to make the proof more compact we will heavily refer to that paper for
details and highlight what is different.

First, we consider the solution space

S := ST0,A1
=
{
v ∈ C([0, T0];H1

0 ∩H2)
∣∣∣‖v‖C([0,T0];H2) ≤ AA1

}
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where A = max{ 1
εo
, 1
εw
}, A1 and T0 satisfy (4.101) and (4.87), (4.88), and (4.117),

respectively.

Step 1. Construct an iteration sequence.
We define an iteration sequence to approximate (2.14) which takes the following

form

(nk)t + (nkuk−1
o )x = 0

(mk)t + (mkuk−1
w )x = 0

skoP
k
ox = −k̂kouko + k̂k(uk−1

w − uko) + εo(n
kukox)x − nkg

skwP
k
wx = −k̂kwukw − k̂k(ukw − uko) + εw(mkukwx)x −mkg

(4.85)

with the initial-boundary value conditions:

(ukw, u
k
o)(0, t) = (ukw, u

k
o)(1, t) = 0, t ≥ 0,

and

(mk, nk)(x, 0) = (m0, n0)(x), x ∈ [0, 1],

for k = 1, 2, 3, · · ·, where (u0
w, u

0
o) = (0, 0), skw = sw(mk, nk), sko = so(m

k, nk), P kw =

Pw(mk, nk), P ko = Po(m
k, nk), k̂kw = k̂w(mk, nk), k̂ko = k̂o(m

k, nk), k̂k = k̂(mk, nk),
and

(mk, nk) ∈ C([0, T0];H1) ∩ C1([0, T0];L2), (ukw, u
k
o) ∈ C([0, T0];H1

0 ∩H2).

Step 2. Boundedness of the sequence.
Assume that uk−1

w , uk−1
o ∈ S. To prove uiw, u

i
o ∈ S for all i = 0, 1, 2, 3, ..., it

suffices to prove ukw, u
k
o ∈ S.

In fact, as a consequence of that uk−1
w , uk−1

o ∈ S, we have{
‖uk−1

w,x (·, t)‖L∞ ≤ ‖uk−1
w,x (·, t)‖W 1,1 ≤ AA1

‖uk−1
o,x (·, t)‖L∞ ≤ ‖uk−1

o,x (·, t)‖W 1,1 ≤ AA1

(4.86)

for t ∈ [0, T0].
By virtue of (4.85)1, (4.85)2, and (4.86), we can find positive constants C, k0

and k1 independent of T0, A, and A1 and where T0 ≤ T1 for some T1 > 0 which
reflects smallness on time, such that

k0 ≤ mk ≤ k1, and k0 ≤ nk ≤ k1 on [0, 1]× [0, T0],

‖∂Pw(mk,nk)
∂nk ‖L∞([0,1]×[0,T0]) ≤ C, ‖∂Pw(mk,nk)

∂mk ‖L∞([0,1]×[0,T0]) ≤ C,

‖∂Po(mk,nk)
∂nk ‖L∞([0,1]×[0,T0]) ≤ C, ‖∂Po(mk,nk)

∂mk ‖L∞([0,1]×[0,T0]) ≤ C,

(4.87)

and 
∫ 1

0

|nkx(x, t)|2dx ≤ C,∫ 1

0

|mk
x(x, t)|2dx ≤ C.

(4.88)

In fact, (4.87)1 as well as (4.88) are straightforward consequences of the fact that
mk and nk are transported by the smooth vector fields uk−1

w and uk−1
o . Moreover,

(4.87)2,3 can then be deduced from the regularity of (m,n) 7→ ρs(m,n) and of
ρs 7→ Ps(ρs) for s = w, o. See Step 2, Section 2.2 in [16] for more details.
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Multiplying (4.85)3 by uko and ukoxx respectively, and integrating the results over
(0, 1), we have

εo

∫ 1

0

nk|ukox|2 dx = −
∫ 1

0

skoP
k
oxu

k
o dx−

∫ 1

0

k̂ko |uko |2 dx

+

∫ 1

0

k̂k(uk−1
w − uko)uko dx−

∫ 1

0

nkguko dx

≤− 1

2

∫ 1

0

k̂ko |uko |2 dx+
1

2

∫ 1

0

k̂k|uk−1
w |2 dx− 1

2

∫ 1

0

k̂k|uko |2 dx+ C

≤− 1

2

∫ 1

0

k̂ko |uko |2 dx+
Iwok1

2
(AA1)2 − 1

2

∫ 1

0

k̂k|uko |2 dx+ C,

(4.89)

and

εo

∫ 1

0

nk|ukoxx|2 dx = −εo
∫ 1

0

(nk)xu
k
oxu

k
oxx dx+

∫ 1

0

skoP
k
oxu

k
oxx dx

+

∫ 1

0

k̂kou
k
ou

k
oxx dx−

∫ 1

0

k̂k(uk−1
w − uko)ukoxx dx+

∫ 1

0

nkgukoxx dx

≤εo
2

∫ 1

0

nk|ukoxx|2 dx+
5εo
2

∫ 1

0

1

nk
|(nk)x|2|ukox|2 dx+

C

εo

+
5

2εo

∫ 1

0

1

nk
|k̂ko |2|uko |2 dx+

5

2εo

∫ 1

0

1

nk
|k̂k|2|uk−1

w − uko |2 dx

≤εo
2

∫ 1

0

nk|ukoxx|2 dx+
5εo
2k0

∫ 1

0

|(nk)x|2|ukox|2 dx+
C

εo
+

5Io
2εo

∫ 1

0

k̂ko |uko |2 dx

+
5(Iwo)

2k1(AA1)2

εo
+

5Iwo
εo

∫ 1

0

k̂k|uko |2 dx

≤εo
2

∫ 1

0

nk|ukoxx|2 dx+
5Cεo
2k0

∥∥∥|ukox|2∥∥∥
L∞

+
C

εo
+

5Io
2εo

∫ 1

0

k̂ko |uko |2 dx

+
5(Iwo)

2k1(AA1)2

εo
+

5Iwo
εo

∫ 1

0

k̂k|uko |2 dx,

(4.90)

where we have used Cauchy inequality, (4.87), (4.88). Note that we obtain∥∥∥|ukox|2∥∥∥
L∞
≤
∫ 1

0

|ukox|2 dx+ 2‖ukox‖L2‖ukoxx‖L2

≤(1 +
1

δ
)

∫ 1

0

|ukox|2 dx+ δ

∫ 1

0

|ukoxx|2 dx,
(4.91)

for any small δ > 0, by using Sobolev inequality, Hölder inequality and Cauchy
inequality.

By virtue of (4.87), (4.89), (4.90), and (4.91), we have
∫ 1

0

|ukox|2 dx ≤
1

εo

[Iwok1

2k0
(AA1)2 +

C

k0

]
,∫ 1

0

k̂ko |uko |2 dx+

∫ 1

0

k̂k|uko |2 dx ≤ Iwok1(AA1)2 + 2C,

(4.92)
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and∫ 1

0

|ukoxx|2 dx ≤
10C

(k0)2
(1 +

10C

k0
)

∫ 1

0

|ukox|2 dx+
4C

(εo)2k0

+
10Io

(εo)2k0

∫ 1

0

k̂ko |uko |2 dx+
20(Iwo)

2k1(AA1)2

(εo)2k0
+

20Iwo
(εo)2k0

∫ 1

0

k̂k|uko |2 dx,
(4.93)

where we take δ = k0
10C .

Putting (4.92) into (4.93), we have∫ 1

0

|ukoxx|2 dx ≤
10C

(k0)2
(1 +

10C

k0
)
(Iwok1

2εok0
(AA1)2 +

C

εok0

)
+

4C

(εo)2k0

+
20(Iwo)

2k1(AA1)2

(εo)2k0
+
[ 10Io

(εo)2k0
+

20Iwo
(εo)2k0

]
(Iwok1(AA1)2 + 2C)

=Eεo,1(AA1)2 + Eεo,2,

(4.94)

whereEεo,1 = 1
εo

[
10C
(k0)2 (1 + 10C

k0
) Iwok1

2k0
+ 20(Iwo)2k1

εok0
+ 10IoIwok1

εok0
+ 20(Iwo)2k1

εok0

]
,

Eεo,2 = 1
εo

[
10C
(k0)2 (1 + 10C

k0
) Ck0 + 4C

εok0
+ 20CIo

εok0
+ 40CIwo

εok0

]
.

In view of (4.92) and (4.94), we have

‖uko(t)‖2H2 ≤
[Iwok1

k0εo
+ Eεo,1

]
(AA1)2 +

2C

εok0
+ Eεo,2. (4.95)

Similar to (4.89) and (4.90), we have

εw

∫ 1

0

mk|ukwx|2 dx+
1

2

∫ 1

0

k̂kw|ukw|2 dx+
1

2

∫ 1

0

k̂k|ukw|2 dx ≤
1

2

∫ 1

0

k̂k|uko |2 dx+ C,

and

εw
2

∫ 1

0

mk|ukwxx|2 dx ≤
5Cεw
k0

(1 +
10C

k0
)

∫ 1

0

|ukwx|2 dx+
2C

εw
+

5Iw
εw

∫ 1

0

k̂kw|ukw|2 dx

+
10Iw
εw

∫ 1

0

k̂k|ukw|2 dx+
10Iw
εw

∫ 1

0

k̂k|uko |2 dx,

which yield
∫ 1

0

|ukwx|2 dx ≤
1

εw

[Iwok1

2k0
(AA1)2 +

2C

k0

]
,∫ 1

0

k̂kw|ukw|2 dx+

∫ 1

0

k̂k|ukw|2 dx ≤ Iwok1(AA1)2 + 4C,

(4.96)

and∫ 1

0

|ukwxx|2 dx ≤
10C

(k0)2
(1 +

10C

k0
)

1

εw

[Iwok1

2k0
(AA1)2 +

2C

k0

]
+

4C

(εw)2k0

+
[ 10Iw

(εw)2k0
+

20Iw
(εw)2k0

+
20Iw

(εw)2k0

]
(Iwok1(AA1)2 + 4C)

=Eεw,1(AA1)2 + Eεw,2.

(4.97)
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where
Eεw,1 = 1

εw

[
10C
(k0)2 (1 + 10C

k0
) Iwok1

2k0
+ 10IwIwok1

εwk0
+ 20IwIwok1

εwk0
+ 20IwIwok1

εwk0

]
,

Eεw,2 = 1
εw

[
10C
(k0)2 (1 + 10C

k0
) 2C
k0

+ 4C
εwk0

+ 40CIw
εwk0

+ 80CIw
εwk0

+ 80CIw
εwk0

]
.

In view of (4.96) and (4.97), we have

‖ukw(t)‖2H2 ≤
[Iwok1

k0εw
+ Eεw,1

]
(AA1)2 +

4C

εwk0
+ Eεw,2. (4.98)

Letting

max
{Iwok1

k0εo
+ Eεo,1,

Iwok1

k0εw
+ Eεw,1

}
≤ 1

2
(4.99)

which can be done by assuming for instance that εo and εw are large enough, we
obtain from (4.95) and (4.98)

‖uko(t)‖H2 ≤ AA1, ‖ukw(t)‖H2 ≤ AA1, (4.100)

where we choose that

A1 ≥
1

A
max

{( 4C

εok0
+ 2Eεo,2

) 1
2

,
( 8C

εwk0
+ 2Eεw,2

) 1
2
}

(4.101)

Consequently, we have ukw, u
k
o ∈ S for all k = 1, 2, 3, · · ·, if we assume that (4.99)

is satisfied for A1 given by (4.101) and for T0 ≤ T1.

Step 3. Compactness arguments.

By virtue of the estimates uniformly for k in Step 2, there exist a subsequence
ki (i = 1, 2, 3, ...) and a (uw, uo,m, n), such that

(ukiw , u
ki
o ) ⇀ (uw, uo) weak-* in L∞([0, T0];H1

0 ∩H2),

nki ⇀ n weak-* in L∞([0, T0];H1),

mki ⇀m weak-* in L∞([0, T0];H1),

(nkit ,m
ki
t ) ⇀ (nt,mt) weak-* in L∞([0, T0];L2)

(4.102)

as ki →∞, where

(uw, uo) ∈ L∞([0, T0];H2 ∩H1
0 ), and (m,n) ∈ L∞([0, T0];H1),

and nt,mt ∈ L∞([0, T0];L2). Using the Aubin-Lions’ compactness theorem, we can
obtain some strong convergence. More precisely, there exists a subsequence still
denoted by ki without loss of generality (i = 1, 2, 3, ...), such that

nki → n in C([0, 1]× [0, T0]),

mki → m in C([0, 1]× [0, T0]),
(4.103)

as ki →∞. It follows from (4.103) and (4.87) that

k0 ≤ m ≤ k1, and k0 ≤ n ≤ k1 on [0, 1]× [0, T0].

Step 4. Convergence of (uki−1
w , uki−1

o ).
We are going to investigate the convergence of the neighbor sequence of (ukiw , u

ki
o ),

i.e., (uki−1
w , uki−1

o ), in order to make sure that their limits are the same, since they
both appear in the approximate system (4.85).

To begin with, we need the estimates of the difference between mk+1 (nk+1)
and mk (nk), since there is a connection between velocity and mass due to the
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momentum equation. Denote m̄k+1 = mk+1 −mk and n̄k+1 = nk+1 − nk. Then,
from (4.85)1,2 it follows{
m̄k+1
t + m̄k+1

x ukw +mk
x(ukw − uk−1

w ) + m̄k+1[ukw]x +mk(ukw − uk−1
w )x = 0,

m̄k+1(x, 0) = 0
(4.104)

and{
n̄k+1
t + n̄k+1

x uko + nkx(uko − uk−1
o ) + n̄k+1[uko ]x + nk(uko − uk−1

o )x = 0,

n̄k+1(x, 0) = 0
(4.105)

for (x, t) ∈ [0, 1]× [0, T0].
Using (4.104), we have

d

dt

∫ 1

0

|m̄k+1|2 dx ≤C̄‖(ukw − uk−1
w )x‖L2‖m̄k+1‖L2 + C̄A‖m̄k+1‖2L2 , (4.106)

where C̄ is a generic positive constant depending only on the initial data, the upper
bound of T0 and other known constants but independent of k , A and T0. Here we
have used the facts that mk

x is bounded in L2 and that ukw ∈ S, and the Poincaré
inequality. Similarly, we have

d

dt

∫ 1

0

|n̄k+1|2 dx ≤ C̄‖(uko − uk−1
o )x‖L2‖n̄k+1‖L2 + C̄A‖n̄k+1‖2L2 . (4.107)

Using (4.85)3, we have

εo[n
k(uko − uk−1

o )x]x = −εo[(nk − nk−1)(uk−1
o )x]x + (sko − sk−1

o )P kox

+ sk−1
o [P ko − P k−1

o ]x + g(nk − nk−1) + [k̂o(m
k, nk)− k̂o(mk−1, nk−1)]uk−1

o

+ k̂ko (uko − uk−1
o )− k̂k[uk−1

w − uk−2
w − (uko − uk−1

o )]

− [k̂(mk, nk)− k̂(mk−1, nk−1)](uk−2
w − uk−1

o ),

(4.108)

where k = 2, 3, 4, · · ·.
Denote ūo

k+1 = uk+1
o −uko and ūw

k+1 = uk+1
w −ukw. Then similar to the estimate

of uko (see (4.89)), the ‖(uko − uk−1
o )x‖L2 can be evaluated as follows:

‖[ūok]x‖2L2 ≤ C̄‖n̄k(uk−1
o )x‖2L2 +

C̄

(εo)2
‖(sko − sk−1

o )P kox‖2L1

+
C̄

(εo)2
‖[sk−1

o ]x(P ko − P k−1
o )‖2L1 +

C̄

(εo)2
‖sk−1
o (P ko − P k−1

o )‖2L2 +
C̄

(εo)2
‖m̄k‖2L2

− 1

εok0
‖
√
k̂ko ūo

k‖2L2 +
C̄

(εo)2
‖k̂o(mk, nk)− k̂o(mk−1, nk−1)‖2L2

− 1

2εok0
‖
√
k̂kūo

k‖2L2 +
1

2εok0
‖
√
k̂kūw

k−1‖2L2

+
C̄

(εo)2
‖k̂(mk, nk)− k̂(mk−1, nk−1)‖2L2 ,

(4.109)

where k = 2, 3, 4, · · ·. Note that
|sko − sk−1

o | ≤ C̄(|m̄k|+ |n̄k|) and |P ko − P k−1
o | ≤ C̄(|m̄k|+ |n̄k|),

|k̂o(mk, nk)− k̂o(mk−1, nk−1)| ≤ C̄(|m̄k|+ |n̄k|)
and |k̂(mk, nk)− k̂(mk−1, nk−1)| ≤ C̄(|m̄k|+ |n̄k|).
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This, together with Hölder inequality, (4.109) and the boundedness of P kox and
[sk−1
o ]x in L2, implies that

‖[ūok]x‖2L2 ≤C̄(1 +A2)(‖m̄k‖2L2 + ‖n̄k‖2L2)− 1

εok0
‖
√
k̂ko ūo

k‖2L2

− 1

2εok0
‖
√
k̂kūo

k‖2L2 +
1

2εok0
‖
√
k̂kūw

k−1‖2L2 ,

(4.110)

where k = 2, 3, 4, · · ·.
Similarly, by virtue of (4.85)4, we have

εw[mk(ukw − uk−1
w )x]x

= −εw[(mk −mk−1)(uk−1
w )x]x + (skw − sk−1

w )P kwx + sk−1
w [P kw − P k−1

w ]x

+ g(mk −mk−1) + k̂kw(ukw − uk−1
w ) + [k̂w(mk, nk)− k̂w(mk−1, nk−1)]uk−1

w

+ k̂k[ukw − uk−1
w − (uko − uk−1

o )] + [k̂(mk, nk)− k̂(mk−1, nk−1)](uk−1
w − uk−1

o ),

(4.111)

and

‖[ūwk]x‖2L2 ≤C̄(1 +A2)(‖m̄k‖2L2 + ‖n̄k‖2L2)− 1

εwk0
‖
√
k̂kwūw

k‖2L2

− 1

2εwk0
‖
√
k̂kūw

k‖2L2 +
1

2εwk0
‖
√
k̂kūo

k‖2L2 ,

(4.112)

where k = 2, 3, 4, · · ·.
Putting (4.110) into (4.112), we have

‖[ūwk]x‖2L2 ≤C̄1(‖m̄k‖2L2 + ‖n̄k‖2L2) +
1

2εwk0
‖
√
k̂kūw

k−1‖2L2

≤C̄1(‖m̄k‖2L2 + ‖n̄k‖2L2) +
Iwok1

2εwk0
‖[ūwk−1]x‖2L2 ,

(4.113)

for k = 2, 3, 4, · · ·, where we have used (4.87) and Sobolev inequality.
Combining (4.106), (4.107), (4.110) and (4.113) with Cauchy inequality, we have

d

dt

∫ 1

0

(|m̄k+1|2 + |n̄k+1|2) dx+ ‖(ūwk+1)x‖2L2 + ‖(ūok+1)x‖2L2

≤C̄2(‖m̄k+1‖2L2 + ‖n̄k+1‖2L2) +
(Iwok1

εwk0
+
Iwok1

εok0

)
(‖(ūwk)x‖2L2 + ‖(ūok)x‖2L2),

which yields

d

dt
fk+1(t) + gk+1(t) ≤ C̄2f

k+1(t) +
(Iwok1

εwk0
+
Iwok1

εok0

)
gk(t), (4.114)

where

fk =

∫ 1

0

(|m̄k|2 + |n̄k|2) dx, gk = ‖(ūwk)x‖2L2 + ‖(ūok)x‖2L2 .

