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Abstract: This paper presents the dynamical aspects of a nonlinear multi-term pantograph-type
system of fractional order. Pantograph equations are special differential equations with proportional
delays that are employed in many scientific disciplines. The pantograph mechanism, for instance,
has been applied in numerous scientific disciplines like electrodynamics, engineering, and control
theory. Because of its key rule in diverse fields, the current study establishes some necessary criteria
for its controllability. The main idea of the proof is based on converting the system into a fixed point
problem and introducing a suitable controllability Gramian matrix Gc. The Gramian matrix Gc is used
to demonstrate the linear system’s controllability. Controllability criteria for the associated nonlinear
system have been established in the sections that follow using the Schaefer fixed-point theorem and the
Arzela-Ascoli theorem, as well as the controllability of the linear system and a few key assumptions.
Finally, a computational example is listed.
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1. Introduction

In dynamical control systems, controllability is an essential tool and plays a vital role in diverse
fields of sciences and engineering. In such systems, to achieve a specific goal, an input control
function is acquired to drive the system state from some known state to a desirable state. The
dynamics of control systems are usually modeled using ordinary differential equations, partial
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differential equations, or even more precisely fractional order differential equations. The research
work done in [1–3], demonstrates some modern and classical work on control theory.

In recent years, an increasing interest has been seen in fractional mathematical models in order to
increase the quality of modeling real-world phenomena and enhance system stability. Fractional order
derivatives have gained a nominal rule in modern research in diverse fields of science such as physics,
chemistry, mathematical biology, and engineering. Being an accurate and precise method of modeling
dynamical systems, it has attracted many great researchers and mathematicians in various applied
circumstances; see [4–10] for details. In contrast, integer order controllers have been generalized to
fractional order controllers [11], whereas Manabe has explored fractional order systems in the area
of automatic control. Similar work on fractional order controllers and discretization techniques has
also been carried out in [12]. Stability analysis of a noninteger order PID controller, optimization,
and design have been explored in [13]. For further study on some new ideas in dynamic systems and
control in the framework of fractional calculus, we suggest the research work done in [14–20].

Several systems in our surroundings have a great dependence on their entire past states besides
their reliance on their recent states. Such systems include chemical processes, transmission lines,
rolling mill systems and our industrial systems. Laplace and Condorcet introduced delay differential
equations and delay integro-differential equations in the eighteenth century to model such systems
mathematically. Many techniques have been used in the literature to solve such systems with state
or control delays [21–23]. Several research studies have also been carried out towards applications
of noninteger order systems in diverse fields, and some useful results have been obtained. In the
controllability analysis of nonlinear systems, the main difficulty one has to face is the solution of
such systems. The most commonly used techniques for finding solutions are the numerical technique,
the spectral method, etc. Due to its high accuracy and precision, the spectral method of solutions is
advantageous over the other methods of solutions. A similar method of solutions has been utilized in
the solutions of linear fractional differential equations by the authors in [24–30].

Among other qualitative aspects like stability, existence, uniqueness of solutions, etc.,
controllability is a key concept and has a tremendous role in mathematical control theory. It is used to
control an object’s behavior to get the intended result. In recent approaches toward the controllability
of nonlinear systems, the most powerful and appropriate method is the fixed-point technique. Some
fixed-point techniques have particularly been utilized to establish controllability results, depending on
the nonlinear function being used in the systems. In [31] Balachandran considered a neutral
fractional integro-differential system with distributed delays and explored its controllability results.
Balachandran and Krishnan [32], established controllability conditions for a nonlinear fractional order
system with multiple delays. In [33] Muslim and George have investigated the controllability of a
fractional dynamical system in a Banach space. Controllability analysis of fractional order
neutral-type systems with impulsive effects and state delay has been explored in [34]. The relative
controllability of a dynamical system governed by a fractional order system with a pure delay has
been studied in [35]. The existence results and controllability conditions of a nonlinear system with
damping in Hilbert space have been considered in [36]. Kumar in [37] has recently explored
fractional order damped delay systems with multiple delays for relative controllability. Yapeng et al.
in [38] have investigated the controllability results of a dynamical system with input delay, governed
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by a fractional order integro-differential system. Their inclusion is given by
cDrv(t) = Mv(t) + Nu(t) + Qu(t − ρ) + h(t, v(t))

+ g(t, v(t),
∫ t

0
f (t, s, v(s))ds), v(t) ∈ Rn, t ∈ J = [0, `],

v(0) = v0, u(t) = ψ(t), −ρ ≤ t ≤ 0,

where r ∈ (0, 1), M is an n × n matrix, N and Q are matrices of order n × m, and the functions
h : J × Rn → Rn, g : J × Rn × Rn → Rn and f : J × J × Rn → Rn are continuous and nonlinear.

Nawaz et al. [39], explored the controllability of a dynamical system modeled by a noninteger
order differential system with control and state delay. Very recently, in another paper, Nawaz
et al. [40] utilized the delayed Mittag-Leffler matrix functions and Schauder’s fixed point techniques
for controllability results of a nonlinear system with pure delay in the framework of fractional
calculus. Their inclusion in the linear case is given by cDrv(t) = Mv(t − ρ) + Nu(t), v(t) ∈ Rn, ρ > 0, t ∈ J = [0, `],

v(t) = ψ(t),−ρ ≤ t ≤ 0,

and the corresponding nonlinear system is described by cDrv(t) = Mv(t − ρ) + Nu(t) + h(t, v(t − ρ), u(t)), v(t) ∈ Rn, ρ > 0, t ∈ J = [0, `],
v(t) = ψ(t),−ρ ≤ t ≤ 0,

where cDrv(t) represents the Caputo derivative of v(t) with 0 < r ≤ 1. M and N are the matrices
of order n × n and n × m, respectively. v : J → Rn is continuously differentiable on [0, `] with
` > (k − 1)ρ, k ∈ N = {1, 2, . . .}. u(t) ∈ Rm is the input control function, and h : J × Rn × Rm → Rn is a
continuous nonlinear function.

The pantograph equation is a special delay differential equation that plays a nominal role in
describing numerous phenomena [41]. The equation was initially introduced by Ockendon and
Taylor [42]. It has a tremendous rule in dynamical systems, electrodynamics, control systems,
etc [43]. The equation has been generalized by different researchers in diverse forms for establishing
existence and stability results [44–48]. However, to the best of our knowledge, no work has been
carried out on the controllability of a dynamical system governed by a fractional order generalized
multi-pantograph system with state delay. Motivated by the above work, especially [38, 40]
and [49, 50], in this paper we present the controllability of a generalized multi-pantograph system in
the Caputo sense described by the equation

cDrv(t) = Mv(t − ρ) + Nu(t)
+ g(t, v(t − ρ), v(η1t), . . . , v(ηnt)), v(t) ∈ Rn, t ∈ J = [0, `],

v(t) = ψ(t),−ρ ≤ t ≤ 0,
(1.1)

where 0 < µi < 1, i = 1, 2, . . . , n, 0 < r < 1, M ∈ Rn×n, N ∈ Rn×m, u(t) ∈ Rm is the input control
function, v : [−τ, `]→ Rn is differentiable and continuous on [0, `] with ` > (k−1)ρ, k ∈ N = {1, 2, . . .},
ρ > 0 is a state delay, ψ ∈ C1

ρ = C1([−ρ, 0],Rn), and g : I × R(i+1)n → Rn is a nonlinear continuous
function.
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2. Background materials

Definition 2.1. [48] The fractional integral of a suitable function f : [0,∞) → R, of order ν > 0 is
defined as

Iν0 f (t) =
1

Γ(ν)

∫ t

0
(t − s)ν−1 f (s)ds.

Γ(ν), represents the gamma function of ν.

Definition 2.2. [48] The Caputo fractional derivative of a suitable function f : [0,∞) → R, of order
ν > 0 is defined as

cDν f (t) =
1

Γ(q − ν)

∫ t

0
(t − s)q−ν−1 f (q)(s)ds, q − 1 < ν ≤ q.

Here q = [ν] + 1. In particular for q = 1, we have 0 < ν ≤ 1. Consequently, one may arrive at

cDν f (t) =
1

Γ(1 − ν)

∫ t

0
(t − s)−ν f ′(s) ds.

Definition 2.3. [49] Given a state matrix M, a state variable v ∈ Rn×1 and delay ρ, the delayed
Mittag-Leffler type matrix function E Mtr

ρ , in a single parameter r is defined as

E Mtr
ρ =


Θ, −∞ < t < −ρ,
I, −ρ ≤ t ≤ 0,
I +
∑∞

k=1
Mk(t−(k−1)ρ)kr

Γ(kr+1) , (k − 1)ρ < t ≤ kρ,
(2.1)

where Θ is a null matrix,M ∈ Rn×n, and I represents an identity matrix.

Definition 2.4. [50] Given a state matrixM, a state variable v ∈ Rn×1 and a delay ρ > 0, the delayed
Mittag-Leffler type matrix function E Mtr

ρ,r̄ , in two parameters r and r̄ is defined as

E Mtr
ρ,r̄ =


Θ, −∞ < t < −ρ,
I (ρ+t)r−1

Γ(r̄) , −ρ ≤ t ≤ 0,
(ρ+t)r−1

Γ(r̄) I +
∑∞

k=1
Mk(t−(k−1)τ)(k+1)r−1

Γ(kr+r̄) , (k − 1)ρ < t ≤ kρ,
(2.2)

where Θ is a null matrix,M ∈ Rn×n, and I represents an identity matrix.

Lemma 2.1. The qth order derivatives of each of the single and double parameter delayed Mittag-
Leffler functions have the following forms:

E Mtr−q

ρ,1−q =


Θ, −∞ < t < −ρ,

Θ, −ρ ≤ t ≤ 0,
∞∑

k=1

Mk (t − (k − 1)ρ)kr−q

Γ (kr + 1 − q)
, (k − 1)ρ < t ≤ kρ,

(2.3)
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and

E Mtr−q

ρ,r̄−q =



Θ, −∞ < t < −ρ,

I
Γ (r) (t + ρ)r−1−q

Γ (r̄) Γ (r − q)
, −ρ ≤ t ≤ 0,

I
Γ (r) (t + ρ)r−1−q

Γ (r̄) Γ (r − q)
+

∞∑
k=1

MkΓ ((k + 1) r) (t − (k − 1)ρ)kr+r−q−1

Γ (kr + r̄) Γ (kr + r − q)
, (k − 1)ρ < t ≤ kρ,

(2.4)

where q is a positive integer.

Proof. Differentiating Eqs (2.1) and (2.2) q times in a row makes it simple to determine the outcome.
�

Lemma 2.2. For a square matrixM ∈ Rn×n with constant entries, the Inequality

‖E Mtr
ρ ‖ ≤ Er(‖M‖tr), (k − 1)ρ ≤ t ≤ kρ, k = {1, 2, . . .},

hold, where Er(‖M‖tr) =
∑∞

k=0
Mtr

Γ(kr+1) , r > 0, t ∈ R denotes the Mittag-Leffler matrix function.

Proof. By the results given in Eq (2.1), we have

‖E Mtr
ρ ‖ = ‖I +

∞∑
k=1

Mk (t − (k − 1) ρ)kr

Γ (kr + 1)
‖, (k − 1)ρ ≤ t ≤ kρ, k = {1, 2, . . .},

≤ ‖I‖ +

∞∑
k=1

‖Mk‖‖ (t − (k − 1) ρ)kr
‖

Γ (kr + 1)
,

≤ ‖I‖ +

∞∑
k=1

(‖M‖t)kr

Γ (kr + 1)
,

= Er(‖M‖tr),

which we needed to prove. �

Lemma 2.3. [50] A solution v ∈ C([−ρ, `],Rn), of the system{
cDrv(t) = Mv(t − ρ) + f (t, v(t)), v(t) ∈ Rn, t ∈ J = [0, `], ρ > 0,
v(t) = ψ(t), −ρ ≤ t ≤ 0,

where f : J → Rn is a continuous function, is characterized by

v(t) = E Mtr
ρ ψ(−ρ) +

∫ 0

−ρ

E M(t−ρ−s)r

ρ ψ′(s)ds +

∫ t

0
E M(t−ρ−s)r

ρ,r f (s, v(s))ds.

In addition, we define

‖v‖ =

n∑
i=1

|vi|, vi ∈ v, ‖M‖ = max
1≤ j≤n

n∑
i=1

|mi j|,mi j ∈ M,

‖N‖ = max
1≤ j≤m

n∑
i=1

|ni j|, ni j ∈ N,

‖ψ‖C = max
t∈[−ρ,0]

|ψ(t)|.
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Table 1. Description of the notations and symbols used
cDα Caputo derivative of fractional order alpha
Gc Controllability Gramian matrix
C (J,Rn) Banach space of vector valued continuous functions
E Mtr
ρ,r̄ Two parameter delayed Mittag-Leffler function
ρ A fixed delay
ψ(t) An arbitrary continuously differentiable function, i.e., ψ ∈ C1 = C1

ρ ([−ρ, 0],Rn)
0 < ηi < 1 Proportional delays
FOS Fractional order system

3. Controllability analysis

In the following, we look into the dynamical system’s controllability. We have divided the system
into linear and nonlinear components, and controllability results were established for each instance.
The Caputo derivative, the delayed Mittag-Leffler function, and some fixed-point approaches are the
major tools we use in this work.

3.1. Linear fractional-order system

This section explores the controllability results of the linear system Eq (4.2), which is given by cDrv(t) = Mv(t − ρ) + Nu(t), v(t) ∈ Rn, t ∈ J = [0, `],
v(t) = ψ(t),−ρ ≤ t ≤ 0.

(3.1)

Utilizing Lemma 2.2, solution v(t) to the system Eq (3.1) can be expressed as given by

v(t) = E Mtr
ρ ψ(−ρ) +

∫ 0

−ρ

E M(t−ρ−s)r

ρ ψ′(s)ds +

∫ t

0
E M(t−ρ−s)r

ρ,r Nu(s)ds. (3.2)

The Gramian controllability matrix Gc(0, `), for t, ∈ J and v(t) = ψ(t), t ∈ [−ρ, 0], is defined as

Gc(0, `) =

∫ `

0
E M(`−ρ−s)r

ρ,r NN∗E M
∗(`−ρ−s)r

ρ,r ds, (3.3)

where ∗ represents the matrix transpose.

Definition 3.1. The linear fractional-order system Eq (3.1) is said to be controllable on an interval
[0, `], if there exists an admissible control function u(t) such that the solution Eq (3.2) to the system
Eq (3.1) fulfills the conditions v(0) = ψ(0) and v(`) = vsd.

Theorem 3.1. The linear fractional-order system Eq (3.1) is controllable on [0, `], if and only if the
Gramian matrix Gc(0, `) Eq (3.3) is invertible.

Proof. Sufficiency: Assume that Gc(0, `) is invertible on [0, `]. Then, the control function u(t) that
steers the system Eq (3.1) from an initial state ψ(0) to any desirable state vsd is given by

u(s) = N∗E M
∗(`−ρ−s)r

ρ,r G−1
c (0, `)[vsd − E M`

r

ρ ψ(−ρ) +

∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds]. (3.4)
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Substituting t = ` in Eq (3.2) and plugging Eq (3.4) in the resultant equation, we have

v(`) = E M`
r

ρ ψ(−ρ) +

∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds

+

∫ `

0
E M(`−ρ−s)r

ρ,r NN∗E M
∗(`−ρ−s)r

ρ,r G−1
c (0, `)

× [vsd − E M`
r

ρ ψ(−ρ) −
∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds]ds

= E M`
r

ρ ψ(−ρ) +

∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds + Gc(0, `)G−1
c (0, `)

× [vsd − E M`
r

ρ ψ(−ρ) −
∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds].

(3.5)

Simplification of the last equation yields
v(`) = vsd,

which implies that the system Eq (3.1) is controllable.
Necessity: Let det[Gc(0, `)] = 0, i.e., G−1

c (0, `) is not well defined. Then, there exists a nonzero state v
that satisfies the following condition:

v∗Gc(0, `)v = 0,

⇒

∫ `

0
v∗E M(`−ρ−s)r

ρ,r NN∗E M
∗(`−ρ−s)r

ρ,r vds = 0,

⇒

∫ `

0
‖v∗E M(`−ρ−s)r

ρ,r N‖2ds = 0,

and following the above set of implications, one arrive at

v∗E M(`−ρ−s)r

ρ,r N = 0, (3.6)

for all ρ, s ∈ [0, `]. Let the system Eq (3.1) be controllable on [0, `], and there exist two control input
functions û(t) and ũ(t) such that

v(`) = E M`
r

ρ ψ(−ρ) +

∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds +

∫ t

0
E M(`−ρ−s)r

ρ,r Nû(s)ds = 0, (3.7)

and

v(`) = E M`
r

ρ ψ(−ρ) +

∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds +

∫ t

0
E M(`−ρ−s)r

ρ,r Nũ(s)ds = v. (3.8)

From Eqs (3.7) and (3.8), we obtain

v =

∫ t

0
E M(`−ρ−s)r

ρ,r N(ũ(s) − û(s)ds,

⇒ v∗v =

∫ t

0
v∗E M(`−ρ−s)r

ρ,r N(ũ(s) − û(s)ds. (3.9)
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By utilizing Eq (3.6), one may write

v∗v = 0,

which is a contradiction to the fact that v , 0. Hence, our supposition that G−1
c (0, `) is not well defined

is wrong, and the theorem statement that Gc(0, `) is invertible is true. �

Remark 3.1. The behavior of physical systems is modeled mathematically using linear
fractional-order systems (FOS). They can be identified by a differential equation with fractional-order
derivatives, which are non-integer exponents that provide greater modeling freedom for complex
processes. A system’s ability to be controlled by outside inputs is referred to as its controllability. The
finding mentioned above has multiple uses in various fields. Aerospace engineers have created control
systems for aerospace vehicles like spacecraft, satellites, and missiles using linear FOS
controllability. Analysis of controllability aids in identifying the bare minimum of control inputs
necessary to direct the system to a desired state. Moreover, linear FOS controllability has been
employed in robotics to construct robot control systems. Designing effective control systems with the
fewest possible control inputs is made possible by the consideration of controllability. Power
electronic systems like inverters and converters can be designed using the equations. Its dynamical
characteristic aids in the development of effective control schemes capable of controlling output
voltage and current.

3.2. Nonlinear fractional-order system

The aim of this section is to establish controllability conditions for the nonlinear system utilizing
some fixed point techniques. The nonlinear system is described by the inclusion:


cDrv(t) = Mv(t − ρ) + Nu(t)

+ g(t, v(t − ρ), v(η1t), . . . , v(ηnt)), v(t) ∈ Rn, t ∈ J = [0, `],
v(t) = ψ(t),−ρ ≤ t ≤ 0.

(3.10)

Utilizing Lemma (2.2), the solution v(t) of the system Eq (3.10) is given by

v(t) = E Mtr
ρ ψ(−ρ) +

∫ 0

−ρ

E M(t−ρ−s)r

ρ ψ′(s)ds +

∫ t

0
E M(t−ρ−s)r

ρ,r Nu(s)ds

+

∫ t

0
E M(t−ρ−s)r

ρ,r g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds.
(3.11)

To establish our results, we consider the following assumptions:

A1 : There exists a nonzero constant K1 such that the nonlinear continuous function g : I×Rn×Rn →

Rn satisfies g(t, v(t − ρ), v(η1t), . . . , v(ηnt)) ≤ K1, ∀ t ∈ [0, `] = J.
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A2 : To avoid tedious calculations, it is assumed that

n1 = ‖ψ(t)‖, n2 = ‖ψ′(t)‖, t ∈ [−ρ, 0],

m1 = ‖E Mtr
ρ ‖ = sup

0≤s≤t≤`
|E Mtr
ρ |,

m2 = ‖E M(t−ρ−s)r

ρ ‖ = sup
0≤s≤t≤`

|E M(t−ρ−s)r

ρ |,

m3 = ‖E M(t−ρ−s)r

ρ,r ‖ = sup
0≤s≤t≤`

|E M(t−ρ−s)r

ρ,r |,

m4 = ‖E Mtr−q

ρ,1−q ‖ = sup
0≤s≤t≤`

|E Mtr−q

ρ,1−q |,

m5 = ‖E M(t−ρ−s)r−q

ρ,1−q ‖ = sup
0≤s≤t≤`

|E M(t−ρ−s)r−q

ρ,1−q |,

m6 = ‖E M(t−ρ−s)r−q

ρ,r−q ‖ = sup
0≤s≤t≤`

|E M(t−ρ−s)r−q

ρ,r−q |,

m7 = sup
0≤s≤t≤`

|(t − s)n−r−1|.

Theorem 3.2. If the hypotheses A1, A2 hold, and the linear system Eq (3.1) is controllable on [0, `],
then the nonlinear Eq (3.10) is also controllable on [0, `].

Proof. To establish the desired results of controllability, we transform the Eq (3.11) into operator form.
So, define an operator T : Cn → Cn by

(Tv)(t) = E Mtr
ρ ψ(−ρ) +

∫ 0

−ρ

E M(t−ρ−s)r

ρ ψ′(s)ds +

∫ t

0
E M(t−ρ−s)r

ρ,r Nu(s)ds

+

∫ t

0
E M(t−ρ−s)r

ρ,r g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds,
(3.12)

and taking norms, we have

‖(Tv)(t)‖ ≤ ‖E Mtr
ρ ‖ ‖ψ(−ρ)‖ +

∫ 0

−ρ

‖E M(t−ρ−s)r

ρ ‖ ‖ψ′(s)‖ds

+

∫ t

0
‖E M(t−ρ−s)r

ρ,r ‖ ‖N‖ ‖u(s)‖ds

+

∫ t

0
‖E M(t−ρ−s)r

ρ,r ‖ ‖g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds

≤ m1n1 + ρm2n2 + `m3‖N‖K2 + `m3K1

= m1n1 + ρm2n2 + `m3 (‖N‖K2 + K1) = λ1,

(3.13)

where
u(s) = N∗E M

∗(`−ρ−s)r

ρ,r G−1
c (0, `)Ψ, (3.14)

and

Ψ = vsd − E M`
r

ρ ψ(−ρ) −
∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds

−

∫ `

0
E M(`−ρ−s)r

ρ,r g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds.

AIMS Mathematics Volume 8, Issue 6, 13764–13784.



13773

Taking norms, one has

‖u(s)‖ ≤ ‖N∗‖ ‖E M
∗(`−ρ−s)r

ρ,r ‖ ‖G−1
c (0, `)‖ [‖vsd‖ + ‖E Mtr

ρ ‖ ‖ψ(−ρ)‖ +

∫ 0

−ρ

‖E M(`−ρ−s)r

ρ ‖ ‖ψ′(s)‖ds

+

∫ `

0
‖E M(`−ρ−s)r

ρ,r ‖ ‖g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds]

≤ ‖N∗‖m3‖G
−1
c (0, `)‖ [‖vsd‖ + m1n1 + ρm2n2 + `m3K1] = K2.

(3.15)

Define a closed convex subset Sλ1 , by

Sλ1 = {v ∈ Cn(J) : ‖v‖ ≤ λ1}.

From this, we see that the operator T maps Sr into itself. What remains to be proved is that the operator
T has a fixed point. The continuity of T follows from the continuity of g. Then, by the Arzela-Ascoli
theorem, it follows that T is completely continuous as well. This property in turn shows that there
exists a fixed point v ∈ Sλ1 by Schauder’s fixed point theorem and assumes that Tv = v. Moreover, by
substituting t = ` in Eq (3.12) and then plugging Eq (3.14) in the resultant equation, we have

(Tv)(`) = E M`
r

ρ ψ(−ρ) +

∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds

+

∫ `

0
E M(`−ρ−s)r

ρ,r NN∗E M
∗(`−ρ−s)r

ρ,r G−1
c (0, `)ds

× [vsd − E Mtr
ρ ψ(−ρ) −

∫ 0

−ρ

E M(`−ρ−s)r

ρ ψ′(s)ds

−

∫ `

0
E M(`−ρ−s)r

ρ,r g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds]

+

∫ `

0
E M(`−ρ−s)r

ρ,r g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds

= vsd,

(3.16)

which shows that the input function u(t) defined by Eq (3.14) transfers the system state from ψ(−ρ) to
a desired state vsd in time t = `. Hence, the system Eq (3.10) is controllable. �

Remark 3.2. The findings examined in this section have numerous applications in physics,
engineering, biology, economics, and finance, among other disciplines. The outcomes can be applied
to the design of control systems. They can aid in system stabilization, oscillation reduction, and
improved control performance. Chemical reaction modeling can also be useful. The reaction’s
non-integer order dynamics can be captured by the fractional order, and the reaction’s temporal delay
can be explained by the state delay. Nonlinear fractional order systems with state delay of the
pantograph type can be used to mimic financial markets. They can assist with stock price forecasting
and market behavior analysis.

Our next controllability result is based on Schaefer’s fixed point theorem.
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Lemma 3.1. (Schaefer’s theorem ): Let V be a Banach space and h : V → V be continuous and
compact. Moreover, assume the set S = {v ∈ V : v = ξh(v)}, ξ ∈ [0, 1]}, has a solution for ξ = 1, and
all other solutions for 0 < ξ < 1 are unbounded.

Theorem 3.3. The nonlinear system Eq (3.14) is controllable on [0, `], if the assumptions (A1&A2)
hold and the linear system Eq (3.1) is controllable on [0, `].

Proof. Define a Banach space V = {v : v, v(q), cDν(v) ∈ (I,Rn)}, endowed with the norm
‖v‖ = max{‖v‖, ‖v(q)(t)‖, ‖cDνv(t)‖, ‖u‖}. Also, define an operator T : Cn → Cn, by

(Tv)(t) = E Mtr
ρ ψ(−ρ) +

∫ 0

−ρ

E M(t−ρ−s)r

ρ ψ′(s)ds +

∫ t

0
E M(t−ρ−s)r

ρ,r Nu(s)ds

+

∫ t

0
E M(t−ρ−s)r

ρ,r g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds,
(3.17)

where u(t) is as defined by Eq (3.14).

To show that the operator T satisfies Schaefer’s fixed point theorem, we will go through several
steps:
Step I. As a first step, we show that the set ζ(T ) = {v ∈ V : v = σTv, 0 ≤ σ ≤ 1} is bounded in [0, `].
For v ∈ ζ(T ) and t ∈ [0, `], we have

v(t) = σE Mtr
ρ ψ(−ρ) + σ

∫ 0

−ρ

E M(t−ρ−s)r

ρ ψ′(s)ds + σ

∫ t

0
E M(t−ρ−s)r

ρ,r Nu(s)ds

+ σ

∫ t

0
E M(t−ρ−s)r

ρ,r g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds.
(3.18)

Taking norms and utilizing the assumptions (A1&A2), we have

‖v(t)‖ ≤ ‖E Mtr
ρ ‖ ‖ψ(−ρ)‖ +

∫ 0

−ρ

‖E M(t−ρ−s)r

ρ ‖ ‖ψ′(s)‖ds

+

∫ t

0
‖E M(t−ρ−s)r

ρ,r ‖ ‖N‖ ‖u(s)‖ds

+

∫ t

0
‖E M(t−ρ−s)r

ρ,r ‖‖g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds

≤ m1n1 + ρm2n2 + `m3‖N‖K2 + `m3K1

= m1n1 + ρm2n2 + `m3 (‖N‖K2 + K1) = λ1.

(3.19)
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Also using Lemma (2.1) and following the same steps as above, we obtain

v(q)(t) = σE Mtr−q

ρ,1−q ψ(−ρ) + σ

∫ 0

−ρ

E M(t−ρ−s)r−q

ρ,1−r ψ′(s)ds + σ

∫ t

0
E M(t−ρ−s)r−q

ρ,r−q Nu(s)ds

+ σ

∫ t

0
E M(t−ρ−s)r−q

ρ,r−q g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds

= σE Mtr−q

ρ,1−q ψ(−ρ) + σ

∫ t

0
E M(t−ρ−s)r−q

ρ,r−q Nu(s)ds

+ σ

∫ t

0
E M(t−ρ−s)r−q

ρ,r−q g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds,

(3.20)

and taking norms, it would yield

‖v(q)(t)‖ ≤ ‖E Mtr−q

ρ,1−q ‖ ‖ψ(−ρ)‖ +

∫ t

0
‖E M(t−ρ−s)r−q

ρ,r−q ‖ ‖N‖ ‖u(s)‖ds

+

∫ t

0
‖E M(t−ρ−s)r−q

ρ,r−q ‖ ‖g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds

= m4n1 + `m6‖N‖K2 + `m6K1 = λ2.

(3.21)

Now, by the definition of a Caputo derivative, we have

‖cDrv(t)‖ ≤ ‖
1

Γ(q − r)
‖ ‖

∫ t

0
(t − s)q−r−1ds‖v(q)(s)‖

≤ ‖
1

Γ(q − r)
‖
`q−r

q − r
λ2.

(3.22)

The last inequality demonstrates that cDrv(t) is bounded. This implies that ζ(T ) is bounded as well,
since ‖v‖ = {‖v‖, ‖v(q)‖, ‖cDrv(t)‖, ‖u‖}.
Step II. We show that the operator T is completely continuous, i.e.,

(a) TBλ1 is uniformly bounded.
Let Bλ1 = {v ∈ V : ‖v‖ ≤ λ1}. The bounded set Bλ1 is mapped into the equicontinuous family by the

operator T . Then, for t1, t2 ∈ J, 0 < t1 < t2 < ` and v ∈ Bλ1 , we have

‖(Tv)(t2) − Tv)(t1)‖

≤ ‖(E Mtr2
ρ − E

Mtr1
ρ )ψ(−ρ) +

∫ 0

−ρ

(E M(t2−ρ−s)r

ρ − E M(t1−ρ−s)r

ρ )ψ′(s)ds‖

+ ‖

∫ t1

0
(E M(t2−ρ−s)r

ρ,r − E M(t1−ρ−s)r

ρ,r )NN∗E M
∗(`−ρ−s)r

ρ,r G−1
c (0, `)Ψds‖

+ ‖

∫ t2

t1
E M(t2−ρ−s)r

ρ,r NN∗E M
∗(`−ρ−s)r

ρ,r G−1
c (0, `)Ψds‖

+ ‖

∫ t1

0
(E M(t2−ρ−s)r

ρ,r − E M(t1−ρ−s)r

ρ,r )g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds‖

+ ‖

∫ t2

t1
E M(t2−ρ−s)r

ρ,r g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds‖.

(3.23)
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As above, from Eq (3.14) we have

‖(Tu)(t2) − (Tu)(t1)‖ ≤ ‖N∗‖ ‖(E M
∗(`−ρ−t2)r

ρ,r − E M
∗(`−ρ−t1)r

ρ,r )‖ ‖G−1
c (0, `)‖ ‖Ψ‖. (3.24)

It yields

‖cDr(Tv)(t2) − cDr(Tv)(t1)‖

≤ ‖
1

Γ(q − r)

∫ t2

t1
(t2 − s)q−r−1(Tv)(q)(s)ds‖

+
1

Γ(q − r)

∫ t1

0
[(t2 − s)q−r−1 − (t1 − s)q−r−1](Tv)(q)(s)ds.

(3.25)

Evidently,

lim
t2→t1
‖(Tv)(t2) − (Tv)(t1)‖ → 0,

lim
t2→t1
‖(Tv)(q)(t2) − (Tv)(q)(t1)‖ → 0,

lim
t2→t1
‖cDr(Tv)(t2) − cDr(Tv)(t1)‖ → 0.

Hence, {(Tv) : v ∈ Bλ1} is an equicontinuous family of functions that satisfies the uniform boundedness
condition.

(b) The operator T is compact.
To prove the compactness of the operator T , let ε ∈ (0, 1) be a real number and [0, `] be fixed, then

for every v ∈ Bλ1 , we have

(Tεv)(t) = E Mtr
ρ ψ(−ρ) +

∫ 0

−ρ

E M(t−ρ−s)r

ρ ψ′(s)ds +

∫ t−ε

0
E M(t−ρ−s)r

ρ,r Nu(s)ds

+

∫ t−ε

0
E M(t−ρ−s)r

ρ,r g(s, v(s − ρ), v(η1s), . . . , v(ηns))ds.
(3.26)

As above, we acquire that {(Tεv) : v ∈ Bλ1} is an equicontinuous family of functions that satisfies the
uniform boundedness condition. Then, we have

‖(Tv)(t) − (Tεv)(t)‖ ≤
∫ t

t−ε
‖E M(t−ρ−s)r

ρ,r ‖ ‖N‖ ‖u(s)‖ds

+

∫ t

t−ε
‖E M(t−ρ−s)r

ρ,r ‖ ‖g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds

≤ ε m3‖N‖K2 + ε m3K1

= ε m3 (‖N‖K2 + K1) .

(3.27)

In the same way, we also have

‖(Tv)(q)(t) − (Tεv)(q)(t)‖
∫ t

t−ε
‖E M(t−ρ−s)r−q

ρ,r−q ‖ ‖N‖ ‖u(s)‖ds

+

∫ t

t−ε
‖E M(t−ρ−s)r−q

ρ,r−q ‖ ‖g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds

≤ εm6‖N‖K2 + εm6K1

= εm6 (‖N‖K2 + K1) .

(3.28)
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Now, according to the definition of a Caputo derivative, we have

‖cDr(Tv)(q)(t) − cDr(Tεv)(q)(t)‖

≤ ‖
1

Γ(q − r)
‖ ‖

∫ t

0
(t − s)q−r−1[(Tv)(q)(s) − (Tεv)(q)(s)]ds‖. (3.29)

Evidently,

lim
ε→0
‖(Tv)(t) − (Tεv)(t)‖ → 0,

lim
ε→0
‖(Tv)(q)(t) − (Tεv)(q)(t)‖ → 0,

lim
ε→0
‖cDr(Tv)(t) − cDr(Tεv)(t)‖ → 0.

Hence, {(Tv) : v ∈ Bλ1} is compact in V by the Arzola-Ascoli theorem.
Step III. To demonstrate the continuity of T , we assume two more hypotheses.
A3 : limk→∞‖vk − v(t)‖ → 0, where V = {v1, v2, . . . , vk}.
A4 : There exists a positive constant ω̃ = max{‖vk‖, ‖uk‖, ‖

cDr(vk)‖}, ∀ k and t, ∈ [0, `].
In the light of the hypothesis (A3 & A4), we have

g(t, vk(t − ρ), vk(η1t), . . . , vk(ηnt)) ≤ g(t, v(t − ρ), v(η1t), . . . , v(ηnt)).

By the Fatou-Lebesgue theorem, we have

‖(Tvk)(t) − (Tv)(t)‖ ≤
∫ t

0
‖E M(t−ρ−s)r

ρ,r ‖ ‖N‖ ‖uk(s) − u(s)‖ds

+

∫ t

0
‖E M(t−ρ−s)r

ρ,r ‖ ‖g(s, vk(s − ρ), vk(η1s), . . . , vk(ηns))

− g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds

≤

∫ t

0
m3‖N‖ ‖uk(s) − u(s)‖ds

+

∫ t

0
m3‖g(s, vk(s − ρ), vk(η1s), . . . , vk(ηns))

− g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds,

(3.30)

where

‖uk(s) − u(s)‖ ≤ m2
3‖N

∗‖ ‖G−1
c (0, `)‖∫ `

0
‖g(s, vk(s − ρ), vk(η1s), . . . , vk(ηns)) − g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds.

(3.31)

In a similar way, one can write

‖(Tvk)(q)(t) − (Tv)(q)(t)‖ ≤
∫ t

0
m6‖N‖ ‖uk(s) − u(s)‖ds

+

∫ t

0
m6‖g(s, vk(s − ρ), vk(η1s), . . . , vk(ηns))

− g(s, v(s − ρ), v(η1s), . . . , v(ηns))‖ds,

(3.32)
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where ‖uk(s) − u(s)‖ is as given by Eq (3.31). Then, by the definition of Caputo derivative, we have

‖cDr(Tvk)(q)(t) − cDr(Tv)(q)(t)‖

≤ ‖
1

Γ(q − r)
‖ ‖

∫ t

0
(t − s)q−r−1[(Tvk)(q)(s) − (Tv)(q)(s)]ds‖.

(3.33)

Evidently, Eqs (3.30), (3.32) and (3.33) diminish as k approaches infinity. So, T is continuous and
has a fixed point V ∈ Bλ1 , which is the solution of (3.10), by Schaefer’s fixed point theorem and the
Arzola-Ascoli theorem. Overall, the system (3.10) is controllable in [0, `]. �

Remark 3.3. The modeling of chemical reactions can be done using fractional-order systems with
state delay. The reaction’s non-integer order dynamics can be captured by the fractional order, and
the reaction’s temporal delay can be explained by the state delay. Population dynamics in ecology can
be modeled using the model with state delay. The state delay can serve as a representation of the lag
in how quickly one population reacts to changes in a different population. They can aid in the analysis
and design of more stable and oscillation-free power systems.

4. Experimental & computational section

Consider the following fractional-order system with constant delay:
cD0.6v(t) = Mv(t − 0.25) + Nu(t)

+ g(t, v(t − ρ), v(η1t), . . . , v(ηnt)), v(t) ∈ R3, t ∈ J = [0, 1],
v(t) = ψ(t),−0.25 ≤ t ≤ 0,

(4.1)

where

M =


−1 0 0
0 2 0
0 0 1

 ,N =


1
1
1

 , v(t) =


v1(t)
v2(t)
v3(t)

 , g =


0
0

cos(t)e−v1(t−0.25)

1+v2
1(t/2)+v2

2(2t/3)+v2
3(3t/4)

 .
Then, by definition (2.4), the Gramian matrix (3.3), is given by

Gc(0, 1) =

∫ 1

0
E M(1−0.25−s)0.6

0.25, 0.6 NN∗E M
∗(1−0.25−s)0.6

0.25, 0.6 ds

= Gc1(0, 0.25) + Gc2(0.25, 0.50) + Gc3(0.50, 0.75) + Gc4(0.75, 1),

where

Gc1(0, 0.25) =

∫ 0.25

0
[I

(1 − s)−2/5

Γ(0.6)
+ M

(0.75 − s)1/5

Γ(1.2)
+ M2 (0.50 − s)4/5

Γ(1.8)
+ M3 (0.25 − s)7/5

Γ(2.4)
]

× BB∗[I
(1 − s)−2/5

Γ(0.6)
+ M

(0.75 − s)1/5

Γ(1.2)
+ M2 (0.50 − s)4/5

Γ(1.8)
+ M3 (0.25 − s)7/5

Γ(2.4)
]∗ds

=


0.006378 0.199877 0.089102
0.199877 6.413748 2.828639
0.089102 2.828639 1.253624

 .
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For Gc2(0.25, 0.50), we have

Gc2(0.25, 0.50) =

∫ 0.50

0.25
[I

(1 − s)−2/5

Γ(0.6)
+ M

(0.75 − s)1/5

Γ(1.2)
+ M2 (0.50 − s)4/5

Γ(1.8)
]

× BB∗[I
(1 − s)−2/5

Γ(0.6)
+ M

(0.75 − s)1/5

Γ(1.2)
+ M2 (0.50 − s)4/5

Γ(1.8)
]∗ds

=


0.003621 0.102320 0.056632
0.102320 2.909774 1.620265
0.056632 1.620265 0.907244

 .
For Gc3(0.50, 0.75), we have

Gc3(0.50, 0.75) =

∫ 0.75

0.20
[I

(1 − s)−2/5

Γ(0.6)
+ M

(0.75 − s)1/5

Γ(1.2)
]

× BB∗[I
(1 − s)−2/5

Γ(0.6)
+ M

(0.75 − s)1/5

Γ(1.2)
]∗ds

=


0.034617 0.181316 0.132416
0.181316 1.422942 1.009067
0.132416 1.009067 0.716850

 .
For Gc4(0.75, 1), we have

Gc4(0.75, 1) =

∫ 1

0.75
[I

(1 − s)−2/5

Γ(0.6)
] × BB∗[I

(1 − s)−2/5

Γ(0.6)
]∗ds

=


1.708663 1.708663 1.708663
1.708663 1.708663 1.708663
1.708663 1.708663 1.708663

 .
Adding (Gc1 − Gc4), we have

Gc(0, 1) =


1.753281 2.192176 1.986815
2.192176 12.45512 7.166634
1.986815 7.166634 4.586382

 ,
which is invertible, as det(Gc(0, 1)) = 1.32627801423548. Also, the nonlinear function g satisfies the
assumptions (A1 − A4). Hence, the nonlinear system (4.1) is controllable on [0, 1].

Remark 4.1. Comparing the existing literature with our proposed model, we provide the advantages
of the proposed model over the existing models and results. The work carried out in the neighborhood
of the existing results focused on the study of other various models, but our proposed model has not
been given attention by researchers. The authors in [31] proposed a neutral fractional
integro-differential system incorporating distributed delays and studied results related to
controllability. Also, the researchers in [32] introduced a nonlinear fractional order system with
multiple delays and studied its dynamics. Subsequently, the work carried out in [33] focused on
investigation and formulation of a dynamical system in Banach spaces. The manuscript by [34]
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examines the controllability analysis of fractional order neutral-type systems with impulsive effects
and state delay. In the paper [35], the authors explored the relative controllability of a dynamical
system regulated by a fractional order system with a pure delay. In [36], the existence findings and
controllability requirements of a nonlinear system with damping in Hilbert space were taken into
consideration. Very recently, the controllability outcomes of a dynamical system with input delay,
controlled by a fractional order integro-differential system, have been studied by authors in [38]. The
controllability of a dynamical system modelled by a noninteger order differential system with control
and state delay was investigated by [39]. Recently, in another study [40], controllability results of a
nonlinear system with pure delay were obtained using the delayed Mittag-Leffler matrix functions and
Schauder’s fixed point procedures.

One new factor in our model is incorporation of a delay term, called a pantograph equation.
Pantograph equations are a class of functional differential equations that have applications in
mathematical modeling, such as population dynamics, control theory, and fluid dynamics [41]. The
first attempt was made by the researchers [42]. Pantograph equations are used to design and analyze
mechanical linkages, such as suspension systems, steering systems, and robotics. These linkages can
be used in a wide range of applications, such as automotive, aerospace, and industrial machinery.
Also, these types of equations are used in the design and analysis of electric circuits and systems.
They are used to model and predict the behavior of complex circuits, such as power transmission
lines, filters, and amplifiers [43].

Researchers have generalized the equation in a variety of ways to show its existence and
stability [44–46]. The formulation of the underlying model and controllability of this dynamical
system driven by a fractional order generalized multi-pantograph system with state delay have not, as
far as we are aware, been studied. In this paper, we formulate as well as demonstrate the
controllability of a generalized multi-pantograph system in the Caputo sense defined by the equation.
The motivation was provoked by the above and more precisely [38, 40] and [49, 50]. After a
comprehensive literature review our novel model obtained for

cDrv(t) = Mv(t − ρ) + Nu(t)
+ g(t, v(t − ρ), v(η1t), . . . , v(ηnt)), v(t) ∈ Rn, t ∈ J = [0, `],

v(t) = ψ(t),−ρ ≤ t ≤ 0.
(4.2)

The descriptions of all symbols and mathematical notions have already been mentioned in the
beginning of this research paper.

5. Conclusions

We established the controllability criteria for a nonlinear multi-pantograph system of fractional
order utilizing the combined techniques of Schaefer’s fixed point theorem and the Arzela-Ascoli
theorem in this article. We transformed the suggested system into a fixed-point problem, defined the
controllability Gramian matrix Gc and the control function u(t) and proved that Gc must be invertible
for the linear system to be controllable. With the aid of the linear part controllability and some
assumptions on the nonlinear function, we established controllability criteria for the nonlinear system
utilizing Schaefer’s fixed-point theorem and the Arzela-Ascoli theorem. For the authenticity of the
established results, an example has been added in the last section of the article.
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Our proposed model contains three new features: The first is the insertion of a state delay. The
second is the use of a multi-term pantograph nature function. And the third is the use of a fractional
derivative for freedom in the order of the derivative. After the formulation of the main model, we
explore results related to qualitative aspects of the model. These followed by the controllability of the
linear and non-linear cases. Pantograph equations are used to describe the motion of charged particles
in a magnetic field. They are also used to model the behavior of quantum systems, such as quantum
dots and quantum wells. Also, the equations can be applied to model economic systems such as stock
prices, interest rates, and inflation rates. They can be used to predict the behavior of these systems over
time and identify the factors that influence them. Overall, pantograph equations have a wide range of
applications in various fields and are an important tool for modeling and analyzing complex systems.
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