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Abstract. We consider the subcritical flow in gas networks consisting of a

finite linear sequence of pipes coupled by compressor stations. Such networks
are important for the transportation of natural gas over large distances to

ensure sustained gas supply. We analyse the system dynamics in terms of

Riemann invariants and study stationary solutions as well as classical non-
stationary solutions for a given finite time interval. Furthermore, we construct

feedback laws to stabilize the system locally around a given stationary state.

To do so we use a Lyapunov function and prove exponential decay with respect
to the L2-norm.

1. Introduction. Recently, there has been intense research on the system dynam-
ics in gas networks (see [1, 2, 3, 4, 5, 8, 10, 11, 17, 19] and publications of the
Pipeline Simulation Interest Group [18]). Several models for the flow in gas net-
works have been proposed and discussed both from an analytical and a numerical
point of view [10, 17]. The most important physical phenomenon is the pressure
loss along the pipe due to the friction at the inner surface of the pipe.

In this paper our starting point are the isothermal Euler equations which model
the gas flow by a 2× 2-PDE-system of conservation laws for each pipe. Motivated
by the fact that shocks occurring for non-classical solutions can damage the pipes
we study the existence and uniqueness of classical stationary and non-stationary
solutions for a linear sequence of N gas pipes coupled by N−1 compressor stations.
Furthermore, we develop linear feedback laws to stabilize this system locally around
a stationary state.

Our work is based upon [8] where the feedback stabilization is analysed for a
system of two pipes coupled by one compressor. However, the approach of [8]
does not work for a network of more than two pipes that are serially connected
by compressors. In this paper we develop new feedback laws that allow feedback
stabilization for a network consisting of N pipes coupled by N − 1 compressor
stations (see also Remark 3.4). Related problems of optimal control of networked
hyperbolic systems have been considered in [7, 20].
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2. Analysis of the gas flow in a single pipe. In this first section we analyse
the gas flow in a single pipe. We study the isothermal Euler equations, their trans-
formation to Riemann invariants, stationary and non-stationary classical solutions
and a Lyapunov function for this system of one pipe. Having analysed these aspects
for a single pipe, we can easily transfer them to the network case in section 3.

2.1. Isothermal Euler equations. As the lengths of the pipes in real gas net-
works are much larger than their diameters, we can use a one-dimensional model
for a gas pipe and parametrise its length by the space interval [0, L] (x-coordinate).
We see the pipe as a graph consisting of one edge and two boundary nodes. One
boundary node is at the end x = 0 of the pipe and the other one at the end x = L.
Furthermore, we consider the system on a finite time interval [0, T ] (t-coordinate)
with T > 0.

The state of the gas in a pipe can be characterised by the density of the gas
ρ = ρ(t, x) and the mass flux in the pipe q = q(t, x). The density ρ is always
positive whereas the sign of q depends on the direction of the mass flux. A common
model to describe the relationship between these two variables are the isothermal
Euler equations [1, 2, 8, 10, 11, 15]. For one pipe they have the form

ρt + qx = 0, (1)

qt +

(
q2

ρ
+ a2ρ

)
x

= −fg
q|q|
2δρ

. (2)

The first equation states the conservation of mass and the second one is the mo-
mentum equation. The right hand side of the momentum equation is a friction term
with the friction factor fg > 0 and the diameter of the pipe δ > 0. Note that the
friction force always acts in the opposite direction as the direction of the mass flux
q. The constant a > 0 is the sonic velocity in the gas. It depends on the gas under
consideration and the gas temperature according to the equation

a2 =
ZRT
Mg

where Z is the natural gas compressibility factor, R the universal gas constant, T
the absolute gas temperature and Mg is the molar weight of the gas.

The relationship between the density ρ and the gas pressure p is described by
the pressure law

p = a2ρ. (3)

In this paper we consider subsonic or subcritical states, i.e. states with |q|/ρ < a. If
|q|/ρ becomes equal to a, the state becomes critical. Equations (1) and (2) together
form the p-system which is a hyperbolic balance law.

In the following we will always assume that the mass flux is positive, i.e. q > 0.
Using the chain rule we get that the equations (1) and (2) together can equivalently
be written as

∂t

(
ρ
q

)
+ Â(ρ, q) ∂x

(
ρ
q

)
= Ĝ(ρ, q) (4)

with the system matrix

Â = Â(ρ, q) :=

(
0 1

a2 − q2

ρ2 2 qρ

)
(5)
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and the source term

Ĝ = Ĝ(ρ, q) :=

(
0

−fg q2

2δρ

)
. (6)

The matrix Â is not diagonal and, thus, the derivatives ∂xρ and ∂xq are coupled in
equation (4). By transforming the system to Riemann invariants in section 2.2 we
get a diagonal system matrix.

2.2. Transformation to Riemann invariants. In this section we transform the
system described in section 2.1 to Riemann invariants. For subsonic states, the
system matrix Â(ρ, q) has the strictly positive eigenvalue λ+ = λ+(ρ, q) = q

ρ +a > 0

and the strictly negative eigenvalue −λ− = −λ−(ρ, q) = q
ρ − a < 0. Note that λ−

denotes the absolute value of the strictly negative eigenvalue. The corresponding
left eigenvectors are

l± = l±(ρ, q) =

(
q

ρ2
∓ a

ρ
, −1

ρ

)
=

1

ρ
(∓λ∓, −1) .

Let L = L(ρ, q) :=

(
l+
l−

)
denote the matrix of the left eigenvectors. Then

det(L) = 2 a
ρ2 6= 0 and

L Â =

(
λ+ 0
0 −λ−

)
L =: DL.

We obtain the Riemann invariants as

R± = R±(ρ, q) = − q
ρ
∓ a ln(ρ). (7)

Their partial derivatives with respect to ρ and q satisfy(
∂ρR+ ∂qR+

∂ρR− ∂qR−

)
= L. (8)

We can restate ρ, q and λ± in terms of R±:

± λ± = −R+ +R−
2

± a, (9)

ρ = exp

(
R− −R+

2a

)
, (10)

q = −R+ +R−
2

exp

(
R− −R+

2a

)
. (11)

As we assume that the mass flux q is positive, we have R+ +R− < 0 and a state is
subsonic (i.e. q/ρ < a) if and only if

− 2a < R+(t, x) +R−(t, x) < 0 (12)

for all (t, x) ∈ [0, T ]× [0, L]. We define the set S as

S := {(y1, y2) ∈ R2 : −2a < y1 + y2 < 0}. (13)

Multiplying equation (4) by the matrix L and using equation (8) combined with
the chain rule we can transform the system equation (4) to the following system
equation in terms of the Riemann invariants R+ and R−:

∂t

(
R+

R−

)
+D∂x

(
R+

R−

)
= G (14)
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with the diagonal system matrix

D = D(R+, R−) =

(
λ+ 0
0 −λ−

)
=

(
−R++R−

2 + a 0

0 −R++R−
2 − a

)
(15)

and the source term

G = G(R+, R−) = L Ĝ =
fg
8δ

(R+ +R−)2

(
1
1

)
. (16)

Equation (7) expresses R+ and R− in terms of ρ and q. Equations (10) and (11)
give ρ and q in terms of R+ and R−. Now we consider the question how R+ can be
expressed by R− and q. To do so, we observe the function

Q(R+, R−) := −R+ +R−
2

exp

(
R− −R+

2a

)
.

If the state (R+, R−) is subsonic (see (12)), a simple calculation shows that

∂Q

∂R+
< 0 and

∂Q

∂R−
< 0.

Hence, due to the monotonicity property of the function Q, there exists a C1-
function F+ such that for all fixed real values R− and q with

q ∈ (Q(−R−, R−), Q(−2a−R−, R−)) = (0, a exp(1 +
R−
a

)) (17)

the equation

Q(F+(q,R−), R−) = q (18)

holds and the state (F+(q,R−), R−) is subsonic. Analogously, also R− can be
expressed by R+ and q.

2.3. Stationary states. In this section we analyse the existence of stationary sub-
sonic continuously differentiable states. We denote the Riemann invariants for the
stationary case which do not depend on the time variable t as R̄+ = R̄+(x) and
R̄− = R̄−(x). Equation (14) yields the following ordinary differential equation for
R̄+ and R̄−:(

− R̄++R̄−−2a
2 0

0 − R̄++R̄−+2a
2

)
d

dx

(
R̄+

R̄−

)
=
fg
8δ

(R̄+ + R̄−)2

(
1
1

)
. (19)

As we want to consider subsonic stationary states with a positive mass flux, we
have (R̄+(x), R̄−(x)) ∈ S (see (12), (13)). Hence, we can analyse the autonomous
system

d
dx

(
R̄+

R̄−

)
=

fg
8δ (R̄+ + R̄−)2

(
− R̄++R̄−−2a

2 0

0 − R̄++R̄−+2a
2

)−1 (
1
1

)
= − fg4δ (R̄+ + R̄−)2

(
1

R̄++R̄−−2a
1

R̄++R̄−+2a

)
(20)

for x ≥ 0 with corresponding boundary conditions

(R̄+(0), R̄−(0)) = (R̄+,0, R̄−,0) ∈ S,

which we prescribe at x = 0. For the existence and uniqueness of a C1-solution of
(20) we obtain the following theorem:
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Theorem 2.1 (Existence and Uniqueness of Stationary C1-Solutions). For
(R̄+,0, R̄−,0) ∈ S define the positive real number

x0 :=
δ

fg

(
4a2

(R̄+,0 + R̄−,0)2
+ 2 ln(−R̄+,0 − R̄−,0)− 1− 2 ln(2a)

)
> 0. (21)

Then there exists a unique continuously differentiable solution (R̄+(x), R̄−(x)) of
(20) on [0, x0) with (R̄+(x), R̄−(x)) ∈ S that satisfies the boundary conditions
(R̄+(0), R̄−(0)) = (R̄+,0, R̄−,0).
For x → x0− the state gets critical (i.e. R̄+(x) + R̄−(x) → −2a) and a blow up
in the derivative of R̄−(x) occurs (i.e. d

dx R̄−(x) → −∞). The length x0 is called
critical length.

Proof. For (R̄+(x), R̄−(x)) ∈ S the right hand side of (20) is continuous and con-
tinuously partially differentiable with respect to R̄+ and R̄− and, thus, is locally
Lipschitz-continuous. Hence, due to the Picard-Lindelöf theorem there exists a
unique continuously differentiable solution (R̄+(x), R̄−(x)) of (20) that satisfies
(R̄+(0), R̄−(0)) = (R̄+,0, R̄−,0).

Now we prove that
lim

x→x0−
R̄+(x) + R̄−(x) = −2a (22)

and

lim
x→x0−

d

dx
R̄−(x) = −∞, (23)

which implies that the maximal interval of existence of (R̄+(x), R̄−(x)) as a C1-
solution in R+

0 is [0, x0). Equation (20) yields for (R̄+(x), R̄−(x)) ∈ S
d

dx
(R̄+(x) + R̄−(x)) =

fg
2δ

(R̄+(x) + R̄−(x))3

4a2 − (R̄+(x) + R̄−(x))2
< 0 (24)

and, hence, R̄+(x) + R̄−(x) is strictly monotonically decreasing with respect to x.
For −2a < z < 0 consider the function

Φ(z) :=
4a2

z2
+ 2 ln(−z).

The derivative Φ′(z) can be calculated as

Φ′(z) =
2z2 − 8a2

z3
> 0. (25)

Hence, Φ is strictly monotonically increasing on (−2a, 0). Using the chain rule
equations (24) and (25) yield that

d

dx
Φ(R̄+(x) + R̄−(x)) = −fg

δ
and, thus,

Φ(R̄+(x) + R̄−(x)) = −fg
δ
x+ Φ(R̄+,0 + R̄−,0).

Due to the continuity of Φ and due to the definition of x0 we have

Φ
(
limx→x0− R̄+(x) + R̄−(x)

)
= limx→x0− Φ(R̄+(x) + R̄−(x))

= limx→x0−−
fg
δ x+ Φ(R̄+,0 + R̄−,0)

= − fgδ x0 + Φ(R̄+,0 + R̄−,0)
= Φ(−2a).

Hence, the monotonicity property stated by equation (25) implies (22) and, thus,
equation (20) yields (23).
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Finally, the critical length x0 can be written as

x0 =
δ

fg

(
Φ(R̄+,0 + R̄−,0)− Φ(−2a)

)
and, hence, the monotonicity property of Φ (see (25)) and the inequality R̄+,0 +
R̄−,0 > −2a imply that x0 is actually positive.

Remark 2.2. Theorem 2.1 says that the solution (R̄+(x), R̄−(x)) cannot be ex-
tended beyond x0, neither as a subsonic solution nor as a continuously differentiable
solution. Hence, Theorem 2.1 implies that a stationary subsonic C1-solution exists
along the whole pipe if and only if the length L of the pipe is less than the critical
length x0, i.e. L < x0.

Having analysed stationary subsonic continuously differentiable states in terms
of Riemann invariants we will now transfer our results to the density ρ̄ = ρ̄(x) and
the mass flux q̄ = q̄(x) for the stationary subsonic gas flow.

Equation (1) directly implies that in this case the mass flux is constant with (see
(11))

q̄ = − R̄+,0 + R̄−,0
2

exp

(
R̄−,0 − R̄+,0

2a

)
.

For the derivative d
dx ρ̄(x) equations (10) and (20) and the chain rule imply

d

dx
ρ̄(x) =

fg
2δ

exp

(
R̄−(x)− R̄+(x)

2a

)
(R̄+(x) + R̄−(x))2

(R̄+(x) + R̄−(x))2 − 4a2

and, thus, in the stationary subsonic case the density is strictly monotonically
decreasing on the interval [0, x0), and for x → x0− a blow up in the derivative
d
dx ρ̄(x) occurs. Hence, due to the pressure law (3) also the pressure p decreases
along the pipe.

Furthermore, equations (10) and (11) yield that

lim
x→x0−

ρ̄(x) =
q̄

a
.

Using equation (7) one can easily show that the critical length x0 can be expressed
in terms of ρ̄(0) and q̄ as

x0 =
δ

fg

(
a2 ρ̄(0)2

q̄2
+ 2 ln

(
q̄

ρ̄(0)

)
− 1− 2 ln(a)

)
. (26)

For fg → 0 we have d
dx ρ̄(x) → 0 and x0 → ∞, that is, in the frictionless case, the

subsonic stationary solutions are exactly all constants ρ̄ > 0, q̄ > 0 with q̄/ρ̄ < a
and there is no limit for the length of the pipe.

Remark 2.3. To analyse the stationary subsonic case we have considered the
system equation (14) in terms of the Riemann invariants R̄+ and R̄−. However,
one can also consider the original isothermal Euler equations (1) and (2) for the
stationary case in terms of ρ̄ and q̄. This is elaborately done in [8] and leads to the
same results.
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2.4. Local existence of non-stationary semi-global solutions. In this section
we analyse the existence of non-stationary solutions R±(t, x) = R̄±(x) + r±(t, x)
locally around a stationary state R̄±(x) on a given finite time interval [0, T ].
For these solutions we prescribe initial conditions R±(0, x) = R̄±(x) + r±(0, x)
in a sufficiently small C1-neighbourhood of the given stationary state R̄±(x) (i.e.
||r±(0, x)||C1([0, L]) is sufficiently small). The solutions are called semi-global as they
exist on the finite time interval [0, T ].

Thereby, we refer to a result of T. Li, B. Rao and Z. Wang [13] about the exis-
tence of semi-global C1-solutions for initial-boundary value problems with nonlocal
boundary conditions for quasilinear hyperbolic systems and apply this result to our
system in terms of Riemann invariants (see also [21]).

Let a stationary state R̄ = (R̄+, R̄−) be given. Consider a non-stationary state
R = (R+, R−) = R̄+ r = (R̄+ + r+, R̄− + r−) locally around R̄.

Then equation (14) and ∂tR̄ = 0 yield:

∂t

(
r+

r−

)
+ D(R) ∂x

(
r+

r−

)
= G(R) − D(R) ∂x

(
R̄+

R̄−

)
.

Using equation (14) for the stationary case, we obtain the following equation for r+

and r−:

∂t

(
r+

r−

)
+D(R̄+ r) ∂x

(
r+

r−

)
= G̃(R̄, r) (27)

with the diagonal system matrix

D(R̄+ r) =

(
λ+ 0
0 −λ−

)
=

(
λ̄+ − r++r−

2 0

0 −λ̄− − r++r−
2

)
(28)

and the source term

G̃ = G̃(R̄, r) = G(R̄+ r)−D(R̄+ r)D(R̄)−1G(R̄)

=
fg
8δ (R̄+ + R̄− + r+ + r−)2

(
1
1

)
− fg

8δ (R̄+ + R̄−)2

(
1− r++r−

2λ̄+

1 + r++r−
2λ̄−

)
(29)

where the notation R̄ = (R̄+, R̄−), r = (r+, r−) and ±λ̄± = − R̄++R̄−
2 ± a (see (9))

has been used.
Furthermore, the equations (10) and (11) imply for the density ρ and the mass flux
q in the non-stationary case

ρ = ρ̄ exp

(
r− − r+

2a

)
, (30)

q =

(
q̄ − ρ̄(r+ + r−)

2

)
exp

(
r− − r+

2a

)
(31)

with the density ρ̄ and the mass flux q̄ belonging to the stationary state.
The following lemma states the existence of a C1-solution of (27) on a finite

time interval for appropriate initial and boundary conditions. Since we will analyse
networks of several pipes in section 3, in Lemma 2.4 we already consider a system
of N (N ≥ 1) equations of the form (27). Thereby, we denote variables referring to
equation i with a superscript (i) (i ∈ {1, ..., N}). The lengths L(i) (i ∈ {1, ..., N})
of the pipes may be different, but all pipes have the same diameter δ and the
same friction factor fg. The description of a network of N pipes that are serially
connected by N − 1 compressors can be found in section 3.1.
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Lemma 2.4. Let an integer N ≥ 1 and a finite time T > 0 be given. Let sta-

tionary states (R̄
(i)
+ , R̄

(i)
− ) ∈ (C1([0, L(i)]))2 with corresponding eigenvalues λ̄

(i)
±

(i ∈ {1, ..., N}) be given. Then there exists ε > 0 (depending on T ) such that
the following statement holds:

Consider the system of 2N partial differential equations for r
(i)
+ (t, x) and r

(i)
− (t, x)

(see (27), (28), (29)):

∂t r
(i)
+ + (λ̄

(i)
+ −

r
(i)
+ +r

(i)
−

2 ) ∂x r
(i)
+ = G̃

(i)
+ ,

∂t r
(i)
− − (λ̄

(i)
− +

r
(i)
+ +r

(i)
−

2 ) ∂x r
(i)
− = G̃

(i)
−

(32)

with

G̃
(i)
± :=

fg
8δ

(R̄
(i)
+ +R̄

(i)
− +r

(i)
+ +r

(i)
− )2 − fg

8δ
(R̄

(i)
+ +R̄

(i)
− )2 (1∓(r

(i)
+ +r

(i)
− )/(2λ̄

(i)
± )) (33)

on [0, T ]× [0, L(i)] (i ∈ {1, ..., N}).
Assume that for x ∈ [0, L(i)] we have the initial conditions (i ∈ {1, ..., N})

(r
(i)
+ (0, x), r

(i)
− (0, x)) = ϕ(i)(x) (34)

with C1-functions ϕ(i) with ||ϕ(i)||C1([0, L(i)]) < ε.

Then, for all i ∈ {1, ..., N}, there exists a unique solution (r
(i)
+ , r

(i)
− ) ∈ (C1([0, T ]×

[0, L(i)]))2 with small C1-norm that satisfies the equations (32) and the initial con-
ditions (34) if we have boundary conditions of the form (i ∈ {1, ..., N})

r
(i)
+ (t, 0)

= g
(i)
+ (t, r

(1)
− (t, 0), ..., r

(N)
− (t, 0), r

(1)
+ (t, L(1)), ..., r

(N)
+ (t, L(N))) + h

(i)
+ (t),

r
(i)
− (t, L(i))

= g
(i)
− (t, r

(1)
− (t, 0), ..., r

(N)
− (t, 0), r

(1)
+ (t, L(1)), ..., r

(N)
+ (t, L(N))) + h

(i)
− (t)

(35)

with C1-functions g
(i)
± and h

(i)
± with ||h(i)

± ||C1([0, T ]) < ε that satisfy

g
(i)
± (t, 0, ..., 0) = 0 (36)

and the C1-compatibility conditions at the points (t, x) = (0, 0) and (t, x) = (0, L(i))
(i ∈ {1, ..., N}).

Proof. Without restriction, we can assume that all pipes have the same length
L > 0, that is L(i) = L for all i ∈ {1, ..., N}. This can be achieved by the parameter
change x 7→ L

L(i)x for i ∈ {1, ..., N} [8, 12]. As a consequence of this change, the
equations (32) become

∂t r
(i)
+ + L

L(i) (λ̄
(i)
+ −

r
(i)
+ +r

(i)
−

2 ) ∂x r
(i)
+ = G̃

(i)
+ ,

∂t r
(i)
− − L

L(i) (λ̄
(i)
− +

r
(i)
+ +r

(i)
−

2 ) ∂x r
(i)
− = G̃

(i)
− .

(37)

The equations (37) have the same form as equation (1.4) from [13] where in our
case, using the notation of [13], the vectors li are the canonical unit vectors. For

r
(i)
+ = r

(i)
− = 0 (i ∈ {1, ..., N}) the right hand sides of (37) are equal to zero and,
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thus, equation (1.5) from [13] is satisfied. Furthermore, if |r(i)
+ +r

(i)
− | is small enough,

we have

L

L(i)
(λ̄

(i)
+ −

r
(i)
+ + r

(i)
−

2
) > 0 and − L

L(i)
(λ̄

(i)
− +

r
(i)
+ + r

(i)
−

2
) < 0

(as λ̄
(i)
+ > 0 and −λ̄(i)

− < 0) and, thus, the inequality (1.6) from [13] holds (i ∈
{1, ..., N}).

Hence, all requirements of Theorem 2.1 from [13] are satisfied and Theorem 2.1
yields our assertion.

Remark 2.5. In Lemma 2.4 the usual C1-compatibility conditions ensure that the
initial and the boundary data and their derivatives fit together at the points (t, x) =
(0, 0) and (t, x) = (0, L(i)). The C1-compatibility conditions follow from a straight

forward calculation for ϕ(i), g
(i)
± and h

(i)
± and their derivatives (i ∈ {1, ..., N}).

In [13], quasilinear hyperbolic systems with nonlocal boundary conditions are
considered, where the eigenvalues and the source term of the system under consid-
eration depend on the unknown variables but not explicitly on x and t. In [21],
for the case of local boundary conditions, quasilinear hyperbolic systems with also
space- and time-dependent eigenvalues and source terms are studied. The depen-
dence of x and t can also be transferred to the case of nonlocal boundary conditions
as we have used it in the proof of Lemma 2.4.

2.5. Lyapunov function. In the previous section we have considered the existence
of a non-stationary solution r+(t, x) and r−(t, x) locally around a stationary state.
In this section we introduce a Lyapunov function that can be seen as a weighted L2-
norm of r+ and r− with exponential weights that are defined using the eigenvalues
λ̄+ and −λ̄− for the stationary state (see (41)). We adopt this Lyapunov function
and the estimate for its time derivative from [8]. In section 3.3 we will use this
Lyapunov function to develop feedback laws for the stabilization of our system
locally around a stationary state.

Assume that we have a given stationary state R̄±(x) with corresponding eigen-

values ±λ̄± = − R̄++R̄−
2 ± a (see (9)). In the previous section we obtained the

partial differential equation (27) for a non-stationary solution R̄±(x) + r±(t, x) lo-
cally around the stationary state R̄±. Equation (27) can also be written in the
following form:

∂t r+ + λ̄+ ∂x r+ = −(r+ + r−) K̃+,

∂t r− − λ̄− ∂x r− = −(r+ + r−) K̃−
(38)

where the notation

K̃+ := −fg
8δ

(R̄+ + R̄−)
4a− R̄+ − R̄−
2a− R̄+ − R̄−

− fg
8δ

(r+ + r−)− 1

2
∂xr+ (39)

and

K̃− := −fg
8δ

(R̄+ + R̄−)
4a+ R̄+ + R̄−
2a+ R̄+ + R̄−

− fg
8δ

(r+ + r−)− 1

2
∂xr− (40)

has been used. Note that K̃+ and K̃− depend on t and x.
Consider the Lyapunov function

E(t) :=

∫ L

0

A

λ̄+(x)
h+(x) r2

+(t, x) +
B

λ̄−(x)
h−(x) r2

−(t, x) dx (41)
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with A > 0, B > 0 and for µ > 0 with exponential weights

h+(x) := exp

(
−µ

∫ x

0

1

λ̄+(s)
ds

)
, (42)

h−(x) := exp

(
µ

∫ x

0

1

λ̄−(s)
ds

)
. (43)

From [8] we obtain the following lemma for the estimate of the time derivative E′(t):

Lemma 2.6. Consider the system (38) on the set [0, T ] × [0, L]. Assume that a
C1-solution (r+(t, x), r−(t, x)) exists on [0, T ]× [0, L] that satisfies the inequalities

K̃+ > 0, K̃− > 0 (44)

on [0, T ]× [0, L] with K̃+ and K̃− as in (39) and (40).
Define the positive real number

1

µ
:=

∫ L

0

1

λ̄+(x)
+

1

λ̄−(x)
dx. (45)

Furthermore, define

U± := sup
(t,x)∈[0,T ]×[0,L]

λ̄±(x)

λ̄∓(x)

K̃∓(t, x)

K̃±(t, x)
, (46)

V± := inf
(t,x)∈[0,T ]×[0,L]

exp(−1)
λ̄±(x)

λ̄∓(x)

K̃∓(t, x)

K̃±(t, x)

(
1 +

µ

2 K̃∓(t, x)

)
. (47)

Assume that we have

U+ ≤ V+ (48)

or

U− ≤ V−. (49)

Then we can choose A > 0 and B > 0 such that both

sup
(t,x)∈[0,T ]×[0,L]

λ̄+(x)

λ̄−(x)

K̃−(t, x)

K̃+(t, x)

h−(x)

h+(x)
≤ A

B
(50)

and
A

B
≤ inf

(t,x)∈[0,T ]×[0,L]

λ̄+(x)

λ̄−(x)

K̃−(t, x)

K̃+(t, x)

(
1 +

µ

2K̃−(t, x)

)
(51)

hold or such that both

sup
(t,x)∈[0,T ]×[0,L]

λ̄−(x)

λ̄+(x)

K̃+(t, x)

K̃−(t, x)

h+(x)

h−(x)
≤ B

A
(52)

and
B

A
≤ inf

(t,x)∈[0,T ]×[0,L]

λ̄−(x)

λ̄+(x)

K̃+(t, x)

K̃−(t, x)

h+(x)

h−(x)

(
1 +

µ

2K̃+(t, x)

)
(53)

hold.
In both cases ([(50) and (51)] or [(52) and (53)]) we have the inequality

E′(t) ≤ −µ
2
E(t) +

[
−Ah+(x)r2

+(t, x) +B h−(x)r2
−(t, x)

]L
x=0

(54)

on [0, T ] with E(t) as in (41).
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The proof of this lemma uses integration by parts and the monotonicity property
of h+(x)/h−(x). In this paper we do not want to repeat the complete proof of this
lemma (It can be found in [8].), but we just would like to give the following remark
on Lemma 2.6:

Remark 2.7. For subsonic stationary states (i.e. R̄+ + R̄− > −2a) with positive
mass flux (i.e. R̄+ + R̄− < 0) the inequalities (44) hold if |r+ + r−| and |∂xr±| are
small enough. Furthermore, the inequalities (48) and (49) hold if 1/µ is sufficiently
small which is the case if the length L of the pipe is not too long (see the definition
of 1/µ in (45)). For the choice of A > 0 and B > 0 only the quotient A/B is
relevant such that the inequalities [(50) and (51)] or [(52) and (53)] hold.

In section 3.3 we will develop feedback laws which guarantee that the boundary
terms in equation (54)[

−Ah+(x)r2
+(t, x) +B h−(x)r2

−(t, x)
]L
x=0

(55)

are non-positive and, hence, E′(t) ≤ −µ2E(t).

3. Gas flow through a sequence of pipes coupled by compressors. In this
section we consider the gas flow through a linear sequence of N pipes coupled by
N − 1 compressor stations.

In section 2.3 we have seen that in the stationary case the density ρ̄ decreases
along the pipe and for x → x0− (with the critical length x0) we have ρ̄ → q̄

a , i.e.
the state becomes critical, and a blow up in the derivative of ρ̄ occurs. Therefore, to
increase the maximum distance of gas transportation, one can use a linear sequence
of several pipes with sufficiently short single lengths and couple subsequent pipes
by a compressor station. The compressor stations increase the density again which
has decreased along the preceding pipe.

3.1. System equations and coupling conditions at the compressors. As-
sume that we have a linear sequence of N (N > 1) pipes coupled by N − 1 com-
pressors. We number the pipes consecutively from pipe 1 to pipe N as they are
arranged in the sequence. In the following we will always denote variables referring
to pipe i with a superscript (i) (i ∈ {1, ..., N}).

The compressor coupling pipe i and i+1 is denoted as compressor i, i+1 and the
values referring to the compressor i, i + 1 are denoted with a superscript (i, i + 1)
(i ∈ {1, ..., N − 1}).

The pipes are parametrised by space intervals [0, L(i)] such that at the compressor
i, i+ 1 the ends x = L(i) of pipe i and x = 0 of pipe i+ 1 meet. At the end x = 0 of
pipe 1 there is the gas producer and at the end x = L(N) of pipe N the consumer.
Hence, we have a positive mass flux along the whole sequence from the boundary
point x = 0 of pipe 1 to the boundary point x = L(N) of pipe N . Furthermore, all
pipes have the same diameter δ and the same friction factor fg (see Figure 1 for
N = 3). According to our analysis for a single pipe in section 2.1 now for each pipe
i we have the system equation in terms of ρ(i) and q(i) (see (4)):

∂t

(
ρ(i)

q(i)

)
+ Â(ρ(i), q(i)) ∂x

(
ρ(i)

q(i)

)
= Ĝ(ρ(i), q(i)) (56)

with the system matrix Â(ρ(i), q(i)) and the source term Ĝ(ρ(i), q(i)) as in (5) and

(6) (i ∈ {1, ..., N}). In terms of the Riemann invariants R
(i)
+ and R

(i)
− the system
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Figure 1. Sequence of 3 pipes coupled by 2 compressor stations.
The arrows mark the gas flow from the producer at the left end of
pipe 1 to the consumer at the right end of pipe 3.

equation for pipe i has the form (see (14)):

∂t

(
R

(i)
+

R
(i)
−

)
+D(R

(i)
+ , R

(i)
− ) ∂x

(
R

(i)
+

R
(i)
−

)
= G(R

(i)
+ , R

(i)
− ) (57)

with the diagonal system matrix D(R
(i)
+ , R

(i)
− ) as in (15) and the source term

G(R
(i)
+ , R

(i)
− ) as in (16) (i ∈ {1, ..., N}).

At the compressor i, i + 1 (i ∈ {1, ..., N − 1}) we have the following coupling
conditions [1, 8, 11]:

q(i)(t, L(i)) = q(i+1)(t, 0), (58)

u(i,i+1)(t) = q(i+1)(t, 0)

((
ρ(i+1)(t, 0)

ρ(i)(t, L(i))

)κ
− 1

)
(59)

for t ∈ [0, T ] with the parameter κ ∈ [ 2
7 ,

2
5 ] which depends on the gas under

consideration. The first equation says that the mass flux does not change while
passing the compressor. In the second equation u(i,i+1)(t) is the compressor power
which is always non-negative. For u(i,i+1)(t) > 0 we have ρ(i+1)(t, 0) > ρ(i)(t, L(i))
and, thus, the compressor increases the outlet density as well as the outlet pressure
(see (3)). The compressor i, i+ 1 is switched off if u(i,i+1)(t) = 0.

3.2. Stationary states. Using our results on stationary states for one pipe in
section 2.3 we obtain the following theorem for a linear sequence of pipes:

Theorem 3.1 (Stationary Subsonic C1-States for a Linear Sequence). Let ρ̄0 > 0
and q̄ > 0 with q̄/ρ̄0 < a be given. Assume that for all i ∈ {1, ..., N} the length of
pipe i satisfies

L(i) < x0 =
δ

fg

(
a2 ρ̄

2
0

q̄2
+ 2 ln

(
q̄

ρ̄0

)
− 1− 2 ln(a)

)
. (60)

Consider the stationary system equations(
0 1

a2 − (q̄(i)(x))2

(ρ̄(i)(x))2
2 q̄

(i)(x)
ρ̄(i)(x)

)
∂x

(
ρ̄(i)(x)
q̄(i)(x)

)
=

(
0

−fg (q̄(i)(x))2

2δρ̄(i)(x)

)
(61)

on [0, L(i)] (see (4)) with the boundary conditions

q̄(1)(0) = q̄, (62)

ρ̄(i)(0) = ρ̄0 (i ∈ {1, ..., N}) (63)
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and the coupling conditions (i ∈ {1, ..., N − 1})

q̄(i)(L(i)) = q̄(i+1)(0), (64)

ū(i,i+1) = q̄(i+1)(0)

((
ρ̄(i+1)(0)

ρ̄(i)(L(i))

)κ
− 1

)
. (65)

Then there exists a unique subsonic C1-solution (ρ̄(i)(x), q̄(i)(x)) of (61) on [0, L(i)]
(i ∈ {1, ..., N}) that satisfies (62), (63), (64), (65) if we choose the constant com-
pressor powers

ū(i,i+1) = q̄

((
ρ̄0

ρ̄(i)(L(i))

)κ
− 1

)
(i ∈ {1, ..., N − 1}). (66)

Proof. Due to equation (61) q̄(i)(x) is constant along pipe i (i ∈ {1, ..., N}). Fur-
thermore, equations (62) and (64) yield that q̄(i)(x) = q̄ for all i ∈ {1, ..., N}. If we
choose the compressor power ū(i,i+1) as in (66), equation (63) is satisfied. Finally,
inequality (60) yields that the subsonic C1-solution exists along the whole linear
sequence of N pipes. Theorem 2.1 says that this solution is unique.

3.3. Non-stationary semi-global solutions and feedback stabilization. For
the linear sequence of N pipes coupled by N−1 compressors, let a finite time T > 0

and a stationary subsonic state (R̄
(i)
+ , R̄

(i)
− ) ∈ (C1([0, L(i)]))2 with corresponding

eigenvalues λ̄
(i)
± (i ∈ {1, ..., N}) and the constant mass flux q̄ > 0 be given.

In this section we consider a non-stationary solution R̄
(i)
± (x) + r

(i)
± (t, x) locally

around the stationary state R̄
(i)
± on the finite time interval [0, T ] and a Lyapunov

function ES(t). We construct feedback laws which yield E′S(t) ≤ −cES(t) for some

c > 0. Hence, these feedback laws yield an exponential decay of the L2-norm of r
(i)
±

for i ∈ {1, ..., N}.
According to our results in section 2.4 for r

(i)
± (t, x) we have the equations (32)

on [0, T ]× [0, L(i)] with G̃
(i)
± as in (33) (i ∈ {1, ..., N}). The equations (32) can also

be written in the form (see (38))

∂t r
(i)
+ + λ̄

(i)
+ ∂x r

(i)
+ = −(r

(i)
+ + r

(i)
− ) K̃

(i)
+ ,

∂t r
(i)
− − λ̄

(i)
− ∂x r

(i)
− = −(r

(i)
+ + r

(i)
− ) K̃

(i)
−

(67)

with K̃
(i)
± as defined in (39), (40) with R̄±, r± replaced by R̄

(i)
± , r

(i)
± (i ∈ {1, ..., N}).

We suppose that at the boundary node x = 0 of pipe 1 the condition

q(1)(t, 0) = q̄ (68)

holds and that at the boundary node x = L(i) of pipe i we have the feedback
condition (i ∈ {1, ..., N})

r
(i)
− (t, L(i)) = k(i) r

(i)
+ (t, L(i)) (69)

with constants k(i) ≥ 0. The conditions (69) are of the form (35) from Lemma 2.4

with h
(i)
− ≡ 0 and satisfy (36). Moreover, the equations (77), (89) and (92), which

are developed in the proof of Theorem 3.2, imply that also at the end x = 0 of

pipe i we have boundary conditions of the form (35) with h
(i)
+ ≡ 0 that satisfy (36)

(i ∈ {1, ..., N}). Furthermore, we assume that for x ∈ [0, L(i)] we have the initial
conditions (i ∈ {1, ..., N})

(r
(i)
+ (0, x), r

(i)
− (0, x)) = ϕ(i)(x) (70)
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with C1-functions ϕ(i) and that the C1-compatibility conditions are satisfied at the
points (t, x) = (0, 0) and (t, x) = (0, L(i)) (i ∈ {1, ..., N}).

Then, due to Lemma 2.4, there exists ε0 > 0 such that, if ||ϕ(i)||C1([0, L(i)]) <

ε0 (i ∈ {1, ..., N}), for all i ∈ {1, ..., N} there exists a C1-solution (r
(i)
+ , r

(i)
− ) ∈

(C1([0, T ] × [0, L(i)]))2 of (67) with small C1-norm that satisfies (68), (69), (70)
and

K̃
(i)
+ > 0, K̃

(i)
− > 0 (71)

(see also Remark 2.7). In particular, there exist ε1 > 0, ε2 > 0 such that at the
boundary nodes we have for all t ∈ [0, T ] (i ∈ {1, ..., N})

|r(i)
− (t, 0)| ≤ ε1, |r(i)

+ (t, L(i))| ≤ ε2. (72)

We define the positive real numbers (i ∈ {1, ..., N})

1

µ(i)
:=

∫ L(i)

0

1

λ̄
(i)
+ (x)

+
1

λ̄
(i)
− (x)

dx (73)

and consider the Lyapunov function

ES(t) :=

N∑
i=1

E(i)(t) (74)

where

E(i)(t) =

∫ L(i)

0

A(i)

λ̄
(i)
+ (x)

h
(i)
+ (x) (r

(i)
+ (t, x))2 +

B(i)

λ̄
(i)
− (x)

h
(i)
− (x) (r

(i)
− (t, x))2 dx

with A(i) > 0, B(i) > 0 and h
(i)
+ , h

(i)
− as in (42), (43) with µ, λ̄± replaced by µ(i),

λ̄
(i)
± (i ∈ {1, ..., N}).

In order to obtain an exponential decay of ES(t), which is stated in Theorem 3.2,
we choose the constants A(i) > 0, B(i) > 0 and k(i) ≥ 0 (i ∈ {1, ..., N}) as follows:
First let B(1)/A(1) be sufficiently large such that the inequality

sup
|ξ|≤ε1

|∂R−F+(q̄, R̄
(1)
− (0) + ξ)|2 ≤ B(1)

A(1)
(75)

holds with the function F+ from (18). Then, for i ∈ {1, ..., N−1}, we choose k(i) ≥ 0,
A(i+1) > 0 and B(i+1) > 0 via an inductive scheme: Let i be in {1, ..., N − 1} and
assume that A(i), B(i) have already been chosen. Let k(i) ≥ 0 be sufficiently small
such that the inequality

−A(i)h
(i)
+ (L(i)) + B(i)h

(i)
− (L(i))(k(i))2 < 0 (76)

holds. Equation (31) and the condition (69) imply for the mass flux at the com-
pressor i, i+ 1:

q(i)(t, L(i)) = q̄
(

1− (k(i)+1)ρ̄(i)(L(i))
2q̄ r

(i)
+ (t, L(i))

)
exp

(
k(i)−1

2a r
(i)
+ (t, L(i))

)
. (77)

For ε2 sufficiently small, we obtain

|q(i)(t, L(i))− q̄| ≤ α(i) |r(i)
+ (t, L(i))| (78)

with some constant α(i) > 0. Furthermore, we choose A(i+1), B(i+1) such that the
inequalities

−A(i)h
(i)
+ (L(i)) + B(i)h

(i)
− (L(i))(k(i))2 + 2(α(i)β(i))2A(i+1) ≤ 0 (79)
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and

2(γ(i))2A(i+1) − B(i+1) ≤ 0 (80)

hold with

β(i) := sup
|ξ1|≤α(i)ε2

sup
|ξ2|≤ε1

|∂q F+(q̄ + ξ1, R̄
(i+1)
− (0) + ξ2)|, (81)

γ(i) := sup
|ξ1|≤α(i)ε2

sup
|ξ2|≤ε1

|∂R− F+(q̄ + ξ1, R̄
(i+1)
− (0) + ξ2)|. (82)

Note that, as −A(i)h
(i)
+ (L(i)) + B(i)h

(i)
− (L(i))(k(i))2 is strictly negative (see (76)),

A(i+1) > 0 can be chosen such that (79) is fulfilled. Finally, we choose k(N) ≥ 0
small enough such that

−A(N)h
(N)
+ (L(N)) + B(N)h

(N)
− (L(N))(k(N))2 ≤ 0. (83)

The choice of A(i), B(i) and k(i) (i ∈ {1, ..., N}) is in detail discussed in the proof
of Theorem 3.2.

For the time derivative E′S(t) we obtain the following theorem:

Theorem 3.2 (Feedback Stabilization for a Linear Sequence). Consider a network
of N (N ≥ 2) pipes serially connected by N−1 compressors. Let a finite time T > 0

and stationary states (R̄
(i)
+ , R̄

(i)
− ) ∈ (C1([0, L(i)]))2 with corresponding eigenvalues

λ̄
(i)
± (i ∈ {1, ..., N}) be given.

Consider the system (67) on the sets [0, T ]×[0, L(i)] with the boundary conditions
(68), (69) and the Lyapunov function ES(t) as in (74) with constants A(i) > 0,
B(i) > 0 and k(i) ≥ 0 as chosen in (75), (76), (79), (80), (83) (i ∈ {1, ..., N}).
Then there exists ε0 > 0 such that the following statement holds: If we have initial
conditions of the form (70) with C1-functions ϕ(i) with ||ϕ(i)||C1([0, L(i)]) < ε0 that

satisfy the C1-compatibility conditions at (t, x) = (0, 0) and (t, x) = (0, L(i)) (i ∈
{1, ..., N}), then for i ∈ {1, ..., N} a C1-solution (r

(i)
+ (t, x), r

(i)
− (t, x)) of (67) with

small C1-norm exists on [0, T ]× [0, L(i)] that satisfies (68), (69), (70), (71).
Suppose that for this solution we have

U
(i)
− ≤ V

(i)
− (84)

with U
(i)
− , V

(i)
− as defined in (46), (47) with L, µ, λ̄±, K̃± replaced by L(i), µ(i),

λ̄
(i)
± , K̃

(i)
± (i ∈ {1, ..., N}). Furthermore, assume that B(i)/A(i) is sufficiently large

such that (i ∈ {1, ..., N})
B(i)

A(i)
∈ [U

(i)
− , V

(i)
− ]. (85)

Then, for c := 1
2 min{µ(1), ..., µ(N)}, the following inequality holds (t ∈ [0, T ]):

E′S(t) ≤ −cES(t). (86)

Remark 3.3. The condition (69) is a linear feedback law at the compressor i, i+ 1
for i ∈ {1, ..., N − 1} and at the consumer’s end of the sequence for i = N . For

example, absorbing boundary conditions, i.e. r
(i)
− (·, L(i)) ≡ 0, satisfy this feedback

law. To keep this feedback law, the compressor i, i + 1 has to maintain the mass
flux q(i)(t, L(i)) as in (77), which is close to the mass flux q̄ for the stationary case

if |r(i)
+ (t, L(i))| is sufficiently small (i ∈ {1, ..., N − 1}). Equation (68) means that

the producer at the end x = 0 of pipe 1 maintains the steady mass flux q̄.
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Remark 3.4. In [8] the feedback stabilization of a network consisting of two pipes
coupled by one compressor is considered. Thereby, linear feedback laws are active
at the producer’s and the consumer’s end of the network and the compressor only
has to maintain the constant mass flux q̄. Unfortunately, this approach does not
work for a network of more than two pipes coupled by compressors as then there
exist pipes with compressors at both ends. For such a more complex network also
the compressors have to maintain more complex feedback laws. The technical rea-

son is that, due to the coupling condition (58), the relationship between r
(i+1)
+ (t, 0)

and r
(i+1)
− (t, 0) is already determined by the relationship between r

(i)
+ (t, L(i)) and

r
(i)
− (t, L(i)) and vice versa. Therefore, for a network of N pipes coupled by N − 1

compressors, we consider an approach that uses new feedback laws at the compres-
sors.

Proof. For i ∈ {1, ..., N}, Lemma 2.4 yields the existence of a C1-solution (r
(i)
+ , r

(i)
− )

of (67) with small C1-norm, that is, in particular, (72) holds.

According to the definition of h
(i)
+ , h

(i)
− and µ(i) (see (42), (43), (73)) we have for

i ∈ {1, ..., N} and all x ∈ [0, L(i)]:

exp(−1) ≤
h

(i)
+ (x)

h
(i)
− (x)

≤ 1.

Together with (85) this yields for i ∈ {1, ..., N}:

sup
(t,x)∈[0,T ]×[0,L(i)]

λ̄
(i)
− (x)

λ̄
(i)
+ (x)

K̃
(i)
+ (t, x)

K̃
(i)
− (t, x)

h
(i)
+ (x)

h
(i)
− (x)

≤ B(i)

A(i)

and

B(i)

A(i)
≤ inf

(t,x)∈[0,T ]×[0,L(i)]

λ̄
(i)
− (x)

λ̄
(i)
+ (x)

K̃
(i)
+ (t, x)

K̃
(i)
− (t, x)

h
(i)
+ (x)

h
(i)
− (x)

(
1 +

µ(i)

2K̃
(i)
+ (t, x)

)
.

Hence, Lemma 2.6 yields the estimate

E′S(t) ≤
∑N
i=1−

µ(i)

2 E(i)(t)

+
∑N
i=1

[
−A(i)h

(i)
+ (x)(r

(i)
+ (t, x))2 +B(i)h

(i)
− (x)(r

(i)
− (t, x))2

]L(i)

x=0
.

(87)

In the following we show that the choice of A(i), B(i) and k(i) in (75), (76), (79), (80),
(83) (i ∈ {1, ..., N}) guarantees that the boundary terms in (87) are non-positive,
which implies that the inequality (86) holds. First, for the boundary terms at the
end x = 0 of pipe 1, we prove the inequality (t ∈ [0, T ])

A(1) (r
(1)
+ (t, 0))2 − B(1) (r

(1)
− (t, 0))2 ≤ 0. (88)

For ε1 sufficiently small we have (see (17))

q̄ ∈ (0, a exp(1 +
R̄

(1)
− (0) + r

(1)
− (t, 0)

a
))

and, thus, we can use the function F+ from (18) and get

R̄
(1)
+ (0) = F+(q̄, R̄

(1)
− (0))

and

r
(1)
+ (t, 0) + R̄

(1)
+ (0) = F+(q̄, R̄

(1)
− (0) + r

(1)
− (t, 0)),
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which yields

r
(1)
+ (t, 0) = F+(q̄, R̄

(1)
− (0) + r

(1)
− (t, 0)) − F+(q̄, R̄

(1)
− (0)). (89)

Since the function F+(q̄, ·) is continuously differentiable (with respect to R−), the
mean value theorem implies

r
(1)
+ (t, 0) = ∂R− F+(q̄, R̄

(1)
− (0) + ξ(t)) r

(1)
− (t, 0)

for some real number ξ(t) with |ξ(t)| ≤ ε1. As the derivative ∂R−F+(q̄, R̄
(1)
− (0)+·) is

uniformly bounded on [0, T ] for ε1 small enough, inequality (88) holds if B(1)/A(1)

is large enough as in (75).
Now for i ∈ {1, ..., N−1} we show that for the boundary terms at the compressor

i, i+ 1 we have (t ∈ [0, T ])

− A(i)h
(i)
+ (L(i))(r

(i)
+ (t, L(i)))2 + B(i)h

(i)
− (L(i))(r

(i)
− (t, L(i)))2

+ A(i+1)(r
(i+1)
+ (t, 0))2 − B(i+1)(r

(i+1)
− (t, 0))2 ≤ 0.

(90)

Equation (31) and the feedback condition (69) yield equation (77) for the mass flux
at the compressor i, i+1. Thus, q(i)(t, L(i)) is in a small neighbourhood of q̄ as long

as ε2 is sufficiently small. More precisely, using exp(x) =
∑∞
ν=0

xν

ν! we obtain

|q(i)(t, L(i))− q̄| ≤ α(i) |r(i)
+ (t, L(i))| (91)

for some constant α(i) > 0. Now we consider the relationship between r
(i+1)
+ (t, 0)

and r
(i+1)
− (t, 0) at the end x = 0 of pipe i+ 1. According to the coupling condition

(58), we have q(i+1)(t, 0) = q(i)(t, L(i)). For q(i+1)(t, 0) close to q̄ and ε1 sufficiently
small, we have (see (17))

q(i+1)(t, 0) ∈ (0, a exp(1 +
R̄

(i+1)
− (0) + r

(i+1)
− (t, 0)

a
))

and, thus, we can use the function F+ from (18) and obtain

r
(i+1)
+ (t, 0) = F+(q(i+1)(t, 0), R̄

(i+1)
− (0) + r

(i+1)
− (t, 0)) − F+(q̄, R̄

(i+1)
− (0)). (92)

The function F+ is continuously differentiable with respect to q and R− and, thus,
applying the mean value theorem for a real function depending on two variables,
we get

r
(i+1)
+ (t, 0) = f1(ξ1(t), ξ2(t)) (q(i+1)(t, 0)− q̄) + f2(ξ1(t), ξ2(t)) r

(i+1)
− (t, 0) (93)

with
f1(ξ1(t), ξ2(t)) := ∂q F+(q̄ + ξ1(t), R̄

(i+1)
− (0) + ξ2(t)),

f2(ξ1(t), ξ2(t)) := ∂R− F+(q̄ + ξ1(t), R̄
(i+1)
− (0) + ξ2(t))

and real numbers ξ1(t) and ξ2(t) with |ξ1(t)| ≤ α(i)ε2 and |ξ2(t)| ≤ ε1. The functions
f1 and f2 are uniformly bounded on [0, T ] if ε1 and ε2 are small enough. Hence, the
real constants β(i) ≥ 0 and γ(i) ≥ 0 as in (81) and (82) are well-defined. Equations
(81), (82), (91) and (93) yield

|r(i+1)
+ (t, 0)| ≤ α(i)β(i) |r(i)

+ (t, L(i))| + γ(i) |r(i+1)
− (t, 0)|.

Using the inequality (x+ y)2 ≤ 2x2 + 2y2 for x, y ∈ R we obtain

(r
(i+1)
+ (t, 0))2 ≤ 2(α(i)β(i))2(r

(i)
+ (t, L(i)))2 + 2(γ(i))2(r

(i+1)
− (t, 0))2. (94)

Thus, the feedback condition (69) and the inequalities (79), (80), (94) imply in-
equality (90).
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At the consumer’s end x = L(N) of pipe N , the feedback condition (69) for i = N
and inequality (83) yield

−A(N)h
(N)
+ (L(N))(r

(N)
+ (t, L(N)))2 + B(N)h

(N)
− (L(N))(r

(N)
− (t, L(N)))2 ≤ 0. (95)

Finally, due to (88), (90) and (95), all boundary terms in (87) are non-positive.

4. Example. In section 2.3 we have seen that due to the friction force there is a
loss of pressure along the pipe and that a subsonic stationary C1-solution exists
along the pipe if its length is shorter than the critical length (see (26))

x0 =
δ

fg

(
a2 ρ̄(0)2

q̄2
+ 2 ln

(
q̄

ρ̄(0)

)
− 1− 2 ln(a)

)
.

Hence, for a = 300ms , δ = 1m, fg = 0.005, ρ̄(0) = 80 kg
m3 (that is the inflow

pressure p̄(0) = 72bar) and q̄ = 800 kg
m2s which are typical values for high-pressure

gas pipes [10, 16, 17] we obtain x0 ≈ 180km. Therefore, approximately every 180km
a compressor station is necessary.

The critical length can be increased by reducing the friction at the inner surface
of the pipes or by increasing the inflow pressure. The offshore gas pipeline which is
currently under construction in the Baltic Sea, for example, has a special interior
antifriction coating and will operate with pressures around 200bar [14]. Thus, this
pipeline will transport natural gas over a distance of 1220km from Portovaya Bay,
Russia, to Greifswald, Germany, without intermediate compressor control.

5. Summary and outlook. In this paper we have analysed the gas flow through a
network of serially connected pipes modelled by the isothermal Euler equations. We
have considered the existence and uniqueness of subsonic stationary C1-solutions
and the semi-global existence of non-stationary solutions locally around a stationary
state. We have also developed boundary feedback laws to stabilize the system
around a stationary state. To do so we have used a Lyapunov function which yields
exponential decay of the L2-norm of the difference between the stationary state and
a non-stationary solution locally around it.

We have presented our results for a linear sequence of pipes coupled by compres-
sor stations. However, our results can be extended to the flow in tree-like networks
by considering star-shaped junctions of pipes. Related problems of star-shaped
string networks, that are governed by wave equations, have been studied in [9].
Furthermore, our Lyapunov function can be modified in order to obtain exponen-
tial decay of the H2-norm of the difference between the stationary state and the
non-stationary solution (as in [6]) and to stabilize the system on an infinite time
interval [0, ∞). Another open problem is the question whether the stabilization
still works if one of the compressors breaks down. We will consider these aspects in
a forthcoming paper.

Acknowledgments. We thank the DFG SPP 1253 and DAAD D/0811409 (Pro-
cope 2009) for financial support. We thank the anonymous referees for helpful
comments.



GAS FLOW IN A SEQUENCE OF PIPES 709

REFERENCES

[1] M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the
isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295–314.

[2] M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media,

1 (2006), 41–56.
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