Loading [MathJax]/jax/output/SVG/jax.js

Classical solutions and feedback stabilization for the gas flow in a sequence of pipes

  • Received: 01 February 2010 Revised: 01 August 2010
  • 76N25, 35L50, 93C20.

  • We consider the subcritical flow in gas networks consisting of a finite linear sequence of pipes coupled by compressor stations. Such networks are important for the transportation of natural gas over large distances to ensure sustained gas supply. We analyse the system dynamics in terms of Riemann invariants and study stationary solutions as well as classical non-stationary solutions for a given finite time interval. Furthermore, we construct feedback laws to stabilize the system locally around a given stationary state. To do so we use a Lyapunov function and prove exponential decay with respect to the L2-norm.

    Citation: Markus Dick, Martin Gugat, Günter Leugering. Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[J]. Networks and Heterogeneous Media, 2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691

    Related Papers:

    [1] Markus Dick, Martin Gugat, Günter Leugering . Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691
    [2] Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519
    [3] Mauro Garavello . A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5(3): 565-581. doi: 10.3934/nhm.2010.5.565
    [4] Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295
    [5] Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81
    [6] Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41
    [7] Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec . A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks and Heterogeneous Media, 2009, 4(2): 249-266. doi: 10.3934/nhm.2009.4.249
    [8] Yogiraj Mantri, Michael Herty, Sebastian Noelle . Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14(4): 659-676. doi: 10.3934/nhm.2019026
    [9] Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
    [10] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295
  • We consider the subcritical flow in gas networks consisting of a finite linear sequence of pipes coupled by compressor stations. Such networks are important for the transportation of natural gas over large distances to ensure sustained gas supply. We analyse the system dynamics in terms of Riemann invariants and study stationary solutions as well as classical non-stationary solutions for a given finite time interval. Furthermore, we construct feedback laws to stabilize the system locally around a given stationary state. To do so we use a Lyapunov function and prove exponential decay with respect to the L2-norm.


    [1] M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.
    [2] M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.
    [3] J. F. Bonnans and J. André, "Optimal Structure of Gas Transmission Trunklines," Research Report available at Centre de recherche INRIA Saclay, January 7, 2009.
    [4] R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372
    [5] R. M. Colombo, M. Herty and V. Sachers, On 2 × 2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622. doi: 10.1137/070690298
    [6] J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11. doi: 10.1109/TAC.2006.887903
    [7] M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Model. Optim., 7 (2005), 9-37.
    [8] M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM Control Optim. Calc. Var., published online August 11, 2009.
    [9] M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314. doi: 10.3934/nhm.2010.5.299
    [10] M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.
    [11] M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks, Netw. Heterog. Media, 2 (2007), 731-748.
    [12] G. Leugering and E. J. P. G. Schmidt, On the modelling and stabilization of flows in networks of open canals, SIAM J. Control Optim., 41 (2002), 164-180. doi: 10.1137/S0363012900375664
    [13] T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257. doi: 10.3934/dcds.2010.28.243
    [14] www.nord-stream.com.
    [15] A. Osiadacz, "Simulation and Analysis of Gas Networks," Gulf Publishing Company, Houston, 1987.
    [16] A. Osiadacz and M. Chaczykowski, "Comparison of Isothermal and Non-Isothermal Transient Models," Technical Report available at Warsaw University of Technology, 1998.
    [17] A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering J., 81 (2001), 41-51. doi: 10.1016/S1385-8947(00)00194-7
    [18] www.psig.org.
    [19] E. Sletfjerding and J. S. Gudmundsson, Friction factor in high pressure natural gas pipelines from roughness measurements, International Gas Research Conference, Amsterdam, November 5-8, 2001.
    [20] M. C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361. doi: 10.1016/j.cam.2006.04.018
    [21] Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chin. Ann. Math. Ser. B, 27 (2006), 643-656. doi: 10.1007/s11401-005-0520-2
  • This article has been cited by:

    1. Junyao Xie, Stevan Dubljevic, Discrete-time modeling and output regulation of gas pipeline networks, 2021, 98, 09591524, 30, 10.1016/j.jprocont.2020.12.002
    2. Martin Gugat, Markus Dick, Günter Leugering, Gas Flow in Fan-Shaped Networks: Classical Solutions and Feedback Stabilization, 2011, 49, 0363-0129, 2101, 10.1137/100799824
    3. Ying Tang, Christophe Prieur, Antoine Girard, 2014, Boundary control synthesis for hyperbolic systems: A singular perturbation approach, 978-1-4673-6090-6, 2840, 10.1109/CDC.2014.7039825
    4. Falk M. Hante, Günter Leugering, Alexander Martin, Lars Schewe, Martin Schmidt, 2017, Chapter 5, 978-981-10-3757-3, 77, 10.1007/978-981-10-3758-0_5
    5. R. Vazquez, J. Coron, M. Krstic, G. Bastin, 2012, Collocated output-feedback stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping, 978-1-4577-1096-4, 2202, 10.1109/ACC.2012.6314688
    6. Tehuan Chen, Chao Xu, Qun Lin, Ryan Loxton, Kok Lay Teo, Water hammer mitigation via PDE-constrained optimization, 2015, 45, 09670661, 54, 10.1016/j.conengprac.2015.08.008
    7. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 2, 978-3-030-93014-1, 5, 10.1007/978-3-030-93015-8_2
    8. Jean-Michel Coron, Rafael Vazquez, Miroslav Krstic, Georges Bastin, Local Exponential $H^2$ Stabilization of a $2\times2$ Quasilinear Hyperbolic System Using Backstepping, 2013, 51, 0363-0129, 2005, 10.1137/120875739
    9. Ying Tang, Christophe Prieur, Antoine Girard, Singular Perturbation Approximation of Linear Hyperbolic Systems of Balance Laws, 2016, 61, 0018-9286, 3031, 10.1109/TAC.2015.2499444
    10. Rafael Vazquez, Miroslav Krstic, Jean-Michel Coron, 2011, Backstepping boundary stabilization and state estimation of a 2 × 2 linear hyperbolic system, 978-1-61284-801-3, 4937, 10.1109/CDC.2011.6160338
    11. Christophe PRIEUR, Antoine GIRARD, Emmanuel WITRANT, Lyapunov functions for switched linear hyperbolic systems, 2012, 45, 14746670, 382, 10.3182/20120606-3-NL-3011.00041
    12. Martin Gugat, Günter Leugering, Simona Tamasoiu, Ke Wang, H 2-stabilization of the Isothermal Euler equations: a Lyapunov function approach, 2012, 33, 0252-9599, 479, 10.1007/s11401-012-0727-y
    13. Christophe Prieur, Frederic Mazenc, 2011, ISS Lyapunov functions for time-varying hyperbolic partial differential equations, 978-1-61284-801-3, 4915, 10.1109/CDC.2011.6160401
    14. Amaury Hayat, Boundary stabilization of 1D hyperbolic systems, 2021, 52, 13675788, 222, 10.1016/j.arcontrol.2021.10.009
    15. Andrea Cristofaro, Francesco Ferrante, 2020, Unknown Input Observer design for coupled PDE/ODE linear systems, 978-1-7281-7447-1, 646, 10.1109/CDC42340.2020.9304374
    16. Günter Leugering, 2020, Chapter 4, 978-981-15-0927-8, 77, 10.1007/978-981-15-0928-5_4
    17. Rafael Vazquez, Miroslav Krstic, Marcum -functions and explicit kernels for stabilization of linear hyperbolic systems with constant coefficients, 2014, 68, 01676911, 33, 10.1016/j.sysconle.2014.02.008
    18. Liguo Zhang, Christophe Prieur, Necessary and Sufficient Conditions on the Exponential Stability of Positive Hyperbolic Systems, 2017, 62, 0018-9286, 3610, 10.1109/TAC.2017.2661966
    19. Rafael Vazquez, Jean-Michel Coron, Miroslav Krstic, Georges Bastin, 2011, Local exponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping, 978-1-61284-801-3, 1329, 10.1109/CDC.2011.6161075
    20. Francesco Ferrante, Andrea Cristofaro, Christophe Prieur, Boundary observer design for cascaded ODE — Hyperbolic PDE systems: A matrix inequalities approach, 2020, 119, 00051098, 109027, 10.1016/j.automatica.2020.109027
    21. Mohammed Safi, Lucie Baudouin, Alexandre Seuret, Tractable sufficient stability conditions for a system coupling linear transport and differential equations, 2017, 110, 01676911, 1, 10.1016/j.sysconle.2017.09.003
