In this work, we study the oscillation problem of first-order differential equations with deviating arguments and oscillatory coefficients. We generalize and improve the work of Kwong [
Citation: Emad R. Attia, George E. Chatzarakis. On the oscillation of first-order differential equations with deviating arguments and oscillatory coefficients[J]. AIMS Mathematics, 2023, 8(3): 6725-6736. doi: 10.3934/math.2023341
In this work, we study the oscillation problem of first-order differential equations with deviating arguments and oscillatory coefficients. We generalize and improve the work of Kwong [
[1] | R. P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Non-oscillation theory of functional differential equations with applications, Springer, New York, Dordrecht Heidelberg London, 2012. https://doi.org/10.1007/978-1-4614-3455-9 |
[2] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for difference and functional differential equations, Springer Science and Business Media, 2013. |
[3] | H. Akca, G. E. Chatzarakis, I. P. Stavroulakis, An oscillation criterion for delay differential equations with several non-monotone arguments, Appl. Math. Lett., 59 (2016), 101–108. https://doi.org/10.1016/j.aml.2016.03.013 doi: 10.1016/j.aml.2016.03.013 |
[4] | E. R. Attia, B. M. El-Matary, New explicit oscillation criteria for first-order differential equations with several non-monotone delays, Mathematics, 11 (2023), 64. https://doi.org/10.3390/math11010064 doi: 10.3390/math11010064 |
[5] | E. R. Attia, H. A. El-Morshedy, Improved oscillation criteria for first order differential equations with several non-monotone delays, Mediterr. J. Math., 156 (2021), 1–16. https://doi.org/10.1007/s00009-021-01807-4 doi: 10.1007/s00009-021-01807-4 |
[6] | E. R. Attia, H. A. El-Morshedy, I. P. Stavroulakis, Oscillation criteria for first order differential equations with non-monotone delays, Symmetry, 12 (2020), 718. https://doi.org/10.3390/sym12050718 doi: 10.3390/sym12050718 |
[7] | H. Bereketoglu, F. Karakoc, G. S. Oztepe, I. P. Stavroulakis, Oscillation of first order differential equations with several non-monotone retarded arguments, Georgian Math. J., 27 (2019), 341–350. https://doi.org/10.1515/gmj-2019-2055 doi: 10.1515/gmj-2019-2055 |
[8] | E. Braverman, B. Karpuz, On oscillation of differential and difference equations with non-monotone delays, Appl. Math. Comput., 218 (2011), 3880–3887. https://doi.org/10.1016/j.amc.2011.09.035 doi: 10.1016/j.amc.2011.09.035 |
[9] | G. E. Chatzarakis, I. Jadlovská, Explicit criteria for the oscillation of differential equations with several arguments, Dyn. Syst. Appl., 28 (2019), 217–242. http:/doi.org/10.12732/dsa.v28i2.1 doi: 10.12732/dsa.v28i2.1 |
[10] | G. E. Chatzarakis, H. P$\acute{e}$ics, Differential equations with several non-monotone arguments: an oscillation result, Appl. Math. Lett., 68 (2017), 20–26. https://doi.org/10.1016/j.aml.2016.12.005 doi: 10.1016/j.aml.2016.12.005 |
[11] | G. E. Chatzarakis, I. K. Purnaras, I. P. Stavroulakis, Oscillations of deviating difference equations with non- monotone arguments, J. Differ. Equ. Appl., 23 (2017), 1354–1377. https://doi.org/10.1080/10236198.2017.1332053 doi: 10.1080/10236198.2017.1332053 |
[12] | K.-S. Chiu, T. Li, Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments, Math. Nachr., 292 (2019), 2153–2164. https://doi.org/10.1002/mana.201800053 doi: 10.1002/mana.201800053 |
[13] | J. Dzurina, S. R. Grace, I. Jadlovska, T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196 |
[14] | Á. Elbert, I. P. Stavroulakis, Oscillations of first order differential equations with deviating arguments, Univ of Ioannina T.R. No 172, 1990, Recent trends in differential equations, (1992), 163–178. https://doi.org/10.1142/9789812798893_0013 |
[15] | H. A. El-Morshedy, E. R. Attia, New oscillation criterion for delay differential equations with non-monotone arguments, Appl. Math. Lett., 54 (2016), 54–59. https://doi.org/10.1016/j.aml.2015.10.014 doi: 10.1016/j.aml.2015.10.014 |
[16] | L. H. Erbe, B. G. Zhang, Oscillation theory for functional differential equations, Dekker: New York, NY, USA, 1995. https://doi.org/10.1201/9780203744727 |
[17] | Á. Garab, I. P Stavroulakis, Oscillation criteria for first order linear delay differential equations with several variable delays, Appl. Math. Let., 106 (2020), 106366. https://doi.org/10.1016/j.aml.2020.106366 doi: 10.1016/j.aml.2020.106366 |
[18] | K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Kluwer Academic Publishers, 1992. |
[19] | I. Gyori, G. Ladas, Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford, 1991. |
[20] | B. R. Hunt, J. A. Yorke, When all solutions of $x'(t) = -\sum q_l(t) x(t-T_l(t))$ oscillate, J. Differ. Equ., 53 (1984), 139–145. https://doi.org/10.1016/0022-0396(84)90036-6 doi: 10.1016/0022-0396(84)90036-6 |
[21] | G. Infante, R. Koplatadze, I. P. Stavroulakis, Oscillation criteria for differential equations with several retarded arguments, Funkcial. Ekvac., 58 (2015), 347–364. https://doi.org/10.1619/fesi.58.347 doi: 10.1619/fesi.58.347 |
[22] | J. Jaroš, I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mt. J. Math., 29 (1999), 197–207. https://www.jstor.org/stable/44238259 |
[23] | V. Kolmanovskii, A. Myshkis, Applied theory of functional differential equations, Kluwer, Boston, 1992. |
[24] | M. Kon, Y. G. Sficas, I. P. Stavroulakis, Oscillation criteria for delay equations, Proc. Amer. Math. Soc., 128 (2000), 2989-–2997. https://doi.org/10.1090/S0002-9939-00-05530-1 doi: 10.1090/S0002-9939-00-05530-1 |
[25] | R. G. Koplatadze, Specific properties of solutions of first order differential equations with several delay arguments, J. Contemp. Math. Anal., 50 (2015), 229–235. https://doi.org/10.3103/s1068362315050039 doi: 10.3103/s1068362315050039 |
[26] | R. G. Koplatadze, T. A. Chanturija, On oscillatory and monotonic solutions of first order differential equations with deviating arguments, Differential'nye Uravnenija., 18 (1982), 1463–1465, (in Russian). |
[27] | R. G. Koplatadze, G. Kvinikadze, On the oscillation of solutions of first order delay differential inequalities and equations, Georgian Math. J., 1 (1994), 675–685. https://doi.org/10.1515/GMJ.1994.675 doi: 10.1515/GMJ.1994.675 |
[28] | Y. Kuang, Delay differential equations with applications in population dynamics, in: mathematics in science and engineering, Academic Press, Boston, MA, 1993. |
[29] | M. R. Kulenovic, M. Grammatikopoulos, First order functional differential inequalities with oscillating coefficients, Nonlinear Anal., 8 (1984), 1043–1054. https://doi.org/10.1016/0362-546X(84)90098-1 |
[30] | M. K. Kwong, Oscillation of first order delay equations, J. Math. Anal. Appl., 156 (1991), 274–286. https://doi.org/10.1016/0022-247X(91)90396-H doi: 10.1016/0022-247X(91)90396-H |
[31] | G. Ladas, Sharp conditions for oscillations caused by delays, Appl. Anal., 9 (1979), 93–98. https://doi.org/10.1080/00036817908839256 doi: 10.1080/00036817908839256 |
[32] | G. Ladas, V. Lakshmikantham, L. S. Papadakis, Oscillations of higher-order retarded differential equations generated by the retarded arguments, in Delay and functional differential equations and their applications, Academic Press, New York, 1972. |
[33] | G. Ladas, Y. G. Sficas, I. P. Stavroulakis, Functional differential inequalities and equations with oscillating coefficients, In: V. Lakshmikantham, ed., Trends in Theory and Practice of Nonlinear Differential Equations, Marcel Dekker, New York, Basel, 1984. |
[34] | G. S. Ladde, Oscillations caused by retarded perturbations of first order linear ordinary differential equations, Atti Acad. Naz. Lincei, Rend. Lincei, 6 (1978), 351–359. |
[35] | T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 1–18. https://doi.org/10.1007/s00033-019-1130-2 doi: 10.1007/s00033-019-1130-2 |
[36] | T. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35–41. https://doi.org/10.1016/j.aml.2016.04.012 doi: 10.1016/j.aml.2016.04.012 |
[37] | T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293. https://doi.org/10.1016/j.aml.2020.106293 doi: 10.1016/j.aml.2020.106293 |
[38] | T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315–336. 10.57262/die034-0506-315 doi: 10.57262/die034-0506-315 |
[39] | G. M. Moremedi, H. Jafari, I. P. Stavroulakis, Oscillation criteria for differential equations with several non-monotone deviating arguments, J. Comput. Anal. Appl., 28 (2020), 136–151. |
[40] | J. D. Murray, Mathematical biology I: an introduction, interdisciplinary applied mathematics, Springer, New York, NY, USA, 2002. |
[41] | A. D. Myshkis, Linear homogeneous differential equations of first order with deviating arguments, Uspekhi Mat. Nauk, 5 (1950), 160–162 (Russian). |
[42] | Y. G. Sficas, I. P. Stavroulakis, Oscillation criteria for first-order delay equations, Bull. Lond. Math. Soc., 35 (2003), 239–246. https://doi.org/10.1112/S0024609302001662 doi: 10.1112/S0024609302001662 |
[43] | I. P. Stavroulakis, Oscillation criteria for delay and difference equations with non-monotone arguments, Appl. Math. Comput., 226 (2014), 661–672. https://doi.org/10.1016/j.amc.2013.10.041 doi: 10.1016/j.amc.2013.10.041 |
[44] | T. Xianhua, Oscillation of first order delay differential equations with oscillating coefficients, Appl. Math. J. Chinese Univ. Ser. B, 15 (2000), 252–258. https://doi.org/10.1007/s11766-000-0048-x doi: 10.1007/s11766-000-0048-x |
[45] | J. S. Yu, Z. C. Wang, B. G. Zhang, X. Z. Qian, Oscillations of differential equations with deviating arguments, Panamer. Math. J., 2 (1992), 59–78. |