Citation: Rinaldo M. Colombo, Francesca Marcellini. Coupling conditions for the $3\times 3$ Euler system[J]. Networks and Heterogeneous Media, 2010, 5(4): 675-690. doi: 10.3934/nhm.2010.5.675
[1] | M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314 (electronic). |
[2] | M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56 (electronic). |
[3] | A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications 20, Oxford University Press, Oxford, 2000. |
[4] | R. M. Colombo and M. Garavello, On the $p$-system at a junction, in "Control Methods in Pde-Dynamical Systems," volume 426 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2007), 193-217. |
[5] | R. M. Colombo and M. Garavello, On the 1D modeling of fluid flowing through a junction, preprint, (2009). |
[6] | R. M. Colombo and G. Guerra, On general balance laws with boundary, J. Diff. Equations, 248 (2010), 1017-1043. doi: 10.1016/j.jde.2009.12.002 |
[7] | R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Modeling and optimal control of networks of pipes and canals, SIAM J. Math. Anal., 48 (2009), 2032-2050. |
[8] | R. M. Colombo, M. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622. doi: 10.1137/070690298 |
[9] | R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system, J. Math. Anal. Appl., 361 (2010), 440-456. doi: 10.1016/j.jmaa.2009.07.022 |
[10] | R. M. Colombo and C. Mauri, Euler system at a junction, Journal of Hyperbolic Differential Equations, 5 (2008), 547-568. doi: 10.1142/S0219891608001593 |
[11] | M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models," AIMS Series on Applied Mathematics 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. |
[12] | P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902. doi: 10.1016/j.anihpc.2004.02.002 |
[13] | G. Guerra, F. Marcellini and V. Schleper, Balance laws with integrable unbounded source, SIAM J. Math. Anal., 41 (2009), 1164-1189. doi: 10.1137/080735436 |
[14] | H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515 (electronic). doi: 10.1137/S0036141097327033 |
[15] | T. P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys., 83 (1982), 243-260. doi: 10.1007/BF01976043 |
[16] | J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Second edition, Springer-Verlag, New York, 1994. |
[17] | G. B. Whitham, "Linear and Nonlinear Waves," John Wiley & Sons Inc., New York, 1999, reprint of the 1974 original, A Wiley-Interscience Publication. |