    22. Rafael Vazquez, Miroslav Krstic, 2013, Marcum Q-functions and explicit feedback laws for stabilization of constant coefficient 2 × 2 linear hyperbolic systems, 978-1-4673-5717-3, 466, 10.1109/CDC.2013.6759925
    23. Georges Bastin, Jean-Michel Coron, Brigitte d'Andrea-Novel, Paul Suvarov, Alain Vande Wouwer, Achim Kienle, 2014, Stability analysis of switching hyperbolic systems: the example of SMB chromatography, 978-3-9524269-1-3, 2153, 10.1109/ECC.2014.6862556
    24. Martin Gugat, Markus Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction, 2011, 1, 2156-8499, 469, 10.3934/mcrf.2011.1.469
    25. Georges Bastin, Jean-Michel Coron, 2016, Chapter 4, 978-3-319-32060-1, 117, 10.1007/978-3-319-32062-5_4
    26. Christophe Prieur, Frédéric Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws, 2012, 24, 0932-4194, 111, 10.1007/s00498-012-0074-2
    27. Markus Dick, Martin Gugat, Gunter Leugering, 2012, Feedback stabilization of quasilinear hyperbolic systems with varying delays, 978-1-4673-2124-2, 125, 10.1109/MMAR.2012.6347931
    28. Markus Dick, Martin Gugat, Günter Leugering, A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction, 2011, 1, 2155-3297, 225, 10.3934/naco.2011.1.225
    29. Daniela Danciu, Dan Popescu, Vladimir Rasvan, 2019, Stability conditions in a water hammer model involving two delays, 978-1-7281-0699-1, 31, 10.1109/ICSTCC.2019.8886018
    30. Francesco Ferrante, Andrea Cristofaro, 2020, Observer Design for Systems of Conservation Laws with Lipschitz Nonlinear Boundary Dynamics, 978-1-5386-8266-1, 3431, 10.23919/ACC45564.2020.9147240
    31. Francesco Ferrante, Andrea Cristofaro, 2019, Boundary Observer Design for Coupled ODEs–Hyperbolic PDEs Systems, 978-3-907144-00-8, 2418, 10.23919/ECC.2019.8795767
    32. Miroslav Krstic, Nikolaos Bekiaris-Liberis, Nonlinear Stabilization in Infinite Dimension, 2013, 46, 14746670, 1, 10.3182/20130904-3-FR-2041.00061
    33. Amaury Hayat, Peipei Shang, Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, 2021, 153, 00217824, 187, 10.1016/j.matpur.2021.07.001
    34. Alaa Hayek, Serge Nicaise, Zaynab Salloum, Ali Wehbe, Existence, Uniqueness and Stabilization of Solutions of a Generalized Telegraph Equation on Star Shaped Networks, 2020, 170, 0167-8019, 823, 10.1007/s10440-020-00360-8
    35. Daniela Danciu, Dan Popescu, Vladimir Rasvan, Control of a Time Delay System Arising From Linearized Conservation Laws, 2019, 7, 2169-3536, 48524, 10.1109/ACCESS.2019.2910018
    36. Amaury Hayat, Boundary Stability of 1-D Nonlinear Inhomogeneous Hyperbolic Systems for the $C^{1}$ Norm, 2019, 57, 0363-0129, 3603, 10.1137/17M1150803
    37. Ferdinand Thein, Stabilization of a Multi‐Dimensional System of Hyperbolic Balance Laws – A Case Study, 2023, 22, 1617-7061, 10.1002/pamm.202200056
    38. Amaury Hayat, Global exponential stability and Input-to-State Stability of semilinear hyperbolic systems for the L2 norm, 2021, 148, 01676911, 104848, 10.1016/j.sysconle.2020.104848
    39. Georges Bastin, Jean-Michel Coron, A quadratic Lyapunov function for hyperbolic density–velocity systems with nonuniform steady states, 2017, 104, 01676911, 66, 10.1016/j.sysconle.2017.03.013
    40. Vladimir Rsvan, 2022, Chapter 20, 978-3-030-87965-5, 185, 10.1007/978-3-030-87966-2_20
    41. Serge Nicaise, Control and stabilization of 2 × 2 hyperbolic systems on graphs, 2017, 7, 2156-8499, 53, 10.3934/mcrf.2017004
    42. Martin Gugat, Günter Leugering, Ke Wang, Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function, 2017, 7, 2156-8499, 419, 10.3934/mcrf.2017015
    43. Ying Tang, Christophe Prieur, Antoine Girard, 2015, Stability analysis of a singularly perturbed coupled ODE-PDE system, 978-1-4799-7886-1, 4591, 10.1109/CDC.2015.7402936
    44. Miroslav Krstic, Nikolaos Bekiaris-Liberis, Nonlinear stabilization in infinite dimension, 2013, 37, 13675788, 220, 10.1016/j.arcontrol.2013.09.002
    45. Markus Dick, Martin Gugat, Michael Herty, Günter Leugering, Sonja Steffensen, Ke Wang, 2014, Chapter 31, 978-3-319-05082-9, 487, 10.1007/978-3-319-05083-6_31
    46. Michael Herty, 2015, Multi-scale modeling and nodal control for gas transportation networks, 978-1-4799-7886-1, 4585, 10.1109/CDC.2015.7402935
    47. Georges Bastin, Jean-Michel Coron, Amaury Hayat, Feedforward boundary control of 2×2 nonlinear hyperbolic systems with application to Saint-Venant equations, 2021, 57, 09473580, 41, 10.1016/j.ejcon.2020.11.002
    48. Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering, Stationary states in gas networks, 2015, 10, 1556-1801, 295, 10.3934/nhm.2015.10.295
    49. Thang Van Pham, Didier Georges, Gildas Besancon, Predictive Control With Guaranteed Stability for Water Hammer Equations, 2014, 59, 0018-9286, 465, 10.1109/TAC.2013.2272171
    50. Ying TANG, Christophe PRIEUR, Antoine GIRARD, Lyapunov stability of a singularly perturbed system of two conservation laws, 2013, 46, 14746670, 227, 10.3182/20130925-3-FR-4043.00050
    51. Ying Tang, Christophe Prieur, Antoine Girard, Singular perturbation approximation by means of a H2 Lyapunov function for linear hyperbolic systems, 2016, 88, 01676911, 24, 10.1016/j.sysconle.2015.10.015
    52. Jean Michel Coron, Simona Oana Tamasoiu, Feedback stabilization for a scalar conservation law with PID boundary control, 2015, 36, 0252-9599, 763, 10.1007/s11401-015-0975-8
    53. Georges Bastin, Jean-Michel Coron, 2016, Chapter 1, 978-3-319-32060-1, 1, 10.1007/978-3-319-32062-5_1
    54. Ababacar Diagne, Georges Bastin, Jean-Michel Coron, Lyapunov exponential stability of linear hyperbolic systems of balance laws, 2011, 44, 14746670, 13320, 10.3182/20110828-6-IT-1002.01506
    55. Christophe Prieur, Antoine Girard, 2013, A new H2-norm Lyapunov function for the stability of a singularly perturbed system of two conservation laws, 978-1-4673-5717-3, 3026, 10.1109/CDC.2013.6760343
    56. Christophe Prieur, Joseph J. Winkin, Boundary feedback control of linear hyperbolic systems: Application to the Saint-Venant–Exner equations, 2018, 89, 00051098, 44, 10.1016/j.automatica.2017.11.028
    57. Martin Gugat, Markus Dick, Günter Leugering, 2013, Chapter 26, 978-3-642-36061-9, 255, 10.1007/978-3-642-36062-6_26
    58. Markus Bambach, Martin Gugat, Michael Herty, Ferdinand Thein, 2022, Stabilization of forming processes using multi–dimensional Hamilton–Jacobi equations, 978-1-6654-6761-2, 7376, 10.1109/CDC51059.2022.9992941
    59. Xu Huang, Zhiqiang Wang, Shijie Zhou, The dichotomy property in stabilizability of 2 × 2 linear hyperbolic systems, 2024, 30, 1292-8119, 24, 10.1051/cocv/2024010
    60. Andrea Cristofaro, Francesco Ferrante, Unknown Input Observer Design for a Class of Semilinear Hyperbolic Systems With Dynamic Boundary Conditions, 2023, 68, 0018-9286, 5721, 10.1109/TAC.2022.3227915
    61. Wei Liu, Peng Zhang, Jing Wang, Yimiao Li, Qin Yang, Siming Liu, Multi-conditional dynamic response of parallel multi-pipelines in the same tunnel based on leakage and explosion conditions - A case study of China-Myanmar tunnel pipelines, 2024, 208, 03080161, 105145, 10.1016/j.ijpvp.2024.105145
    62. Michael Herty, Ferdinand Thein, Boundary feedback control for hyperbolic systems, 2024, 30, 1292-8119, 71, 10.1051/cocv/2024062
    63. Georges Bastin, Jean-Michel Coron, Amaury Hayat, The usefulness of viscosity for the robustness of boundary feedback control of an unstable fluid flow system, 2025, 173, 00051098, 112048, 10.1016/j.automatica.2024.112048
    64. Michael Herty, Ferdinand Thein, On the relation between approaches for boundary feedback control of hyperbolic systems, 2025, 82, 09473580, 101182, 10.1016/j.ejcon.2025.101182
    65. Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4795) PDF downloads(169) Cited by(65)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog