Research article

The number of solutions of cubic diagonal equations over finite fields

  • Received: 17 October 2022 Revised: 16 December 2022 Accepted: 19 December 2022 Published: 03 January 2023
  • MSC : 11T06, 11T24

  • Let $ p $ be a prime, $ k $ be a positive integer, $ q = p^k $, and $ \mathbb{F}_q $ be the finite field with $ q $ elements. Let $ \mathbb{F}_q^* $ be the multiplicative group of $ \mathbb{F}_{q} $, that is $ \mathbb{F}_q^* = \mathbb{F}_{q}\setminus\{0\} $. In this paper, explicit formulae for the numbers of solutions of cubic diagonal equations $ a_1x_1^3+a_2x_2^3 = c $ and $ b_1x_1^3+b_2x_2^3+b_3x_3^3 = c $ over $ \mathbb{F}_q $ are given, with $ a_i, b_j\in\mathbb{F}_q^* $ $ (1\leq i\leq 2, 1\leq j\leq 3) $, $ c\in\mathbb{F}_q $ and $ p\equiv1(\rm{mod} \ 3) $. Furthermore, by using the reduction formula for Jacobi sums, the number of solutions of the cubic diagonal equations $ a_1x_1^3+a_2x_2^3+\cdots+a_sx_s^3 = c $ of $ s\geq 4 $ variables with $ a_i\in\mathbb{F}_q^* $ $ (1\leq i\leq s) $, $ c\in\mathbb{F}_q $ and $ p\equiv1(\rm{mod} \ 3) $, can also be deduced.

    Citation: Shuangnian Hu, Rongquan Feng. The number of solutions of cubic diagonal equations over finite fields[J]. AIMS Mathematics, 2023, 8(3): 6375-6388. doi: 10.3934/math.2023322

    Related Papers:

  • Let $ p $ be a prime, $ k $ be a positive integer, $ q = p^k $, and $ \mathbb{F}_q $ be the finite field with $ q $ elements. Let $ \mathbb{F}_q^* $ be the multiplicative group of $ \mathbb{F}_{q} $, that is $ \mathbb{F}_q^* = \mathbb{F}_{q}\setminus\{0\} $. In this paper, explicit formulae for the numbers of solutions of cubic diagonal equations $ a_1x_1^3+a_2x_2^3 = c $ and $ b_1x_1^3+b_2x_2^3+b_3x_3^3 = c $ over $ \mathbb{F}_q $ are given, with $ a_i, b_j\in\mathbb{F}_q^* $ $ (1\leq i\leq 2, 1\leq j\leq 3) $, $ c\in\mathbb{F}_q $ and $ p\equiv1(\rm{mod} \ 3) $. Furthermore, by using the reduction formula for Jacobi sums, the number of solutions of the cubic diagonal equations $ a_1x_1^3+a_2x_2^3+\cdots+a_sx_s^3 = c $ of $ s\geq 4 $ variables with $ a_i\in\mathbb{F}_q^* $ $ (1\leq i\leq s) $, $ c\in\mathbb{F}_q $ and $ p\equiv1(\rm{mod} \ 3) $, can also be deduced.



    加载中


    [1] J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255–261. http://dx.doi.org/10.2307/2373163 doi: 10.2307/2373163
    [2] B. Berndt, R. Evans, K. Williams, Gauss and Jacobi sums, Wiley-Interscience, New York, 1998.
    [3] W. Cao, On generalized Markoff-Hurwitz-type equations over finite fields, Acta Appl. Math., 112 (2010), 275–281. http://dx.doi.org/10.1007/s10440-010-9568-4 doi: 10.1007/s10440-010-9568-4
    [4] W. Cao, A special degree reduction of polynomials over finite fields with applications, Int. J. Number Theory, 7 (2011), 1093–1102. http://dx.doi.org/10.1142/S1793042111004277 doi: 10.1142/S1793042111004277
    [5] W. Cao, Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195–202. http://dx.doi.org/10.4064/aa130-2-8 doi: 10.4064/aa130-2-8
    [6] L. Carlitz, The numbers of solutions of a particular equation in a finite field, Publ. Math. Debr., 4 (1956), 379–383.
    [7] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. http://dx.doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5
    [8] S. Chowla, J. Cowles, M. Cowles, The number of zeros of $x^3 + y^3 + cz^3$ in certain finite fields, J. Reine Angew. Math., 299 (1978), 406–410. http://dx.doi.org/10.1515/crll.1978.299-300.406 doi: 10.1515/crll.1978.299-300.406
    [9] W. Ge, W. Li, T. Wang, The number of solutions of diagonal cubic equations over finite fields, Finite Fields Appl., 80 (2022), 102008. http://dx.doi.org/10.1016/j.ffa.2022.102008 doi: 10.1016/j.ffa.2022.102008
    [10] S. Hong, C. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. http://dx.doi.org/10.1515/forum-2020-0354 doi: 10.1515/forum-2020-0354
    [11] S. Hu, S. Hong, W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135–153. http://dx.doi.org/10.1016/j.jnt.2015.04.006 doi: 10.1016/j.jnt.2015.04.006
    [12] S. Hu, J. Zhao, The number of rational points of a family of algebraic varieties over finite fields, Algebra Colloq., 24 (2017), 705–720. http://dx.doi.org/10.1142/S1005386717000475 doi: 10.1142/S1005386717000475
    [13] L. K. Hua, H. S. Vandiver, On the number of solutions of some trinomial equations in a finite field, PNAS, 35 (1949), 477–581. http://dx.doi.org/10.1073/pnas.35.8.477 doi: 10.1073/pnas.35.8.477
    [14] K. Ireland, M. Rosen, A classical introduction to modern number theory, 2 Eds., Springer-Verlag, New York, 1990.
    [15] R. Lidl, H. Niederreiter, Finite fields, 2 Eds., Cambridge University Press, Cambridge, 1997.
    [16] B. Morlaye, Équations diagonales non homogénes sur un corps fini, C. R. Acad. Sci. Paris Ser. A, 272 (1971), 1545–1548.
    [17] G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95–99. http://dx.doi.org/10.1016/0022-314X(79)90023-4 doi: 10.1016/0022-314X(79)90023-4
    [18] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251–264. http://dx.doi.org/10.4064/aa-39-3-251-264 doi: 10.4064/aa-39-3-251-264
    [19] C. Small, Arithmetic of finite fields, Marcel Dekker, New York, 1991.
    [20] D. Wan, Zeros of diagonal equations over finite fields, Proc. Amer. Math. Soc., 103 (1988), 1049–1052. http://dx.doi.org/10.1090/S0002-9939-1988-0954981-2 doi: 10.1090/S0002-9939-1988-0954981-2
    [21] A. Weil, Number of solutions of equations in finite field, Bull. Amer. Math. Soc., 55 (1949), 497–508. http://dx.doi.org/10.1090/S0002-9904-1949-09219-4 doi: 10.1090/S0002-9904-1949-09219-4
    [22] J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247–257. http://dx.doi.org/10.1016/0022-314x(92)90091-3 doi: 10.1016/0022-314x(92)90091-3
    [23] W. Zhang, J. Hu, The number of solutions of the diagonal cubic congruence equation mod $p$, Math. Rep. (Bucur.), 20 (2018), 73–80.
    [24] J. Zhang, D. Wan, Rational points on complete symmetric hypersurfaces over finite fields, Discrete Math., 11 (2020), 112072. http://dx.doi.org/10.1016/j.disc.2020.112072 doi: 10.1016/j.disc.2020.112072
    [25] J. Zhang, D. Wan, Complete symmetric polynomials over finite fields have many rational zeros, Sci. Sin. Math., 51 (2021), 1677–1684. http://dx.doi.org/10.1360/ssm-2020-0328 doi: 10.1360/ssm-2020-0328
    [26] J. Zhao, S. Hong, C. Zhu, The number of rational points of certain quartic diagonal hypersurfaces over finite fields, AIMS Math., 5 (2020), 2710–2731. http://dx.doi.org/10.3934/math.2020175 doi: 10.3934/math.2020175
    [27] J. Zhao, Y. Zhao, On the number of solutions of two-variable diagonal quartic equations over finite fields, AIMS Math., 5 (2020), 2979–2991. http://dx.doi.org/10.3934/math.2020192 doi: 10.3934/math.2020192
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(838) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog