Loading [MathJax]/jax/output/SVG/jax.js
Research article

The number of solutions of cubic diagonal equations over finite fields

  • Received: 17 October 2022 Revised: 16 December 2022 Accepted: 19 December 2022 Published: 03 January 2023
  • MSC : 11T06, 11T24

  • Let p be a prime, k be a positive integer, q=pk, and Fq be the finite field with q elements. Let Fq be the multiplicative group of Fq, that is Fq=Fq{0}. In this paper, explicit formulae for the numbers of solutions of cubic diagonal equations a1x31+a2x32=c and b1x31+b2x32+b3x33=c over Fq are given, with ai,bjFq (1i2,1j3), cFq and p1(mod 3). Furthermore, by using the reduction formula for Jacobi sums, the number of solutions of the cubic diagonal equations a1x31+a2x32++asx3s=c of s4 variables with aiFq (1is), cFq and p1(mod 3), can also be deduced.

    Citation: Shuangnian Hu, Rongquan Feng. The number of solutions of cubic diagonal equations over finite fields[J]. AIMS Mathematics, 2023, 8(3): 6375-6388. doi: 10.3934/math.2023322

    Related Papers:

    [1] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [2] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
    [3] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [4] Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198
    [5] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [6] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [7] Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
    [8] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [9] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [10] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
  • Let p be a prime, k be a positive integer, q=pk, and Fq be the finite field with q elements. Let Fq be the multiplicative group of Fq, that is Fq=Fq{0}. In this paper, explicit formulae for the numbers of solutions of cubic diagonal equations a1x31+a2x32=c and b1x31+b2x32+b3x33=c over Fq are given, with ai,bjFq (1i2,1j3), cFq and p1(mod 3). Furthermore, by using the reduction formula for Jacobi sums, the number of solutions of the cubic diagonal equations a1x31+a2x32++asx3s=c of s4 variables with aiFq (1is), cFq and p1(mod 3), can also be deduced.



    Fractional calculus signifies the identity of the distinguished materials in the modern research field due to its integrated applications in diverse regions such as mathematical physics, fluid dynamics, mathematical biology, etc. Convex function, exponentially convex function [1,2,3,4,5], related inequalities like as trapezium inequality, Ostrowski's inequality and Hermite Hadamard inequality, integrals [6,7,8,9,10] having succeed in mathematical analysis, approximation theory due to immense applications [11,12] have great importance in mathematics theory. Many authors established quadrature rules in numerical analysis for approximate definite integrals. Recently, Pólya-Szegö and Chebyshev inequalities occupied immense space in the field analysis. Chebyshev [13] was introduced the well-known inequality called Chebyshev inequality.

    In the literature of convex function, the Jensen inequality has gained much importance which describes a connection between an integral of the convex function and the value of the convex function of an interval [14,15,16]. Pshtiwan and Thabet [17] considered the modified Hermite Hadamard inequality in the context of fractional calculus using the Riemann-Liouville fractional integrals. Arran and Pshtiwan [18] discussed the Hermite Hadamard inequality results with fractional integrals and derivatives using Mittag-Leffler kernel. Pshtiwan and Thabet [19] constructed a connection between the Riemann-Liouville fractional integrals of a function concerning a monotone function with nonsingular kernel and Atangana-Baleanu. Pshtiwan and Brevik [20] obtained an inequality of Hermite Hadamard type for Riemann-Liouville fractional integrals, and proved the application of obtained inequalities on modified Bessel functions and q-digamma function. In [21], Set et al. introduced Grüss type inequalities by employing generalized k-fractional integrals. Recently, Nisar et al. [22] gave some new generalized fractional integral inequalities.

    Very recently, the fractional conformable and proportional fractional integral operators were given in [23,24]. Later on, Huang et al. [25] gave Hermite–Hadamard type inequalities by using fractional conformable integrals (FCI). Qi et al. [26] investigated Čebyšev type inequalities involving FCI. The Chebyshev type inequalities and certain Minkowski's type inequalities are found in [27,28,29]. Nisar et al. [30] have investigated some new inequalities for a class of n  (nN) positive, continuous, and decreasing functions by employing FCI. Rahman et al. [31] introduced Grüss type inequalities for k-fractional conformable integrals.

    Some significant inequalities are given as applications of fractional integrals [32,33,34,35,36,37,38]. Recently, Rahman et al. [39,40] presented fractional integral inequalities involving tempered fractional integrals. Qiang et al. [41] discussed a fractional integral containing the Mittag-Leffler function in inequality theory and contributed Hadamard type inequality, continuity, and boundedness, upper bounds of that integral. Nisar et al. [42] established weighted fractional Pólya-Szegö and Chebyshev type integral inequalities by operating the generalized weighted fractional integral involving kernel function. The dynamical approach of fractional calculus [43,44,45,46,47,48,49] in the field of inequalities.

    Grüss inequality [50] established for two integrable function as follows

    |T(h,l)|(kK)(sS)4, (1.1)

    where the h and l are two integrable functions which are synchronous on [a,b] and satisfy:

    sh(z)K,sl(y1)S, z,y1[a,b] (1.2)

    for some s,k,S,KR.