Then, (4.114) together with Gronwall inequality yields

fk+1(t) ≤
(Iwok1

εwk0
+
Iwok1

εok0

)∫ t

0

eC̄2(t−s)gk(s) ds. (4.115)

Integrating (4.114) over [0, T0], and using (4.115), we have∫ T0

0

gk+1(s) ds ≤
(
C̄2T0e

C̄2T0 + 1
)(Iwok1

εwk0
+
Iwok1

εok0

)∫ T0

0

gk(s) ds. (4.116)
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Letting C̄2T0e
C̄2T0 ≤ 1,

Iwok1
εwk0

+ Iwok1
εok0

≤ 1
4

(4.117)

for small T0 and large εo, εw. We note that (4.116) and (4.115) imply that
Σ∞k=1

∫ T0

0

gk+1(t) dt <∞,

Σ∞k=1 max
t∈[0,T0]

fk+1(t) <∞.
(4.118)

Thus, (4.118) combined with (4.102)1 implies that

(uki−1
w , uki−1

o ) ⇀ (uw, uo) weak-* in L∞([0, T0];H1
0 ∩H2) (4.119)

as ki →∞.

Step 5. Conclusion.

Based on (4.102), (4.103), and (4.119), it can be verified that (m,n, uw, uo) is
a unique solution of (2.14)-(2.16). See [16] for more details. Thus the proof of
Theorem 2.1 is complete.

Appendix B: Some issues related to the general model (1.1). The purpose
of this section is to elaborate on some of the differences between the model (1.1) and
other Brinkman-type of two-phase models like the one mentioned in Remark 1.2.

The incompressible, viscous version of the generalized two-phase model
(1.1). It seems useful to impose some simplifying assumptions on the model (1.1)
and derive a reduced version of it. We may impose the following assumptions:

• incompressible fluid, i.e., ρw and ρo are constant.
• porosity φ is constant

We may rescale the time such that the porosity disappears in the time derivative
terms. The mass and momentum equations in (1.1) now take the form

(so)t +∇ · (φsouo) =
Qo
ρo
, Uo = φsouo

(sw)t +∇ · (φswuw) =
Qw
ρw

, Uw = φswuw

so[∇Pw +∇Pc + ρog]− εoρo∇ · (so∇uo) = +k̂uw − [k̂o + k̂]uo

sw[∇Pw + ρwg]− εwρw∇ · (sw∇uw) = −[k̂w + k̂]uw + k̂uo,

(4.120)

where we have used that Pc = Po − Pw. Note that in the rest of this paper we

will use k̂ow = k̂. We can solve for uw and uo from the two momentum balance
equations in (4.120) and find that

uw =

− [swk̂o] + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pw −

sok̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pc −

(swρw + soρo)k̂ + swρwk̂o

k̂ok̂w + k̂[k̂o + k̂w]
g

+ (εwρw)
[k̂o + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw) + (εoρo)

k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo),
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uo =

− [sok̂w] + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pw −

so[k̂w + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇Pc −

(swρw + soρo)k̂ + soρok̂w

k̂ok̂w + k̂[k̂o + k̂w]
g

+ (εwρw)
k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw) + (εoρo)

[k̂w + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo).

(4.121)

That is, we find for Ui = φsiui:

Uw =

− λ̂w∇Pw −
φsoswk̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pc − λ̂wρwg +

φsoswk̂∆ρ

k̂ok̂w + k̂[k̂o + k̂w]
g

+ (εwφρw)
sw[k̂o + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw)

+ (εoφρo)
swk̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo),

Uo =

− λ̂o∇Pw − λ̂o∇Pc +
φsoswk̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pc − λ̂oρog −

φsoswk̂∆ρ

k̂ok̂w + k̂[k̂o + k̂w]
g

+ (εwφρw)
sok̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw)

+ (εoφρo)
so[k̂w + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo),

(4.122)

where ∆ρ = ρw − ρo and with generalized mobility functions λ̂i (i = w, o, T ) of the
form

λ̂w = λ̂w(sw) =
[s2
wk̂o] + swk̂

k̂ok̂w + k̂[k̂o + k̂w]
φ,

λ̂o = λ̂o(sw) =
[s2
ok̂w] + sok̂

k̂ok̂w + k̂[k̂o + k̂w]
φ,

λ̂T = λ̂T (sw) = λ̂w(sw) + λ̂o(sw).

(4.123)

Note that the resistance force coefficients k̂w(sw), k̂o(sw), k̂(sw) typically are func-
tions of water saturation sw. From (4.122) we find

UT = Uw + Uo = −λ̂T∇Pw − λ̂o∇Pc − [λ̂wρw + λ̂oρo]g

+ (εwφρw)
swk̂o + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw) + (εoφρo)

sok̂w + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo).

(4.124)

Remark 4.1. A fundamental difference between the above expression (4.124) for
the total superficial velocity UT for the mixture and the model described in Remark
1.2 and expressed by the mixture momentum balance equation (1.12), is the viscous
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terms. Taking the divergence of (4.124) combined with the sum of the two first
equations of (4.120) and (1.3), we arrive at

Qo
ρo

+
Qw
ρw

= −∇ · (λ̂T∇Pw)−∇ · (λ̂o∇Pc)−∇ · ([λ̂wρw + λ̂oρo]g)

+∇ ·
(

(εwφρw)
swk̂o + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw)

)
+∇ ·

(
(εoφρo)

sok̂w + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo)

)
.

(4.125)

This gives an elliptic pressure equation for Pw. However, due to the appearance
of complex viscous terms, it seems not easy to obtain H1-estimate of Pw needed
for compactness of the non-conservative pressure term sw∇Pw in the momentum
balance equation.

We may conclude that it does not seem straightforward to analyse the incom-
pressible, viscous model (4.120) by relying on an approach similar to the one used
in [9]. The main reason is the use of interstitial fluid velocity ui instead of Darcy
velocity Ui = φsiui.

The incompressible, inviscid case εw = εo = 0. It is instructive to also derive
the model where viscous terms are set to zero. Hence, in the following we consider
the incompressible model (4.120) where we assume that viscous terms in the mo-
mentum equations are ignored by setting εw = εo = 0. We observe that (4.124)
gives

∇Pw = −UT

λ̂T
− λ̂o

λ̂T
∇Pc − [f̂wρw + f̂oρo]g, (4.126)

where

f̂w =
λ̂w

λ̂T
= f̂w(sw), f̂o =

λ̂o

λ̂T
= f̂o(sw) (4.127)

are the standard fractional flow functions which satisfy that f̂w + f̂o = 1. Using
(4.126) in (4.122) we get

Uw = −λ̂w∇Pw −
φsoswk̂

(k̂ok̂w + k̂[k̂o + k̂w])
∇Pc − ρwλ̂wg +

φsosw∆ρk̂

(k̂ok̂w + k̂[k̂o + k̂w])
g

= UT
λ̂w

λ̂T
+
λ̂w[λ̂wρw + λ̂oρo]

λ̂T
g +

λ̂wλ̂o

λ̂T
∇Pc − ρwλ̂wg

− φsoswk̂

(k̂ok̂w + k̂[k̂o + k̂w])
∇Pc +

φsosw∆ρk̂

(k̂ok̂w + k̂[k̂o + k̂w])
g

= UT f̂w +
(
−f̂wλ̂o +

φsoswk̂

(k̂ok̂w + k̂[k̂o + k̂w])

)
∆ρg

−
(
−f̂wλ̂o +

soswk̂

(k̂ok̂w + k̂[k̂o + k̂w])

)
∇Pc

= UT f̂w(sw)− ĥ(sw)∆ρg + ĥ(sw)∇Pc(sw),

(4.128)
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where ∆ρ = ρw − ρo and ĥ(sw) is defined by

ĥ
def
:= f̂wλ̂o −

φsoswk̂

(k̂ok̂w + k̂[k̂o + k̂w])
=

s2
w(1− sw)2

s2
wk̂o + s2

ok̂w + k̂
φ = ĥ(sw). (4.129)

From this, it also follows that

Uo = UT −Uw = UT (1− f̂w(sw)) + ĥ(sw)∆ρg − ĥ(sw)∇Pc(sw). (4.130)

Consequently, the model (4.120) has been reduced to solving the following conser-
vation law

∂tsw +∇ ·Uw =
Qw
ρw

, (4.131)

where Uw = Uw(sw) is given by (4.128).

Remark 4.2. The model (4.131) combined with (4.128) (last line), (4.127), (4.129),
and the generalized mobility functions as defined by (4.123), recovers the classical
incompressible immiscible model except that we now also include for an additional

water-oil drag force effect through the term k̂. Setting this term to zero reproduces
exactly the classical formulation. To obtain closed expressions for the generalized

mobility functions λ̂i as well as for ĥ(sw), we must specify appropriate functional

correlations for (i) the water-rock resistance force k̂w; (ii) the oil-rock resistance

force k̂o; (iii) the water-oil drag force effect k̂. In the recent work [31] we used
correlations of the following form:

k̂w = Iw
µw
K
φsαw, k̂o = Io

µo
K
φsβw, k̂ = I

µwµo
K

φsw(1− sw), (4.132)

where µi is fluid viscosity, K absolute permeability, Iw, Io, I are parameters that
characterize the strength of the resistance force (similar to the end points of rel-
ative permeability in classical formulation). The generalized mobility functions
introduced above account for two different resistance forces, instead of only one, as
in standard Darcy’s equation-based formulation. Mobility functions that are mea-
sured experimentally are known to generally depend on the flow configuration. Two
main flow regimes are present in the expression for Uw given by (4.128) and Uo

given by (4.130): Co-current flow (i.e., flow of water and oil in the same direction)

represented by the first component UT f̂w and counter-current flow (i.e., flow in the

opposite direction) represented by −ĥ(sw)∆ρg and ĥ(sw)∇Pc(sw) (compare with

(4.130)). The fact that the fluid-fluid interaction term k̂ is explicitly accounted

for and appears in ĥ (4.129) and mobility functions (4.123) implies that a more
accurate understanding of water-oil flow mechanisms can be sought [31].

Appendix C: A pressure evolution equation. From the two mass balance
equations we get after multiplying the n mass balance with ρw and the m mass
balance with ρo and summing the two resulting equations

ρwso
Co

Pot +
ρosw
Cw

Pwt + ρw(soρouo)x + ρo(swρwuw)x

=− ρwρosoQp − ρwρoswQp + ρwρoQI (4.133)

or

κPot −
ρosw
Cw

P ′cswt + ρw(soρouo)x + ρo(swρwuw)x = ρwρo(QI −Qp), (4.134)

with

κ = soρw
1

Co
+ swρo

1

Cw
= soρw

∂ρo
∂Po

+ swρo
∂ρw
∂Pw

. (4.135)
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Clearly,

swt = −sot = −
( n
ρo

)
t

= − 1

ρo
nt +

n

ρ2
o

ρot = − 1

ρo
nt +

n

Coρ2
o

Pot.

Consequently,

−ρosw
Cw

P ′cswt =
ρosw
Cw

P ′c

[ 1

ρo
nt −

n

Coρ2
o

Pot

]
=
swP

′
c

Cw
nt −

soswP
′
c

CwCo
Pot.

Using this in (4.134) we get

κPot+
swP

′
c

Cw
nt−

soswP
′
c

CwCo
Pot+ρw(soρouo)x+ρo(swρwuw)x = ρwρo(QI−Qp), (4.136)

that is, [
κ− soswP

′
c

CwCo

]
Pot +

[
ρw −

swP
′
c

Cw

]
(soρouo)x + ρo(swρwuw)x

= ρwρo(QI −Qp) +
swP

′
c

Cw
nQp.

(4.137)

Note that [
κ− soswP

′
c

CwCo

]
=
soρ̃w
Co

+
swρo
Cw

:= κ̃, ρ̃w = ρw −
swP

′
c

Cw

so that

κ̃Pot + ρ̃w(nuo)x + ρo(muw)x = ρwρo(QI −Qp) +
swP

′
c

Cw
nQp (4.138)

or

Pot + η̃ρ̃w(nuo)x + η̃ρo(muw)x = η̃ρwρo(QI −Qp) + η̃
swP

′
c

Cw
nQp,

η̃ =
1

κ̃
=

CwCo
soρ̃wCw + swρoCo

.

(4.139)

Similarly, we have for Pw:

κPwt +
ρwsoP

′
c

Co
swt + ρw(soρouo)x + ρo(swρwuw)x = ρwρo(QI −Qp). (4.140)

Clearly,

swt =
(m
ρw

)
t

=
1

ρw
mt −

m

ρ2
w

ρwt =
1

ρw
mt −

m

Cwρ2
w

Pwt.

Consequently,

ρwso
Co

P ′cswt =
ρwso
Co

P ′c

[ 1

ρw
mt −

m

Cwρ2
w

Pwt

]
=
soP

′
c

Co
mt −

swsoP
′
c

CwCo
Pwt.

Using this in (4.140) we get

κPwt +
soP

′
c

Co
mt −

soswP
′
c

CwCo
Pwt + ρw(soρouo)x + ρo(swρwuw)x = ρwρo(QI −Qp),

(4.141)
that is, [

κ− soswP
′
c

CwCo

]
Pwt + ρw(soρouo)x +

[
ρo −

soP
′
c

Co

]
(swρwuw)x

= ρwρo(QI −Qp)−
soP

′
c

Co
(ρwQI −mQp).

(4.142)
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Note that [
κ− soswP

′
c

CwCo

]
=
soρw
Co

+
swρ̃o
Cw

:= κ̃, ρ̃o = ρo −
soP

′
c

Co
,

so that

κ̃Pwt + ρw(nuo)x + ρ̃o(muw)x = ρwρo(QI −Qp)−
soP

′
c

Co
(ρwQI −mQp), (4.143)

or

Pwt + η̃ρw(nuo)x + η̃ρ̃o(muw)x = η̃ρwρo(QI −Qp)− η̃
soP

′
c

Co
(ρwQI −mQp),

η̃ =
1

κ̃
=

CwCo
soρwCw + swρ̃oCo

.

(4.144)

Appendix D: Discrete schemes for the compressible/incompressible ver-
sion of (1.1).

A semi-discrete scheme for the compressible model. We consider discrete
schemes for both the compressible and incompressible version of (2.14). For that
purpose we introduce a reformulation that brings the compressible model closer
to the incompressible model. In particular, we solve explicitly only for the mass
transport of m = swρw whereas the mass n is computed implicitly. This will be in
the spirit of the incompressible approach where we solve the mass balance equation
for sw and computes so = 1− sw. Details are given below.

The starting point is the model (2.14) with (n,m, uw, uo) as the main (un-
known) variables. We rewrite the model in the following equivalent form with
(m,Pw, uw, uo) as the main variables:

(m)t + (muw)x = −mQp + ρwQI

Pwt + η̃ρw(nuo)x + η̃ρ̃o(muw)x = η̃ρwρo(QI −Qp)− η̃
soP

′
c

Co
(ρwQI −mQp)

so(Pw + Pc)x = −(k̂o + k̂)uo + k̂uw + ng + εo(nuox)x

sw(Pw)x = −(k̂w + k̂)uw + k̂uo +mg + εw(muwx)x
(4.145)

with

η̃ =
CwCo

soρwCw + swρ̃oCo
, ρ̃o = ρo −

soP
′
c

Co
. (4.146)

We refer to Appendix C and (4.144) which gives the pressure evolution equation
(4.145)2. Note that sw, so, n, Po are determined by

sw =
m

ρw(Pw)
, so = 1− sw

n = soρo(Po) =
(

1− m

ρw(Pw)

)
ρo(Po) = n(m,Pw)

Po = Pc(sw) + Pw = Po(m,Pw)

(4.147)

We solve (4.145) on our domain Ω with boundary conditions

uw|∂Ω = uo|∂Ω = 0 (4.148)

and initial condition

m(x, t = 0) = m0(x), Pw(x, t = 0) = Pw(m0(x), n0(x)). (4.149)
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System of ODEs. We consider the domain Ω = [0, 1] and introduce a grid of Nx
cells with nodes xj placed at the center of the cells

x1 =
1

2
∆x, x2 = (1+

1

2
)∆x, . . . , xj = (j− 1

2
)∆x, . . . , xNx

= (Nx−
1

2
)∆x

and cell interfaces xj+1/2 at the cell interfaces

x1/2 = 0, x3/2 = ∆x, . . . , xj+1/2 = j∆x, . . . , xNx+1/2 = Nx∆x = 1,

where ∆x = 1/Nx. We introduce the approximate mass and pressure {mj(t)}Nx
j=1

and {Pw,j(t)}Nx
j=1 associated with the nodes {xj}Nx

j=1 whereas the approximate ve-

locities {uw,j+1/2}Nx
j=0 and {uo,j+1/2}Nx

j=0 are associated with the cell interfaces

{xj+1/2}Nx
j=0. In the following we describe a semi-discrete version of (4.145).

Step 1: Mass transport. We solve for mj(t) by considering the following ODE
corresponding to (4.145)1:

dmj

dt
+

1

∆x
([muw]j+1/2 − [muw]j−1/2) = −mjQp,j + ρwjQI,j , m = swρw

(4.150)

where

[muw]j+1/2 =

{
mjuw,j+1/2, if uw,j+1/2 ≥ 0;
mj+1uw,j+1/2, if uw,j+1/2 < 0.

(4.151)

This can also be expressed as

[muw]j+1/2 =
mj +mj+1

2
uw,j+1/2 −

1

2
(mj+1 −mj)|uw,j+1/2|.

Step 2: Computation of velocities and pressure. Next, we solve for Pw,j(t)
and uw,j+1/2(t) and uo,j+1/2(t) by considering the following ODE system corre-
sponding to (4.145)2,3,4:

dPwj
dt

+η̃jρwj
1

∆x
([nuo]j+1/2 − [nuo]j−1/2)

+η̃j ρ̃oj
1

∆x
([muw]j+1/2 − [muw]j−1/2)

= [η̃ρwρo]j(QI,j −Qp,j)−
[
η̃
soP

′
c

Co

]
j
(ρwjQI,j −mjQp,j),

(4.152)

which is combined with the momentum balance equations

so,j+1/2
1

∆x
(Pw,j+1 − Pw,j) = −so,j+1/2

1

∆x
(Pc,j+1 − Pc,j)

−k̂o,j+1/2uo,j+1/2 + k̂j+1/2

(
uw,j+1/2 − uo,j+1/2

)
+ nj+1/2g

+εo
1

∆x2

(
nj+1[uo,j+3/2 − uo,j+1/2]− nj [uo,j+1/2 − uo,j−1/2]

)
,

sw,j+1/2
1

∆x
(Pw,j+1 − Pw,j) =

−k̂w,j+1/2uw,j+1/2 − k̂j+1/2

(
uw,j+1/2 − uo,j+1/2

)
+mj+1/2g

+εw
1

∆x2

(
mj+1[uw,j+3/2 − uw,j+1/2]−mj [uw,j+1/2 − uw,j−1/2]

)
.

(4.153)
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Here we note that the average sw,j+1/2 in (4.153) is based on upwind relatively
uw,j+1/2

sw,j+1/2 =


sw,j , if uw,j+1/2 > 0;
sw,j+sw,j+1

2 , if uw,j+1/2 = 0;
sw,j+1, if uw,j+1/2 < 0.

(4.154)

Similarly, for so,j+1/2 and for the interaction terms k̂w,j+1/2 and k̂o,j+1/2. In addi-

tion, k̂j+1/2 is based on upwind relatively uw,j+1/2 and uo,j+1/2 as follows:

k̂j+1/2 =


k̂j , if uw,j+1/2 > 0 & uo,j+1/2 > 0 ;
k̂j+k̂j+1

2 , if uw,j+1/2uo,j+1/2 ≤ 0;

k̂j+1, if uw,j+1/2 < 0 & uo,j+1/2 < 0.

(4.155)

Moreover, [nuo]j+1/2 and [muw]j+1/2 appearing in (4.152) employ upwind as de-
scribed in (4.151). Now, we are in a position where we can describe a fully discrete
model.

A fully discrete scheme. We assume that we have given (mk
j , P

k
w,j , u

k
w,j , u

k
o,j).

We then compute the approximate solution at time tk+1 expressed by (mk+1
j , P k+1

w,j ,

uk+1
w,j , u

k+1
o,j ) as follows:

Step 1: Mass transport.

mk+1
j −mk

j

∆t
+

1

∆x
([muw]kj+1/2 − [muw]kj−1/2) = −mk

jQp,j + ρkwjQI,j ,
(4.156)

where

[muw]kj+1/2 =

{
mk
ju

k
w,j+1/2, if ukw,j+1/2 ≥ 0;

mk
j+1u

k
w,j+1/2, if ukw,j+1/2 < 0.

(4.157)

Having computed mk+1
j we can compute an updated water saturation s

k+1/2
w,j given

by

s
k+1/2
w,j =

mk+1
j

ρw(P kw,j)
. (4.158)

Similarly, we compute updated mass n
k+1/2
j = (1−sk+1/2

w,j )ρo(P
k+1/2
o,j ) and P

k+1/2
o,j =

P kw,j +Pc(s
k+1/2
w,j ), according to (4.147), which are needed to evaluate coefficients in

the next step.

Step 2: Computation of velocities and pressure. Next, we solve simultane-
ously for P k+1

w,j and uk+1
w,j+1/2 and uk+1

o,j+1/2 by considering the following algebraic
system

P k+1
wj − P kwj

∆t
+[η̃ρw]

k+1/2
j

1

∆x

(
[nk+1/2uk+1

o ]j+1/2 − [nk+1/2uk+1
o ]j−1/2

)
+[η̃ρ̃o]

k+1/2
j

1

∆x

(
[mk+1uk+1

w ]j+1/2 − [mk+1uk+1
w ]j−1/2

)
= [η̃ρwρo]

k+1/2
j (QI,j −Qp,j)−

[
η̃
soP

′
c

Co

]k+1/2

j
(ρkwjQI,j −mk+1

j Qp,j),

(4.159)
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which is combined with the momentum balance equations

s
k+1/2
o,j+1/2

1

∆x
(P k+1
w,j+1 − P

k+1
w,j ) = −sk+1/2

o,j+1/2

1

∆x
(P

k+1/2
c,j+1 − P

k+1/2
c,j )

−k̂k+1/2
o,j+1/2u

k+1
o,j+1/2 + k̂

k+1/2
j+1/2

(
uk+1
w,j+1/2 − u

k+1
o,j+1/2

)
+ n

k+1/2
j+1/2g

+εo
1

∆x2

(
n
k+1/2
j+1 [uk+1

o,j+3/2 − u
k+1
o,j+1/2]− nk+1/2

j [uk+1
o,j+1/2 − u

k+1
o,j−1/2]

)
,

s
k+1/2
w,j+1/2

1

∆x
(P k+1
w,j+1 − P

k+1
w,j ) =

−k̂k+1/2
w,j+1/2u

k+1
w,j+1/2 − k̂

k+1/2
j+1/2

(
uk+1
w,j+1/2 − u

k+1
o,j+1/2

)
+mk+1

j+1/2g

+εw
1

∆x2

(
mk+1
j+1 [uk+1

w,j+3/2 − u
k+1
w,j+1/2]−mk+1

j [uk+1
w,j+1/2 − u

k+1
w,j−1/2]

)
.

(4.160)

Equipped with (P k+1
w,j , u

k+1
w,j+1/2, u

k+1
o,j+1/2) we can now update the saturation sw,j by

sk+1
w,j =

mk+1
j

ρw(P k+1
w,j )

, (4.161)

from which we also compute the updated oil mass nk+1
j and pressure P k+1

o,j via

(4.147). If necessary, we may repeat step 2 to improve the accuracy before we
proceed to next time level.

Remark 4.3. The upwind discretization of [nk+1/2uk+1
o ]j+1/2 and [mk+1uk+1

w ]j+1/2

appearing in (4.159) are based on “old” velocities uko,j+1/2 and ukw,j+1/2.

A semidiscrete scheme for the incompressible model. When fluids are in-
compressible the model (2.14) takes the following form with unknown variables
(sw, Pw, uw, uo)

(sw)t + (swuw)x = −swQp +QI

(so)t + (souo)x = −soQp
sw(Pw)x = −k̂wuw − k̂(uw − uo) + swρwg + εwρw(swuwx)x

so(Pw + Pc)x = −k̂ouo + k̂(uw − uo) + soρog + εoρo(souox)x,

(4.162)

subject to the boundary condition

uw|∂Ω = uo|∂Ω = 0 (4.163)

and initial condition

sw(x, t = 0) = sw0(x). (4.164)

Note that we can only determine Pw up to a constant and a reference pressure P ∗

at some point in the domain may be specified. An equivalent formulation of (4.162)
is given by (after a summation of the two mass balance equation)

(sw)t + (swuw)x = −swQp +QI

(swuw + souo)x = −Qp +QI

sw(Pw)x = −k̂wuw − k̂(uw − uo) + swρwg + εwρw(swuwx)x

so(Pw + Pc)x = −k̂ouo + k̂(uw − uo) + soρog + εoρo(souox)x.

(4.165)
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This formulation is consistent with and follows directly from (4.145) by letting
Cw, Co → ∞ (i.e., the fluids become incompressible). This is a consequence of the
fact that η̃ →∞ and ρ̃o → ρo, see (4.146).

Step 1: Mass transport. We solve the following ODE for sw,j(t) corresponding
to (4.165)1:

dsw,j
dt

+
1

∆x
([swuw]j+1/2 − [swuw]j−1/2) = −sw,jQp,j +QI,j (4.166)

where

[swuw]j+1/2 =

{
sw,juw,j+1/2, if uw,j+1/2 ≥ 0;
sw,j+1uw,j+1/2, if uw,j+1/2 < 0.

(4.167)

Step 2: Computation of velocities and pressure. Next, we solve for Pw,j(t)
and uw,j+1/2(t) and uo,j+1/2(t) by considering the algebraic system corresponding
to (4.165)2,3,4:

1

∆x
([swuw]j+1/2 − [swuw]j−1/2) +

1

∆x
([souo]j+1/2 − [souo]j−1/2) = QI,j −Qp,j

(4.168)

which is combined with the momentum balance equations

sw,j+1/2
1

∆x
(Pw,j+1 − Pw,j) =

−k̂w,j+1/2uw,j+1/2 − k̂j+1/2

(
uw,j+1/2 − uo,j+1/2

)
+ sw,j+1/2ρwg

+εw
ρw

∆x2

(
sw,j+1[uw,j+3/2 − uw,j+1/2]− sw,j [uw,j+1/2 − uw,j−1/2]

)
so,j+1/2

1

∆x
(Pw,j+1 − Pw,j) = −so,j+1/2

1

∆x
(Pc,j+1 − Pc,j)

−k̂o,j+1/2uo,j+1/2 + k̂j+1/2

(
uw,j+1/2 − uo,j+1/2

)
+ so,j+1/2ρog

+εo
ρo

∆x2

(
so,j+1[uo,j+3/2 − uo,j+1/2]− so,j [uo,j+1/2 − uo,j−1/2]

)
.

(4.169)
Here we note that the average sw,j+1/2 in (4.169) is based on upwind relatively
uw,j+1/2

sw,j+1/2 =


sw,j , if uw,j+1/2 > 0;
sw,j+sw,j+1

2 , if uw,j+1/2 = 0;
sw,j+1, if uw,j+1/2 < 0.

(4.170)

Similarly, for so,j+1/2 and for the interaction terms k̂w,j+1/2 and k̂o,j+1/2. In addi-

tion, k̂j+1/2 is based on upwind relatively uw,j+1/2 and uo,j+1/2

k̂j+1/2 =


k̂j , if uw,j+1/2 > 0 & uo,j+1/2 > 0 ;
k̂j+k̂j+1

2 , if uw,j+1/2uo,j+1/2 ≤ 0;

k̂j+1, if uw,j+1/2 < 0 & uo,j+1/2 < 0.

(4.171)

Moreover, [souo]j+1/2 and [swuw]j+1/2 appearing in (4.168) employ upwind as de-
scribed in (4.170).

A fully discrete scheme for the incompressible model. We can now proceed
with a description of a full discrete scheme for the incompressible case which bears
clear similarity to the scheme for the compressible model.
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Step 1: Mass transport.

sk+1
w,j − skw,j

∆t
+

1

∆x
([swuw]kj+1/2 − [swuw]kj−1/2) = −skw,jQp,j +QI,j (4.172)

where

[swuw]kj+1/2 =

{
skw,ju

k
w,j+1/2, if ukw,j+1/2 ≥ 0;

skw,j+1u
k
w,j+1/2, if ukw,j+1/2 < 0.

(4.173)

Having computed sk+1
w,j we can compute pressure and velocities simultaneously at

time level k + 1.

Step 2: Computation of velocities and pressure. We solve for P k+1
w,j and

uk+1
w,j+1/2 and uk+1

o,j+1/2 by considering the following algebraic system

1

∆x
([sk+1

w uk+1
w ]j+1/2 − [sk+1

w uk+1
w ]j−1/2) +

1

∆x
([sk+1

o uk+1
o ]j+1/2 − [sk+1

o uk+1
o ]j−1/2)

= QI,j −Qp,j
(4.174)

which is combined with the momentum balance equations

sk+1
w,j+1/2

1

∆x
(P k+1
w,j+1 − P

k+1
w,j ) =

−k̂k+1
w,j+1/2u

k+1
w,j+1/2 − k̂

k+1
j+1/2

(
uk+1
w,j+1/2 − u

k+1
o,j+1/2

)
+ sk+1

w,j+1/2ρwg

+εw
ρw

∆x2

(
sw,j+1

k+1[uk+1
w,j+3/2 − u

k+1
w,j+1/2]− sk+1

w,j [uk+1
w,j+1/2 − u

k+1
w,j−1/2]

)
,

sk+1
o,j+1/2

1

∆x
(P k+1
w,j+1 − P

k+1
w,j ) = −sk+1

o,j+1/2

1

∆x
(P k+1
c,j+1 − P

k+1
c,j )

−k̂k+1
o,j+1/2u

k+1
o,j+1/2 + k̂k+1

j+1/2

(
uk+1
w,j+1/2 − u

k+1
o,j+1/2

)
+ sk+1

o,j+1/2ρog

+εo
ρo

∆x2

(
so,j+1

k+1[uk+1
o,j+3/2 − u

k+1
o,j+1/2]− sk+1

o,j [uk+1
o,j+1/2 − u

k+1
o,j−1/2]

)
.

(4.175)

Remark 4.4. The upwind discretization of [sk+1
w uk+1

w ]j+1/2 and [sk+1
o uk+1

o ]j+1/2

appearing in (4.172) are based on “old” velocities ukw,j+1/2 and uko,j+1/2.
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