We give the relationship between indecomposable modules over the finite dimensional $ k $-algebra $ A $ and the smash product $ A\sharp G $ respectively, where $ G $ is a finite abelian group satisfying $ G\subseteq Aut(A) $, and $ k $ is an algebraically closed field with the characteristic not dividing the order of $ G $. More precisely, we construct all indecomposable $ A\sharp G $-modules from indecomposable $ A $-modules and prove that an $ A\sharp G $-module is indecomposable if and only if it is an indecomposable $ G $-stable module over $ A $. Besides, we give the relationship between simple, projective and injective modules in $ modA $ and those in $ modA\sharp G $.
Citation: Wanwan Jia, Fang Li. Invariant properties of modules under smash products from finite dimensional algebras[J]. AIMS Mathematics, 2023, 8(3): 6737-6748. doi: 10.3934/math.2023342
We give the relationship between indecomposable modules over the finite dimensional $ k $-algebra $ A $ and the smash product $ A\sharp G $ respectively, where $ G $ is a finite abelian group satisfying $ G\subseteq Aut(A) $, and $ k $ is an algebraically closed field with the characteristic not dividing the order of $ G $. More precisely, we construct all indecomposable $ A\sharp G $-modules from indecomposable $ A $-modules and prove that an $ A\sharp G $-module is indecomposable if and only if it is an indecomposable $ G $-stable module over $ A $. Besides, we give the relationship between simple, projective and injective modules in $ modA $ and those in $ modA\sharp G $.
[1] | I. Assem, D. Simson, A. Skowronski, Elements of the representation theory of associative algebras, Cambridge: Cambridge University Press, 2006. http://dx.doi.org/10.1017/CBO9780511614309 |
[2] | M. Auslander, I. Reiten, S. Smalo, Representation theory of Artin algebras, Cambridge: Cambridge University Press, 1995. http://dx.doi.org/10.1017/CBO9780511623608 |
[3] | O. Funes, M. Redondo, Skew group algebras of simply connected algebras, Ann. Sci. Math. Quebec, 26 (2002), 171–180. |
[4] | P. Gabriel, The universal cover of a representation-finite algebra, In: Representations of algebras, Berlin: Springer-Verlag, 1981, 68–105. http://dx.doi.org/10.1007/BFb0092986 |
[5] | A. Hubery, Representation of quivers respecting a quiver automorphism and a theorem of Kac, Ph. D Thesis, University of Leeds, 2002. |
[6] | A. Hubery, Quiver representations respecting a quiver automorphism: a generalisation of a theorem of Kac, J. Lond. Math. Soc., 69 (2004), 79–96. http://dx.doi.org/10.1112/S0024610703004988 doi: 10.1112/S0024610703004988 |
[7] | B. Hou, S. Yang, Skew group algebras of deformed preprojective algebras, J. Algebra, 332 (2011), 209–228. http://dx.doi.org/10.1016/j.jalgebra.2011.02.007 doi: 10.1016/j.jalgebra.2011.02.007 |
[8] | G. Liu, Classification of finite dimensional basic Hopf algebras and related topics, Ph. D Thesis, Zhejiang University, 2005. |
[9] | F. Li, M. Zhang, Invariant properties of representations under cleft extensions, Sci. China Ser. A, 50 (2007), 121–131. http://dx.doi.org/10.1007/s11425-007-2026-8 doi: 10.1007/s11425-007-2026-8 |
[10] | A. Martsinkovsky, D. Zangurashvili, The stable category of a left hereditary ring, J. Pure Appl. Algebra, 219 (2015), 4061–4089. http://dx.doi.org/10.1016/j.jpaa.2015.02.007 doi: 10.1016/j.jpaa.2015.02.007 |
[11] | R. Martínez-Villa, Skew group algebras and their Yoneda algebras, Math. J. Okayama Univ., 43 (2001), 1–16. |
[12] | I. Reiten, C. Riedtmann, Skew group algebras in the representation theory of Artin algebras, J. Algebra, 92 (1985), 224–282. http://dx.doi.org/10.1016/0021-8693(85)90156-5 doi: 10.1016/0021-8693(85)90156-5 |
[13] | M. Zhang, F. Li, Representations of skew group algebras induced from isomorphically invariant modules over path algebras, J. Algebra, 321 (2009), 567–581. http://dx.doi.org/10.1016/j.jalgebra.2008.09.035 doi: 10.1016/j.jalgebra.2008.09.035 |