    Pólya and Szegö [51] proved the inequalities

    bah2(z)dzabl2(z)dz(abh(z)l(z)dz)214(KSks+ksKS)2. (1.3)

    Dragomir and Diamond [52], proves the inequality by using the Pólya-szegö inequality

    |T(h,l)|(Ss)(Kk)4(ba)2skSKbah(z)l(z)dz (1.4)

    where h and l are two integrable functions which are synchronous on [a,b], and

    0<sh(z)S<,0<kl(y1)K<, z,y1[a,b] (1.5)

    for some s,k,S,KR.

    The aim of this paper is to estimate a new version of Pólya-Szegö inequality, Chebyshev integral inequality, and Hermite Hadamard type integral inequality by a fractional integral operator having a nonsingular function (generalized multi-index Bessel function) as a kernel, and these established results have great contribution in the field of inequalities. The Hermite Hadamard type integral inequality provides the upper and lower estimate to find the average integral for the convex function of any defined interval.

    The structure of the paper follows:

    In section 2, we present some well-known definitions and mathematical preliminaries. The new generalized fractional integral with nonsingular function as a kernel is defined in section 3. In section 4, we present Hermite Hadamard type Mercer inequality of new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel. some inequalities of (sm)-preinvex function involving new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel are presented in section 5. Here section 6 and 7, we present Pólya-Szegö and Chebyshev integral inequalities involving generalized fractional integral operator with nonsingular function as a kernel, respectively.

    Definition 2.1. The inequality holds for the convex function if a mapping g:KR exist as

    g(δy1+(1δ)y2)δg(y1)+(1δ)g(y2), (2.1)

    where y1,y2K and δ[0,1].

    Definition 2.2. The inequality derived by Hermite [53] call as Hermite Hadamard inequality

    g(y1+y22)1y2y1y2y1g(t)dtg(y1)+g(y2)2, (2.2)

    where y1,y2I, with y2y1, if g:IRR is a convex function.

    Definition 2.3. Let yjK for all jIn, ωj>0 such that jInωj=1. Then the Jensen inequality holds

    g(jInωjyj)jInωjg(yj), (2.3)

    exist if g:kR is convex function.

    Mercer [54] derived the Mercer inequality by applying the Jensen inequality and properties of convex function.

    Definition 2.4. Let yjK for all jIn, ωj>0 such that jInωj=1, m=minjIn{yj} and n=maxjIn{yj}. Then the inequality holds for convex function as

    g(m+niInωjyj)g(m)+g(n)jInωjg(yj), (2.4)

    if g:kR is convex function.

    Definition 2.5. [55] The inequality holds for exponentially convex function, if a real valued mapping g:KR exist as

    g(δy1+(1δ)y2)δg(y1)eθy1+(1δ)g(y2)eθy2, (2.5)

    where y1,y2K and δ[0,1] and θR.

    Suppose that ΩRn is a set. Let g:ΩR continuous function and let ξ:Ω×ΩRn be continuous function:

    Definition 2.6. [56] With respect to bifunction ξ(.,.) a set Ω is called a invex set, if

    y1+δξ(y2,y1), (2.6)

    where y1,y2Ω,δ[0,1].

    Definition 2.7. [57] A invex set Ω and a mapping g with respect to ξ(.,.) is called a preinvex function, as

    g(y1+δξ(y2,y1))(1δ)g(y1)+δg(y2), (2.7)

    where y1,y2+ξ(y2,y1)Ω,δ[0,1].

    Definition 2.8. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially preinvex, if the inequality

    g(y1+δξ(y2,y1))(1δ)g(y1)eθy1+δg(y2)eθy2, (2.8)

    where for all y1,y2+ξ(y2,y1)Ω,δ[0,1] and θR.

    Definition 2.9. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially s-preinvex, if

    g(y1+δξ(y2,y1))(1δ)sg(y1)eθy1+δsg(y2)eθy2, (2.9)

    where for all y1,y2+ξ(y2,y1)Ω,δ[0,1], s(0,1] and θR.

    Definition 2.10. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called exponentially (s-m)-preinvex, if

    g(y1+mδξ(y2,y1))(1δ)sg(y1)eθy1+mδsg(y2)eθy2, (2.10)

    where for all y1,y2+ξ(y2,y1)Ω, δ,m[0,1] and θR.

    Definition 2.11. [58] Generalized multi-index Bessel function is defined by Choi et al as follows

    J(ξj)m,λ(δj)m,σ(z)=s=0(λ)σsmj=1Γ(ξjs+δj+1)(z)ss!, (2.11)

    where ξj,δj,λC, (j=1,,m), (λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0.

    Definition 2.12. [58] Pohhammer symbol is defined for λC as follows

    (λ)s={λ(λ+1)(λ+s1),sN1,s=0, (2.12)
    =Γ(λ+s)Γ(λ),(λC/Z0) (2.13)

    where Γ being the Gamma function.

    This section presents a generalized fractional integral operator with a nonsingular function (multi-index Bessel function) as a kernel.

    Definition 3.1. Let ξj,δj,λ,ζC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξj)>max{0:(σ)1},σ>0. Let gL  [y1,y2] and t[y1,y2]. Then the corresponding left sided and right sided generalized integral operators having generalized multi-index Bessel function defined as:

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt, (3.1)

    and

    (Œ(ξj,δj)mλ,σ,ζ;y2g)(z)=y2z(tz)δjJ(ξj)m,λ(δj)m,σ(ζ(tz)ξj)g(t)dt. (3.2)

    Remark 3.1. The special cases of generalized fractional integrals with nonsingular kernel are given below:

    1. If set j=m=1, σ=0 and limits from [0,z] in Eq (3.1), we get a fractional integral defined by Srivastava and Singh in [59] as

    (Œξ1,δ1λ,0,ζ;0+g)(z)=z0(zt)δ1Jξ1δ1(ζ(zt)ξ1)g(t)dt=f(z). (3.3)

    2. If set j=m=1, δ1=δ11 in Eq (3.1), we have a fractional integral defined by Srivastava and Tomovski in [60] as

    (Œξ1,δ11λ,σ,ζ;y+1g)(z)=(Eζ;λ,σy+1;ξ1,δ1g)(z). (3.4)

    3. If set j=m=1, δ1=δ11, ζ=0 in Eq (3.1), we get a Riemann-Liouville fractional integral operator defined in [61] as

    (Œξ1,δ1λ,σ,ζ;y+1g)(z)=(Iδ1y+1g)(z). (3.5)

    4. If set j=m=1, σ=1, δ1=δ11, in Eq (3.1) and Eq (3.2), we get the fractional integral operator defined by Prabhakar in [62] as follows

    (Œξ1,δ11λ,1,ζ;y+1g)(z)=E(ξ1,δ1;λ;ζ)g(z)=g(z) (3.6)
    (Œ(ξ1,δ11)λ,1,ζ;y2g)(z)=E(ξ1,δ1;λ;ζ)g(z). (3.7)

    Lemma 3.1. From generalized fractional integral operator, we have

    (Œ(ξj,δj)mλ,σ,ζ;y+11)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)dt=zy1(zt)δjs=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)(zt)ξjss!dt=s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!zy1(zt)ξjs+δjdt=(zy1)δj+1s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!(zy1)ξjsξjs+δj+1. (3.8)

    Hence, the Eq (3.8) becomes

    (Œ(ξj,δj+1)mλ,σ,ζ;y+11)(z)=(zy1)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(zy1)ξj), (3.9)

    and similarly we have

    (Œ(ξj,δj+1)mλ,σ,ζ;y21)(z)=(y2z)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(y2z)ξj). (3.10)

    In this section, we derive Hermite Hadamard type Mercer inequality of new designed fractional integral operator in a generalized multi-index Bessel function using a kernel.

    Theorem 4.1. Let g:[m,n](0,) is convex function such that gχc(m,n), x,y[m,n] and the operator defined in Eq (5.2) in the form of left sense operator and Eq (3.2) in the form of right sense operator then we have

    g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)] (4.1)
    g(m)+g(n)g(x)+g(y)2. (4.2)

    Proof. Consider the mercer inequality

    g(m+ny1+y22)g(m)+g(n)g(y1)+g(y2)2,y1,y2[m,n]. (4.3)

    Let x,y[m,n], t[z1,z], y1=(zt)x+(1z+t)y and y2=(1z+t)x+(zt)y then inequality (4.3) becomes

    g(m+ny1+y22)g(m)+g(n)g((zt)x+(1z+t)y)+g(1z+t)x+(zt)y)2. (4.4)

    Multiply both sides of Eq (4.4) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and integrating with respect to t from [z1,z], we get

    J(ξj)m,λ(δj)m+1,σ(ζ)g(m+nx+y2)J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)y1+(1z+t)y2)+g(1z+t)x+(zt)y2]]dt=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[yx(yuyx)δjJ(ξj)m,λ(δj)m,σ(ζ(yuyx)ξj)×g(u)(yx)du+xy(uxyx)δjJ(ξj)m,λ(δj)m,σ(ζ(uxyx)ξj)g(u)(yx)du]=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)],

    we get the desired inequality, as

    g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. (4.5)

    Thus, we get the inequality (4.1). Let t[z1,z]. From the convexity of function g we have

    g(x+y2)=g[(zt)x+(1z+t)y+(1z+t)x+(zt)y]2g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)2. (4.6)

    Both sides multiply of Eq (4.6) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and integrating with respect to t from [z1,z], we obtain

    J(ξj)m,λ(δj)m,σ(ζ)g(x+y2)zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)]dt=12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)].

    We get the inequality of negative sign

    g(x+y2)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. (4.7)

    By adding g(m)+g(n) of both sides of inequality (4.7), we have

    g(m)+g(n)g(x+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)].

    Hence, we get the inequality (4.2).

    Theorem 4.2. Let g:[m,n](0,) is convex function such that gχc(m,n) then we have the following inequalities:

    g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)]. (4.8)
    g(m+nx)+g(m+ny)2g(m)+g(n)g(m)+g(n)2. (4.9)

    Where x,y[m,n].

    Proof. We see that from the convexity of g as

    g(m+ny1+y22)=g(m+ny1+m+ny22)12[g(m+ny1)+g(m+ny2)],y1,y2[m,n]. (4.10)

    Let x,y[m,n], t[z1,z], m+ny1=(zt)(m+nx)+(1z+t)(m+ny), m+ny2=(1z+t)(m+nx)+(zt)(m+ny), then inequality (4.10) gives

    g(m+ny1+y22)12g[(zt)(m+nx)+(1z+t)(m+ny)]+12g[(1z+t)(m+nx)+(zt)(m+ny)], (4.11)

    multiply of both sides of inequality (4.11) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) then integrate with respect to t from [z1,z], we get

    J(ξj)m,λ(δj)m,σ(ζ)g(m+nx+y2)12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(zt)(m+nx)+(1z+t)(m+ny)]dt+12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(1z+t)(m+nx)+(zt)(m+ny)]dt=12(yx)[m+nxm+ny(u(m+ny)yx)δj)J(ξj)m,λ(δj)m,σ(ζ(u(m+ny)yx)ξj)g(u)du+m+nym+nx((m+ny)uyx)δj)J(ξj)m,λ(δj)m,σ(ζ((m+ny)uyx)ξj)g(u)du]=12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)].

    Thus, we get the inequality (4.8)

    g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)].

    From the convexity of g, we obtain

    g((zt)(m+nx)+(1z+t)(m+ny))(zt)g(m+nx)+(1z+t)g(m+ny), (4.12)

    and

    g((1z+t)(m+nx)+(zt)(m+ny))(1z+t)g(m+nx)+(zt)g(m+ny). (4.13)

    Adding up the above inequalities and applying Jensen-Mercer inequality, we get

    g((zt)(m+nx)+(1z+t)(m+ny))+g((1z+t)(m+nx)+(zt)(m+ny))g(m+nx)+g(m+ny)2[g(m)+g(n)][g(x)+g(y)]. (4.14)

    Multiply both sides of inequality (4.14) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and then integrating with respect to t from [z1,z] we obtain the two inequalities (4.9).

    In this section, we derive some inequalities of (sm) preinvex function involving new designed fractional integral operator Œ(ξj,δj)mλ,σ,ζg)(z) having generalized multi-index Bessel function as its kernel in the form of theorems.

    Theorem 5.1. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]R be exponentially (s-m) preinvex function, then the following fractional inequality holds:

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z].

    z[y1,y1+ξ(y2,y1)], θ1,θ2R.

    Proof. Let z[y1,y1+ξ(y2,y1)], and then for t[y1,z) and δj>1, we have the subsequent inequality

    (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj). (5.1)

    For g is exponentially (s-m)-preinvex function, we obtain

    g(t)(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z. (5.2)

    Taking product (5.1) and (5.2), and integrating with respect to t from y1 to z, we get

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dtzy1(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)×[(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z]dt, (5.3)

    apply definition (13) in Eq (5.3), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]. (5.4)

    Analogously for t(z,y1+ξ(y2,y1)] and μj>1, we have

    (tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj). (5.5)

    Further, the exponentially (s-m) convexity of g, we get

    g(t)(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z. (5.6)

    Taking product of (5.5) and (5.6) and integrating with respect to t from z to y1+ξ(y2,y1), we have

    y1+ξ(y2,y1)z(tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)g(t)dty1+ξ(y2,y1)z(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj)×[(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z]dt, (5.7)

    apply the definition (13) in inequality (5.7), we have

    (Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. (5.8)

    Now, add the inequalities (5.4) and (5.8), we get the result

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z].

    Corollary 5.1. If gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+η(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+m1eθ2z)].

    Corollary 5.2. Setting m=1 and gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)].

    Corollary 5.3. Setting m=s=1 and gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||2[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)].

    Corollary 5.4. Setting ξ(y2,y1)=y2y1 and gL[y1,y2], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y2z)(Œ(ξj,μj)mλ,σ,ζ;y+21)(z)(1eθ2y2+1eθ2z)].

    Theorem 5.2. Suppose a real value function g:[y1,y1+ξ(y2,y1)]R is differentiable and |g| is exponentially (s-m) preinvex, then the following fractional inequality for (3.1) and (3.2) holds:

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z].

    z[y1,y1+ξ(y2,y1)], θ1,θ2R.

    Proof. Let z[y1,y1+ξ(y2,y1)], t[y1,z), and applying exponentially (s-m) preinvex of |g|, we get

    |g(t)|(ztzy1)s|g(y1)|eθ1y1+m(ty1zx1)s|g(z)|eθ1z. (5.9)

    Get the inequality (5.9), we have

    g(t)(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(x)|eθ1z. (5.10)

    Subsequently inequality as:

    (zt)δjJ(ξj)m,λ(δj)m,k(ζ(zt)ξj)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj). (5.11)

    Conducting product of inequality (5.10) and (5.11), we have

    (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)×[(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(x)|eθ1z], (5.12)

    integrating before mention inequality with respect to t from y1 to z, we have

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dtzy1(zy1)δjJ(ξj)m,λ(δj)m,k(ζ(zy1)ξj)[(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(z)|eθ1z]dt=(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.13)

    Now, solving left side of (5.13) by putting zt=α, then we have

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt=zy10αδjJ(ξj)m,λ(δj)m,σ(ζ(α)ξj)g(zα)dα=(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(y1)+zy10αδj1J(ξj)m,λ(δj)m1,σ(ζ(α)ξj)g(zα)dα.

    Now, again subsisting zα=t, we get

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt=zy1(zt)δj1J(ξj)m,λ(δj)m1,σ(ζ(zt)ξj)g(t)dt(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(y1)=(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1).

    Therefore, the inequality (5.13) have the following form

    (Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(x)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.14)

    Also from (5.9), we get

    g(t)(ztzy1)s|g(y1)|eθ1y1m(ty1zy1)s|g(z)|eθ1z. (5.15)

    Adopting the same procedure as we have done for (5.10), we obtain

    (Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.16)

    From (5.14) and (5.16), we get

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.17)

    Now, we let z[y1,y1+η(y2,y1)] and t(z,y1+ξ(y2,y1)], and by exponentially (s-m) preinvex of |g|, we get

    |g(t)|(tzy1+ξ(y2,y1)z)s|g(y1+ξ(y2,y1))|eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)s|g(z)|eθ2z, (5.18)

    repeat the same procedure from Eq (5.9) to Eq (5.17), we get

    |(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z]. (5.19)

    From inequalities (5.17) and (5.19), we have

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z].

    Corollary 5.5. Setting ξ(y2,y1)=y2y1, then under the assumption of theorem (5.2), we have

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;y2g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;y21)(z)]g(y2)|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+(y2z)s+1(Œ(ξj,μj)mλ,σ,ζ;y21)(z)[|g(y2)|eθ1(y2)+m|g(z)|eθ1z].

    t[y1,y2], θ1,θ2R.

    Corollary 5.6. Setting ξ(y2,y1)=y2y1, along with m=s=1 then under the assumption of theorem (5.2), we have

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;y2g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;y21)(z)]g(y2)|(zy1)2(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+|g(z)|eθ1z]+(y2z)2(Œ(ξj,μj)mλ,σ,ζ;y21)(z)[|g(y2)|eθ1(y2)+|g(z)|eθ1z].

    t[y1,y2], θ1,θ2R.

    Definition 5.1. Let g:[y1,y1+ξ(y2,y1)]R is a function, and g is exponentially symmetric about 2y1+ξ(y2,y1)2 if

    g(z)eθz=g(2y1+ξ(y2,y1)z)eθ(2y1+ξ(y2,y1)z),θR. (5.20)

    Lemma 5.1. Let g:[y1,y1+ξ(y2,y1)]R be exponentially symmetric, then

    g(2y1+ξ(y2,y1)2)(1+m)g(z)2seθz,θR. (5.21)

    Proof. For g is exponentially (s-m) preinvex, therefore

    g(2y1+ξ(y2,y1)2)g(y1+δξ(y2,1))2seθ(y1+δξ(y2,y1))+mg(y1+(1δ)ξ(y2,y1))2seθ(y1+(1δ)ξ(y2,y1)). (5.22)

    Let t=y1+δξ(y2,y1), where t[y1,y1+ξ(y2,y1)], and then 2y1+ξ(y2,y1)=y1+(1δ)ξ(y2,y1), we have

    g(2y1+ξ(y2,y1)2)g(z)2seθz+mg(2y1+ξ(y2,y1)z)2seθ(2y1+ξ(y2,y1)z). (5.23)

    applying that g is exponentially symmetric, we obtain

    g(2y1+ξ(y2,y1)2)(1+m)g(z)2seθz. (5.24)

    Theorem 5.3. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]R is exponentially (s-m) preinvex and symmetric about exponentially 2y1+ξ(y2,y1)2, then the following integral inequality for (3.1) and (3.2) holds:

    2s1+mf(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))]. (5.25)

    Proof. For z[y1,y1+ξ(y2,y1)], we have

    (zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj), (5.26)

    the real value function g is exponentially (s-m) preinvex, then for z[y1,y1+ξ(y2,y1)], we get

    g(z)(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1. (5.27)

    Conducting product of (5.26) and (5.27), and integrating with respect to z from y1 to y2, we get

    y2y1(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(z)dzy2y1(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)×[(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1]dz, (5.28)

    then we have

    (Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]=(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. (5.29)

    Analogously for z[y1,y1+ξ(y2,y1)], we have

    (y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(zy1)ξj)(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj). (5.30)

    Conducting product of (5.27) and (5.30), and integrating with respect to z from y1 to y2, we have

    y2y1(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(zy1)ξj)g(z)dzy2y1(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)[(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1]dz=(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1],

    then

    (Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)(Œ(ξj,μj)mλ,σ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. (5.31)

    Summing (5.29) and (5.31), we obtain

    (Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))]. (5.32)

    Take the product of Eq (5.21) with (zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj) and integrating with respect to t from y1 to y2, we have

    g(2y1+ξ(y2,y1)2)y2y1(zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj)dz(1+m)2sy2y1(zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj)g(z)eθzdz (5.33)

    using definition (13), we have

    g(2y1+ξ(y2,y1)2)(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)(1+m)2seθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z). (5.34)

    Taking product (5.21) with (y1+ξ(y2,y1)z)δjJ(μj)m,λ(δj)m,σ(ζ(y1+ξ(y2,y1)z)μj) and integrating with respect to variable z from y1 to y2, we have

    g(2y1+ξ(y2,y1)2)(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))(1+m)2seθ1(y1+ξ(y2,y1))(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). (5.35)

    Summing up (5.34) and (5.35), we get

    2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). (5.36)

    Now, combining (5.32) and (5.36), we get inequality

    2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+η(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))].

    Corollary 5.7. Setting ξ(y2,y1)=y2y1, then under the assumption of theorem (5.3), we have

    2s1+mg(y1+y22)[eθy1(Œ(μj,τj)mλ,σ,ζ;y21)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y2)](Œ(μj,τj)mλ,σ,ζ;y2g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y2)(y2y1)s+1(g(y2y1)eθ1(y2y1)+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;y21)(z)+(Œ(ξj,μj)mλ,σ,ζ;y21)(y2)]. (5.37)

    In this section, we derive some Pólya-Szegö inequalities for four positive integrable functions having fractional operator Œ(ξj,δj)mλ,σ(z) in the form of theorems.

    Theorem 6.1. Let h and l are integrable functions on [y1,). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) such that:

    (R1) 0<θ1(b)h(b)θ2(b),0<ψ1(b)l(b)ψ2(b) (b[y1,z],z>y1).

    Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[(ψ1ψ2)h2](z)Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)l2](z)[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1ψ1+θ2ψ2)hl](z)]214. (6.1)

    Proof. From (R1), for b[y1,z], z>y1, we have

    h(b)l(b)θ2(b)ψ1(b), (6.2)

    the inequality write as

    (θ2(b)ψ1(b)h(b)l(b))0. (6.3)

    Similarly, we get

    θ1(b)ψ2(b)h(b)l(b), (6.4)

    thus

    (h(b)l(bθ1(b)ψ2(b))0. (6.5)

    Multiplying Eq (6.3) and Eq (6.5), it follows

    (θ2(b)ψ1(b)h(b)l(b))(h(b)l(b)θ1(b)ψ2(b))0, (6.6)

    i.e.

    (θ2(b)ψ1(b)+θ1(b)ψ2(b))h(b)l(b)h2(b)l2(b)+θ1(b)θ2(b)ψ1(b)ψ2(b). (6.7)

    The last inequality can be written as

    (θ1(b)ψ1(b)+θ2(b)ψ2(b))h(b)l(b)ψ1(b)ψ2(b)h2(b)+θ1(b)θ2(b)l2(b). (6.8)

    Consequently, multiply both sides of (6.8) by (y1b)δjJ(ξj)m,λ(δj)m,σ(ζ(y1b)ξj), (zb)Ω and integrating with respect to b from y1 to z, we get

    Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z). (6.9)

    Besides, by AM-GM (arithmetic mean- geometric mean) inequality, i.e., a1+b12a1b1 a1,b1+, we get

    Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](x)2Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z), (6.10)

    and it follows straightforward the statement of Eq (6.1).

    Corollary 6.1.. Let h and l be two integrable functions on [0,) and satisfying the inequality

    (R2) 0<sh(b)S,0<kl(b)K(b[y1,τ],z>y1). (6.11)

    For z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)(Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z))214(SKsk+skSK)2. (6.12)

    Theorem 6.2. Let h and l are positive integrable functions on [y1,). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1) on [y1,). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(τz)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)[Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1h](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ2l](z)]214. (6.13)

    Proof. By condition (R1), it is clear that

    (θ2(b)ψ1(α)h(b)l(α))0, (6.14)

    and

    (h(b)l(α)θ1(b)ψ2(α))0, (6.15)

    these inequalities implies that

    (θ1(b)ψ2(α)+θ2(b)ψ1(α))h(b)l(α)h2(b)l2(α)+θ1(b)θ2(b)ψ1(α)ψ2(α). (6.16)

    The Eq (6.16), multiply by ψ1(α)ψ2(α)l2(α) of both sides, we have

    θ1(b)h(b)ψ1(α)l(α)+θ2(b)h(b)ψ2(α)l(α)ψ1(α)ψ2(α)h2(b)+θ1(b)θ2(b)l2(α). (6.17)

    Hence, the Eq (6.17) multiply both sides by

    (zb)δjJ(ξj)m,λ(δj)m,σ(ζ(zb)ξj),(αz)δjJ(ξj)m,λ(δj)m,σ(ζ(αz)ξj). (6.18)

    And integrating double with respect to b and α from y1 to z and z to y2 respectively, we have

    Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1l](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ2l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z). (6.19)

    At last, we come to Eq (6.13) by using the arithmetic and geometric mean inequality to the upper inequality.

    Theorem 6.3. Let h and l are integrable functions on [y1,). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1) on [y1,). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(αz)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z)Œ(ξj,δj)mλ,σ,ζ;y2[(ψ2hl)/θ1]. (6.20)

    Proof. We have for any (zb),(αz)Ω, from Eq (6.2), thus

    zy1(zb)δjJ(ξj,δj)mλ,σ(ζ(zb)ξj)h2(b)dby1z(αz)ξjJ(ξj,δj)mλ,σ(ζ(αz)ξj)θ2(α)ψ1(α)h(α)l(α)dα,

    which implies

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z). (6.21)

    and analogously, by Eq (6.4), we get

    Œ(ξj,δj)mλ,σ,ζ;y2[l2](x)Œ(ξj,δj)mλ,σ,ζ;y2[(ψ2hl)/θ1](z), (6.22)

    hence, by multiplying Eq (6.21) and Eq (6.22), follow Eq (6.20).

    Corollary 6.2. Let h and l be integrable functions on [y1,) satisfying (R2). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(αz)Ω, we obtain

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(ξj,δj)mλ,σ,ζ;y2[hl](z)SKsk. (6.23)

    In this section, Chebyshev type integral inequalities established involving the fractional operator Œ(ξj,δj)mλ,σ(z) and using the Pólya-Szegö fractional integral inequalities of theorem (6.1) in the form of theorem, and then discuss its corollary.

    Theorem 7.1. Let h and l be integrable functions on [y1,), and suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb)(αz)Ω the following inequality hold:

    |Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+Œ(νj,μj)mλ,σ,ζ;y2[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)|2[Gy1,y2(h,θ1,θ2)Gy1,y2(l,ψ1,ψ2)]12. (7.1)

    where

    Gy1,y2(b,y,x)(z)=18[Œ(ξj,δj)mλ,σ,ζ;y1+[(y+x)b](z)]2Œ(ξj,δj)mλ,σ,ζ;y1+[yx](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18[Œ(νj,μj)mλ,σ,ζ;y2[(y+x)b](z)]2Œ(μj,νj)mλ,σ,ζ;y2[yx](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[b](z)Œ(νj,μj)mλ,σ,ζ;y2[b](z).

    Proof. For (b,α)(y1,z) (z>y1), we defined A(b,α)=(h(b)h(α))(l(b)l(α)) which is the same

    A(b,α)=h(b)l(b)+h(α)l(α)h(b)l(α)h(α)l(b). (7.2)

    Further, the Eq (7.2), multiply both sides by

    (zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj), (7.3)

    and integrating double with respect to b and α from y1 to z and z to y2 respectively, we get

    zy1y2z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα=zy1(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)h(b)l(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)dα+zy1(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)l(α)dαy1z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)h(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)dαy1z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)l(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)dα=Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z). (7.4)

    Now, applying Cauchy-Schwartz inequality for integrals, we get

    |zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα|(zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)α[h(b)]2dbdα+zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)[h(α)]2dbdα2zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(b)h(α)dbdα)1/2×(zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)α[l(b)]2dbdα+zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)[l(α)]2dbdα2zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)l(b)l(α)dbdα)1/2, (7.5)

    it follow as

    |zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα|2{1/2Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)}1/2×{1/2Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)}1/2. (7.6)

    By applying lemma (6.1) for ψ1(z)=ψ2(z)=l(z)=1, we get for any J(ξj,δj)mλ,σ(z)δjΩ

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)14[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1+θ2)h](z)]2Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)](z), (7.7)

    this implies

    1/2Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)18[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1+θ2)h](z)]2Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)[Œ(νj,μj)mλ,σ,ζ;y+1[(θ1+θ2)h](z)]2Œ(νj,μj)mλ,σ,ζ;y+1[(θ1θ2)](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)=Gy1,y2(h,θ1,θ2). (7.8)

    Analogously, it is clear when θ1(z)=θ2(z)=h(z)=1, according to Lemma (6.1), we get

    1/2Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[l](x)18[Œ(ξj,δj)mλ,σ,ζ;y+1[(ψ1+ψ2)l](z)]2Œ(ξj,δj)mλ,σ,ζ;y+1[(ψ1ψ2)](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)[Œ(νj,μj)mλ,σ,ζ;y+1[(ψ1+ψ2)l](z)]2Œ(νj,μj)mλ,σ,ζ;y+1[(ψ1ψ2)](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)=Gy1,y2(l,ψ1,ψ2). (7.9)

    Thus, by resulting Eqs (7.4), (7.6), (7.8) and (7.9), we get the desired inequality (7.1).

    Corollary 7.1. Let h and l be integrable functions on [y1,), suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(αz)Ω the following inequalities hold:

    |Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)|[Gy1,y2(h,θ1,θ2)Gy1,y1(l,θ1,θ2)]12,

    where

    Gy1,y1(b,y,x)(z)=14[Œ(ξj,δj)mλ,σ,ζ;y1+[(y+x)b](z)]2Œ(ξj,δj)mλ,σ,ζ;y1+[yx](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](Œ(ξj,δj)mλ,σ,ζ;y1+[b](z))2.

    This article analyzed the generalized fractional integral operator having nonsingular function (generalized multi-index Bessel function) as kernel and developed a new version of inequalities. We estimate some inequalities (Hermite Hadamard type Mercer inequality, exponentially (sm) preinvex inequality, Pólya-Szegö type integral inequality and the Chebyshev type inequality) with the generalized fractional integral operator in which nonsingular function as the kernel. Introducing the new version of inequalities of newly constricted operators have strengthened the idea and results.

    The authors declare that they have no competing interest.



    [1] J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255–261. http://dx.doi.org/10.2307/2373163 doi: 10.2307/2373163
    [2] B. Berndt, R. Evans, K. Williams, Gauss and Jacobi sums, Wiley-Interscience, New York, 1998.
    [3] W. Cao, On generalized Markoff-Hurwitz-type equations over finite fields, Acta Appl. Math., 112 (2010), 275–281. http://dx.doi.org/10.1007/s10440-010-9568-4 doi: 10.1007/s10440-010-9568-4
    [4] W. Cao, A special degree reduction of polynomials over finite fields with applications, Int. J. Number Theory, 7 (2011), 1093–1102. http://dx.doi.org/10.1142/S1793042111004277 doi: 10.1142/S1793042111004277
    [5] W. Cao, Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195–202. http://dx.doi.org/10.4064/aa130-2-8 doi: 10.4064/aa130-2-8
    [6] L. Carlitz, The numbers of solutions of a particular equation in a finite field, Publ. Math. Debr., 4 (1956), 379–383.
    [7] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. http://dx.doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5
    [8] S. Chowla, J. Cowles, M. Cowles, The number of zeros of x3+y3+cz3 in certain finite fields, J. Reine Angew. Math., 299 (1978), 406–410. http://dx.doi.org/10.1515/crll.1978.299-300.406 doi: 10.1515/crll.1978.299-300.406
    [9] W. Ge, W. Li, T. Wang, The number of solutions of diagonal cubic equations over finite fields, Finite Fields Appl., 80 (2022), 102008. http://dx.doi.org/10.1016/j.ffa.2022.102008 doi: 10.1016/j.ffa.2022.102008
    [10] S. Hong, C. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. http://dx.doi.org/10.1515/forum-2020-0354 doi: 10.1515/forum-2020-0354
    [11] S. Hu, S. Hong, W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135–153. http://dx.doi.org/10.1016/j.jnt.2015.04.006 doi: 10.1016/j.jnt.2015.04.006
    [12] S. Hu, J. Zhao, The number of rational points of a family of algebraic varieties over finite fields, Algebra Colloq., 24 (2017), 705–720. http://dx.doi.org/10.1142/S1005386717000475 doi: 10.1142/S1005386717000475
    [13] L. K. Hua, H. S. Vandiver, On the number of solutions of some trinomial equations in a finite field, PNAS, 35 (1949), 477–581. http://dx.doi.org/10.1073/pnas.35.8.477 doi: 10.1073/pnas.35.8.477
    [14] K. Ireland, M. Rosen, A classical introduction to modern number theory, 2 Eds., Springer-Verlag, New York, 1990.
    [15] R. Lidl, H. Niederreiter, Finite fields, 2 Eds., Cambridge University Press, Cambridge, 1997.
    [16] B. Morlaye, Équations diagonales non homogénes sur un corps fini, C. R. Acad. Sci. Paris Ser. A, 272 (1971), 1545–1548.
    [17] G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95–99. http://dx.doi.org/10.1016/0022-314X(79)90023-4 doi: 10.1016/0022-314X(79)90023-4
    [18] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251–264. http://dx.doi.org/10.4064/aa-39-3-251-264 doi: 10.4064/aa-39-3-251-264
    [19] C. Small, Arithmetic of finite fields, Marcel Dekker, New York, 1991.
    [20] D. Wan, Zeros of diagonal equations over finite fields, Proc. Amer. Math. Soc., 103 (1988), 1049–1052. http://dx.doi.org/10.1090/S0002-9939-1988-0954981-2 doi: 10.1090/S0002-9939-1988-0954981-2
    [21] A. Weil, Number of solutions of equations in finite field, Bull. Amer. Math. Soc., 55 (1949), 497–508. http://dx.doi.org/10.1090/S0002-9904-1949-09219-4 doi: 10.1090/S0002-9904-1949-09219-4
    [22] J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247–257. http://dx.doi.org/10.1016/0022-314x(92)90091-3 doi: 10.1016/0022-314x(92)90091-3
    [23] W. Zhang, J. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Math. Rep. (Bucur.), 20 (2018), 73–80.
    [24] J. Zhang, D. Wan, Rational points on complete symmetric hypersurfaces over finite fields, Discrete Math., 11 (2020), 112072. http://dx.doi.org/10.1016/j.disc.2020.112072 doi: 10.1016/j.disc.2020.112072
    [25] J. Zhang, D. Wan, Complete symmetric polynomials over finite fields have many rational zeros, Sci. Sin. Math., 51 (2021), 1677–1684. http://dx.doi.org/10.1360/ssm-2020-0328 doi: 10.1360/ssm-2020-0328
    [26] J. Zhao, S. Hong, C. Zhu, The number of rational points of certain quartic diagonal hypersurfaces over finite fields, AIMS Math., 5 (2020), 2710–2731. http://dx.doi.org/10.3934/math.2020175 doi: 10.3934/math.2020175
    [27] J. Zhao, Y. Zhao, On the number of solutions of two-variable diagonal quartic equations over finite fields, AIMS Math., 5 (2020), 2979–2991. http://dx.doi.org/10.3934/math.2020192 doi: 10.3934/math.2020192
  • This article has been cited by:

    1. Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6
    2. Peng Xu, Saad Ihsan Butt, Saba Yousaf, Adnan Aslam, Tariq Javed Zia, Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel, 2022, 61, 11100168, 4837, 10.1016/j.aej.2021.10.033
    3. Ravi Kumar Jain, Alok Bhargava, Mohd. Rizwanullah, Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series, 2022, 8, 2349-5103, 10.1007/s40819-021-01202-3
    4. Wedad Saleh, Abdelghani Lakhdari, Adem Kiliçman, Assia Frioui, Badreddine Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended s,m-prequasiinvex mixed partial derivatives, 2023, 72, 11100168, 261, 10.1016/j.aej.2023.03.080
    5. Anupam Das, Mohsen Rabbani, Bipan Hazarika, An iterative algorithm to approximate the solution of a weighted fractional integral equation, 2023, 1793-5571, 10.1142/S1793557123502418
    6. Yong Tang, Ghulam Farid, M. Y. Youssif, Zakieldeen Aboabuda, Amna E. Elhag, Kahkashan Mahreen, Çetin Yildiz, Refinements of Various Types of Fractional Inequalities via Generalized Convexity, 2024, 2024, 2314-4629, 10.1155/2024/4082683
    7. Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1523) PDF downloads(79) Cited by(1)

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog