Research article Special Issues

Controllability of a generalized multi-pantograph system of non-integer order with state delay

  • Received: 07 February 2023 Revised: 24 March 2023 Accepted: 30 March 2023 Published: 11 April 2023
  • MSC : 93Cxx

  • This paper presents the dynamical aspects of a nonlinear multi-term pantograph-type system of fractional order. Pantograph equations are special differential equations with proportional delays that are employed in many scientific disciplines. The pantograph mechanism, for instance, has been applied in numerous scientific disciplines like electrodynamics, engineering, and control theory. Because of its key rule in diverse fields, the current study establishes some necessary criteria for its controllability. The main idea of the proof is based on converting the system into a fixed point problem and introducing a suitable controllability Gramian matrix $ \mathcal{G}_{c} $. The Gramian matrix $ \mathcal{G}_{c} $ is used to demonstrate the linear system's controllability. Controllability criteria for the associated nonlinear system have been established in the sections that follow using the Schaefer fixed-point theorem and the Arzela-Ascoli theorem, as well as the controllability of the linear system and a few key assumptions. Finally, a computational example is listed.

    Citation: Irshad Ahmad, Saeed Ahmad, Ghaus ur Rahman, Manuel De la Sen. Controllability of a generalized multi-pantograph system of non-integer order with state delay[J]. AIMS Mathematics, 2023, 8(6): 13764-13784. doi: 10.3934/math.2023699

    Related Papers:

  • This paper presents the dynamical aspects of a nonlinear multi-term pantograph-type system of fractional order. Pantograph equations are special differential equations with proportional delays that are employed in many scientific disciplines. The pantograph mechanism, for instance, has been applied in numerous scientific disciplines like electrodynamics, engineering, and control theory. Because of its key rule in diverse fields, the current study establishes some necessary criteria for its controllability. The main idea of the proof is based on converting the system into a fixed point problem and introducing a suitable controllability Gramian matrix $ \mathcal{G}_{c} $. The Gramian matrix $ \mathcal{G}_{c} $ is used to demonstrate the linear system's controllability. Controllability criteria for the associated nonlinear system have been established in the sections that follow using the Schaefer fixed-point theorem and the Arzela-Ascoli theorem, as well as the controllability of the linear system and a few key assumptions. Finally, a computational example is listed.



    加载中


    [1] V. G. Ivancevic, D. J. Reid, Complexity and Control: Towards a Rigorous Behavioral Theory of Complex Dynamical Systems, World Scientific, 2014. https://doi.org/10.1142/9406
    [2] A. Isidori, Nonlinear Control Systems: An Introduction, Berlin, Heidelberg: Springer, 1985. https://doi.org/10.1007/978-3-662-02581-9
    [3] R. Bellman, Introduction to the Mathematical Theory of Control Processes: Linear Equations and Quadratic Criteria, Elsevier, 2016. https://doi.org/10.1016/S0076-5392(08)61057-7
    [4] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theory Methods Appl., 69 (2008), 2677–2682. https://doi.org/10.1142/10238
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5
    [6] R. Hilfer, Applications of Fractional Calculus in Physics, World scientific, 2000. https://doi.org/10.1142/3779
    [7] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley and Sons, 1993.
    [8] R. Koeller, Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 51 (1984), 299–307. https://doi.org/10.1115/1.3167616 doi: 10.1115/1.3167616
    [9] M. Rahimy, Applications of fractional differential equations, Appl. Math. Sci., 4 (2010), 2453–2461.
    [10] T. Kaczorek, K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer, 2015. https://doi.org/10.1007/978-3-319-11361-6
    [11] S. Manabe, The non-integer integral and its application to control systems, IEEJ, 80 (1960), 589–597. https://doi.org/10.11526/ieejjournal1888.80.589 doi: 10.11526/ieejjournal1888.80.589
    [12] Y. Chen, I. Petras, D. Xue, Fractional order control-a tutorial, In: 2009 American Control Conference, IEEE, 2009, 1397–1411. https://doi.org/10.1109/ACC.2009.5160719
    [13] A. Soukkou, M. Belhour, S. Leulmi, Review, design, optimization and stability analysis of fractional-order pid controller, IJIS, 8 (2016), 73. https://doi.org/10.5815/ijisa.2016.07.08 doi: 10.5815/ijisa.2016.07.08
    [14] D. Baleanu, G. C. Wu, Y. R. Bai, F. L. Chen, Stability analysis of caputo-like discrete fractional systems, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 520–530. https://doi.org/10.1016/j.cnsns.2017.01.002 doi: 10.1016/j.cnsns.2017.01.002
    [15] A. El-Sayed, H. Nour, A. Elsaid, A. Matouk, A. Elsonbaty, Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional order hyperchaotic system, Appl. Math. Model., 40 (2016), 3516–3534. https://doi.org/10.1016/j.apm.2015.10.010 doi: 10.1016/j.apm.2015.10.010
    [16] G. Fernández-Anaya, G. Nava-Antonio, J. Jamous-Galante, R. Muñoz-Vega, E. G. Hernández-Martínez, Asymptotic stability of distributed order nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 541–549. https://doi.org/10.1016/j.cnsns.2017.01.020 doi: 10.1016/j.cnsns.2017.01.020
    [17] S. Huang, R. Zhang, D. Chen, Stability of nonlinear fractional-order time varying systems, J. Comput. Nonlinear Dyn., 11 (2016). https://doi.org/10.1115/1.4031587
    [18] B. Vinagre, C. Monje, A. Calderon, Fractional order systems and fractional order control actions, lecture 3, In: IEEE CDC, 2 (2002).
    [19] Z. Zhou, W. Gong, Finite element approximation of optimal control problems governed by time fractional diffusion equation, Comput. Math. with Appl., 71 (2016), 301–318. https://doi.org/10.1016/j.camwa.2015.11.014 doi: 10.1016/j.camwa.2015.11.014
    [20] Z. Zhou, Z. Tan, Finite element approximation of optimal control problem governed by space fractional equation, J. Sci. Comput., 78 (2019), 1840–1861. https://doi.org/10.1007/s10915-018-0829-0 doi: 10.1007/s10915-018-0829-0
    [21] A. Jajarmi, N. Pariz, A. V. Kamyad, S. Effati, A novel modal series representation approach to solve a class of nonlinear optimal control problems, IJICIC, 1 (2011), 2. https://doi.org/10.1115/1.4033755 doi: 10.1115/1.4033755
    [22] A. Jajarmi, N. Pariz, S. Effati, A. V. Kamyad, Infinite horizon optimal control for nonlinear interconnected large-scale dynamical systems with an application to optimal attitude control, Asian J. Control., 14 (2012), 1239–1250. https://doi.org/10.1002/asjc.452 doi: 10.1002/asjc.452
    [23] A. Jajarmi, M. Hajipour, An efficient recursive shooting method for the optimal control of time-varying systems with state time-delay, Appl. Math. Model., 40 (2016), 2756–2769. https://doi.org/10.1016/j.apm.2015.09.072 doi: 10.1016/j.apm.2015.09.072
    [24] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998.
    [25] D. Kumar, J. Singh, D. Baleanu, Sushila, Analysis of regularized long-wave equation associated with a new fractional operator with mittag-leffler type kernel, Phys. A, 492 (2018), 155–167. https://doi.org/10.1016/j.physa.2017.10.002 doi: 10.1016/j.physa.2017.10.002
    [26] D. Kumar, J. Singh, K. Tanwar, D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and mittag-leffler laws, Int. J. Heat Mass Transf., 138 (2019), 1222–1227. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.094 doi: 10.1016/j.ijheatmasstransfer.2019.04.094
    [27] J. Singh, D. Kumar, D. Baleanu, S. Rathore, On the local fractional wave equation in fractal strings, Math. Methods Appl. Sci., 42 (2019), 1588–1595. https://doi.org/10.1002/mma.5458 doi: 10.1002/mma.5458
    [28] A. Jajarmi, B. Ghanbari, D. Baleanu, A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 093111. https://doi.org/10.1063/1.5112177 doi: 10.1063/1.5112177
    [29] A. Jajarmi, S. Arshad, D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 122524. https://doi.org/10.1016/j.physa.2019.122524 doi: 10.1016/j.physa.2019.122524
    [30] D. Baleanu, A. Jajarmi, S. S. Sajjadi, D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127. https://doi.org/10.1063/1.5096159 doi: 10.1063/1.5096159
    [31] K. Balachandran, S. Divya, L. Rodríguez-Germá, J. J. Trujillo, Relative controllability of nonlinear neutral fractional integro-differential systems with distributed delays in control, Math. Methods Appl. Sci., 39 (2016), 214–224. https://doi.org/10.1002/mma.3470 doi: 10.1002/mma.3470
    [32] K. Balachandran, Controllability of nonlinear fractional delay dynamical systems with multiple delays in control, In: Theory and Applications of Non-integer Order Systems, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-45474-0_29
    [33] M. Muslim, R. K. George, Trajectory controllability of the nonlinear systems governed by fractional differential equations, Differ. Equ. Dyn. Syst., 27 (2019), 529–537. https://doi.org/10.1007/s12591-016-0292-z doi: 10.1007/s12591-016-0292-z
    [34] B. S. Vadivoo, R. Ramachandran, J. Cao, H. Zhang, X. Li, Controllability analysis of nonlinear neutral-type fractionalorder differential systems with state delay and impulsive effects, Int. J. Control Autom. Syst., 16 (2018), 659–669. https://doi.org/10.1007/s12555-017-0281-1 doi: 10.1007/s12555-017-0281-1
    [35] M. Li, A. Debbouche, J. Wang, Relative controllability in fractional differential equations with pure delay, Math. Methods Appl. Sci., 41 (2018), 8906–8914. https://doi.org/10.1002/mma.4651 doi: 10.1002/mma.4651
    [36] X. Li, Z. Liu, J. Li, C. Tisdell, Existence and controllability for nonlinear fractional control systems with damping in hilbert spaces, Acta Math. Sci., 39 (2019), 229–242. https://doi.org/10.1007/s10473-019-0118-5 doi: 10.1007/s10473-019-0118-5
    [37] P. Suresh Kumar, Relative controllability of nonlinear fractional damped delay systems with multiple delays in control, In: Mathematical Modelling, Optimization, Analytic and Numerical Solutions, Springer, 2020,367–378. https://doi.org/10.1007/978-981-15-0928-5-18
    [38] Y. Yi, D. Chen, Q. Xie, Controllability of nonlinear fractional order integrodifferential system with input delay, Math. Methods Appl. Sci., 42 (2019), 3799–3817. https://doi.org/10.1002/mma.5613 doi: 10.1002/mma.5613
    [39] M. Nawaz, J. Wei, S. Jiale, The controllability of fractional differential system with state and control delay, Adv. Differ. Equ., 2020 (2020), 30. https://doi.org/10.1186/s13662-019-2479-4 doi: 10.1186/s13662-019-2479-4
    [40] M. Nawaz, J. Wei, S. Jiale, The controllability of nonlinear fractional differential system with pure delay, Adv. Differ. Equ., 2020 (2020), 183. https://doi.org/10.1186/s13662-020-02599-9 doi: 10.1186/s13662-020-02599-9
    [41] X. Chen, L. Wang, The variational iteration method for solving a neutral functional-differential equation with proportional delays, Comput. Math. Appl., 59 (2010), 2696–2702. https://doi.org/10.1016/j.camwa.2010.01.037 doi: 10.1016/j.camwa.2010.01.037
    [42] J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Math. Phys. Eng. Sci., 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [43] X. Feng, An analytic study on the multi-pantograph delay equations with variable coefficients, B. Math. Soc. Sci. Math., 2013,205–215.
    [44] P. Borisut, P. Kumam, I. Ahmed, W. Jirakitpuwapat, Existence and uniqueness for $\psi$-hilfer fractional differential equation with nonlocal multi-point condition, Math. Methods Appl. Sci., 44 (2021), 2506–2520. https://doi.org/10.1002/mma.6092 doi: 10.1002/mma.6092
    [45] P. Borisut, P. Kumam, I. Ahmed, K. Sitthithakerngkiet, Positive solution for nonlinear fractional differential equation with nonlocal multi-point condition, Fixed Point Theory, 21 (2020), 427–440. https://doi.org/10.24193/fpt-ro.2020.2.30 doi: 10.24193/fpt-ro.2020.2.30
    [46] I. Ahmed, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. Ahmed Demba, Stability results for implicit fractional pantograph differential equations via $\phi$-hilfer fractional derivative with a nonlocal riemann-liouville fractional integral condition, Mathematics, 8 (2020), 94. https://doi.org/10.3390/math8010094 doi: 10.3390/math8010094
    [47] S. Das, Functional Fractional Calculus, Heidelberg: Springer Berlin, 2011. https://doi.org/10.1007/978-3-642-20545-3
    [48] Y. Zhou, J. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World scientific, 2016. https://doi.org/10.1016/j.na.2007.08.042
    [49] M. Li, J. Wang, Finite time stability of fractional delay differential equations, Appl. Math. Lett., 64 (2017), 170–176. https://doi.org/10.1016/j.aml.2016.09.004
    [50] M. Li, J. Wang, Exploring delayed mittag-leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254–265. https://doi.org/10.1016/j.amc.2017.11.063 doi: 10.1016/j.amc.2017.11.063
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1211) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog