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Abstract: Let p be a prime, k be a positive integer, q = pk, and Fq be the finite field with q elements.
Let F∗q be the multiplicative group of Fq, that is F∗q = Fq \ {0}. In this paper, explicit formulae for the
numbers of solutions of cubic diagonal equations a1x3

1 + a2x3
2 = c and b1x3

1 + b2x3
2 + b3x3

3 = c over
Fq are given, with ai, b j ∈ F

∗
q (1 ≤ i ≤ 2, 1 ≤ j ≤ 3), c ∈ Fq and p ≡ 1(mod 3). Furthermore, by

using the reduction formula for Jacobi sums, the number of solutions of the cubic diagonal equations
a1x3

1 + a2x3
2 + · · · + asx3

s = c of s ≥ 4 variables with ai ∈ F
∗
q (1 ≤ i ≤ s), c ∈ Fq and p ≡ 1(mod 3), can

also be deduced.
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1. Introduction and statement of main result

Let p be a prime, k be a positive integer, q = pk. Let Fq be the finite field with q elements and F∗q
represent the nonzero elements of Fq. Let f (x1, · · · , xs) ∈ Fq[x1, · · · , xs] be a polynomial over Fq with
s variables. A solution (or a rational point) of f (x1, · · · , xs) over Fq is an s-tuple (c1, · · · , cs) ∈ Fs

q such
that f (c1, · · · , cs) = 0. Denote by

N( f , q) = N( f (x1, · · · , xs) = 0) = #{(c1, · · · , cs) ∈ Fs
q | f (c1, · · · , cs) = 0}

the number of solutions of f (x1, · · · , xs) = 0 over Fq.
It is one of the central problems to study the number N( f , q) of rational points over finite fields.

From [14, 15] we know that there exists an explicit formula for N( f , q) with degree deg( f ) ≤ 2. But
generally speaking, it is much difficult to give an explicit formula for N( f , q). Finding the explicit
formula for N( f , q) under certain conditions has attracted many researchers for many years (See, for
instance, [1, 3–13, 16–18, 20–27]).
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Let k1, . . . , ks be positive integers. A diagonal equation is an equation of the form

a1xk1
1 + · · · + asxks

s = c

with coefficients a1, . . . , as ∈ F
∗
q and c ∈ Fq. The special case where all the ki’s are equal has extensively

been studied (see, for example, [7–12, 17, 18, 21–23, 26, 27]).
In 1977, S. Chowla et al. ( [7]) investigated a problem about the number of solutions of an equation

x3
1 + x3

2 + · · · + x3
s = 0

over field Fp, where p is a prime with p ≡ 1(mod 3). In 1979, Myerson [17] extended the result in [7]
to the field Fq and also studied the number of solutions of the equation

x4
1 + x4

2 + · · · + x4
s = 0

over Fq. When q = p2t with pr ≡ −1(mod d) for a divisor r of t and d | (q − 1), Wolfmann [22] gave an
explicit formula of the number of solutions of the equation

a1xd
1 + a2xd

2 + · · · + asxd
s = c

over Fq in 1992, where a1, a2, . . . , as ∈ F
∗
q and c ∈ Fq. In 2018, Zhang and Hu [23] determined the

number of solutions of the equation

x3
1 + x3

2 + x3
3 + x3

4 = c

over Fp, with c ∈ F∗p and p ≡ 1(mod 3).
In 2020, J. Zhao et al. [26, 27] investigated the number of solutions of the equations

x4
1 + x4

2 = c, x4
1 + x4

2 + x4
3 = c and x4

1 + x4
2 + x4

3 + x4
4 = c.

over Fq, with c ∈ F∗q.
For any c ∈ Fq, let An(c) and Bn(c) denote the number of solutions of the equations x3

1 +x3
2 +· · ·+x3

n =

c and x3
1 + x3

2 + · · ·+ x3
n +cx3

n+1 = 0 over Fq respectively. In 2021, by using the generator of F∗q, Hong and

Zhu [10] gave the generating functions
∞∑

n=1
An(c)xn and

∞∑
n=1

Bn(c)xn. In 2022, W. Ge et al. [9] studied

these two generating functions in a different way. Moreover, formulas of the number of solutions of
equation a1x3

1 + a2x3
2 = c and a1x3

1 + a2x3
2 + a3x3

3 = 0 were also presented in [9].
In this paper, we consider the problem of finding the number of solutions of the diagonal cubic

equation
f (x1, x2, · · · , xs) = a1x3

1 + a2x3
2 + · · · + asx3

s − c = 0

over Fq, where q = pk and a1, a2, . . . , as ∈ F
∗
q and c ∈ Fq.

If p = 3 and k is an integer, or p ≡ 2(mod 3) and k is an odd integer, then gcd(3, q − 1) = 1. It
follows that (see [14] pp.105)

N(a1x3
1 + a2x3

2 + · · · + asx3 = c)

= N(a1x1 + a2x2 + · · · + asxs = c) = qs−1
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with a1, a2, . . . , as ∈ F
∗
q, and c ∈ Fq.

If p ≡ 2(mod 3) and k is an even integer, Hua and Vandiver [13] studied the number of solutions
of some trinomial equations over Fq and Wolfmann [22] also got the number of solutions of certain
diagonal equations over Fq. The following result can be deduced from Theorem 1 of [22].

Theorem 1.1. Let p ≡ 2(mod 3) be a prime, k an even integer, q = pk, n =
q−1

3 , s ≥ 2 and c ∈ Fq.
Let α be a primitive element of Fq. Denote by N the number of solutions of the equation

a1x3
1 + a2x3

2 + · · · + asx3
s = c

over Fq. Then

N = qs−1 +
1
3

(−1)ks/2qs/2−1(q − 1)
2∑

j=0

(−2)v( j)

if c = 0, and

N = qs−1 − (−1)ks/2+1qs/2−1

(−2)θ(c)q1/2 −
1
3

(
q1/2 − (−1)k/2

) 2∑
j=0

(−2)τ( j)


if c , 0, where v( j) is the number of i, 1 ≤ i ≤ s, such that (α j)nan

i = (−1)k(p+1)/6; θ(c) is the number of
i, 1 ≤ i ≤ s, such that an

i = (−c)n and τ( j) is the number of i, 1 ≤ i ≤ s, such that an
i = (α j)n.

However, the explicit formula for N(a1x3
1+a2x3

2+· · ·+asx3
s = c) is still unknown when p ≡ 1(mod 3).

In this paper, we solve this problem by using Jacobi sums and an analog of Hasse-Davenport theorem.
We give an explicit formula for the number of solutions of diagonal cubic equations

f1(x1, x2) = a1x3
1 + a2x3

2 − c = 0

and
f2(x1, x2, x3) = b1x3

1 + b2x3
2 + b3x3

3 − c = 0

over Fq, with a1, a2, b1, b2, b3 ∈ F
∗
q, c ∈ Fq and the characteristic p ≡ 1(mod 3). Note that our approach,

which applies Jacobi sums, is not the same as that of Ge et al. [9] and Hong and Zhu [10] which mainly
applies Gauss sums. The case with arbitrary s ≥ 4 variables can be deduced from the reduction formula
for Jacobi sums. But we omit the tedious details here.

Let α ∈ F∗q be a fixed primitive element of Fq. For any β ∈ F∗q, there exists exactly one integer
r ∈ [1, q − 1] such that β = αr. Such an integer r is called the index of β with the primitive element
α, and denoted by indαβ := r. For any nonzero integer m and prime number p, we define νp(m) as the
greatest integer t such that pt divides m. Then νp(m) is a nonnegative integer, and νp(m) ≥ 1 if and only
if p divides m.

The results of this paper are stated as follows.
Theorem 1.2. Let k be a positive integer and q = pk with the prime p ≡ 1(mod 3). Let α be a

primitive element of Fq. Denote by N1 the number of solutions of the equation a1x3
1 + a2x3

2 = c over Fq.
Then

N1 = q − (q − 1)δ(a1, a2)
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if c = 0, and

N1 =


q +

(−1)k−1

2k−1 E(u, v, k) + δ(a1, a2), if indαca1a2 ≡ 0(mod 3),

q +
(−1)k

2k

(
E(u, v, k) − O(u, v, k)

)
+ δ(a1, a2), if indαca1a2 ≡ 1(mod 3),

q +
(−1)k

2k

(
E(u, v, k) + O(u, v, k)

)
+ δ(a1, a2), if indαca1a2 ≡ 2(mod 3)

if c , 0, where

δ(a1, a2) :=

 −2, if indαa1a2
2 ≡ 0(mod 3),

1, if indαa1a2
2 . 0(mod 3),

E(u, v, k) := uk −

k∑
t=1

ν2(t)=1

(
k
t

)
uk−tvt3

t
2 +

k∑
t=1

ν2(t)≥2

(
k
t

)
uk−tvt3

t
2 ,

O(u, v, k) :=
k∑

t=1
ν2(t+1)=1

(
k
t

)
uk−tvt3

t+1
2 −

k∑
t=1

ν2(t+1)≥2

(
k
t

)
uk−tvt3

t+1
2

and the integers u and v are uniquely determined such that

u2 + 3v2 = 4p, u ≡ 1(mod 3), v ≡ 0(mod 3) and 3v ≡ u(2α(q−1)/3 + 1)(mod p).

Theorem 1.3. Let k be a positive integer and q = pk with the prime p ≡ 1(mod 3). Let α be a primitive
element of Fq. Denote by N2 the number of solutions of the equation b1x3

1 + b2x3
2 + b3x3

3 = c over Fq.
Then

N2 =


q2 − (q − 1) (−1)k

2k−1 E(u, v, k), if indαb1b2b3 ≡ 0(mod 3),

q2 − (q − 1) (−1)k+1

2k

(
E(u, v, k) − O(u, v, k)

)
, if indαb1b2b3 ≡ 1(mod 3),

q2 − (q − 1) (−1)k+1

2k

(
E(u, v, k) + O(u, v, k)

)
, if indαb1b2b3 ≡ 2(mod 3)

if c = 0, and

N2 =


q2 +

(−1)k

2k−1 E(u, v, k) + S (c, b1, b2, b3), if indαb1b2b3 ≡ 0(mod 3),

q2 +
(−1)k+1

2k

(
E(u, v, k) − O(u, v, k)

)
+ S (c, b1, b2, b3), if indαb1b2b3 ≡ 1(mod 3),

q2 +
(−1)k+1

2k

(
E(u, v, k) + O(u, v, k)

)
+ S (c, b1, b2, b3), if indαb1b2b3 ≡ 2(mod 3)

if c , 0, where E(u, v, k), O(u, v, k), u, v are defined as in Theorem 1.2 and

S (c, b1, b2, b3) := δ(c, b1, b2, b3) + q
(
ω(c, b1, b2, b3) + ω′(c, b1, b2, b3)

)
,

with

δ(c, b1, b2, b3) :=
{

2q, if indαcb2
1b2

2b3 ≡ 0(mod 3),
−q, if indαcb2

1b2
2b3 . 0(mod 3),

ω(c, b1, b2, b3) :=
{

2, if indαcb2
1b2b2

3 ≡ 0(mod 3),
−1, if indαcb2

1b2b2
3 . 0(mod 3),
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and

ω′(c, b1, b2, b3) :=
{

2, if indαc2b2
1b2b3 ≡ 0(mod 3),

−1, if indαc2b2
1b2b3 . 0(mod 3).

Corollary 1.4. Let k be a positive integer and q = pk with the prime p ≡ 1(mod 3). Let α be a
primitive element of Fq. Denote by N3 (resp. N4) the number of solutions of the equation x3

1 + x3
2 = 0

(resp. x3
1 + x3

2 + x3
3 = 0) over Fq. Then

N3 = 3q − 2

and
N4 = q2 + u(q − 1),

where the integer u is uniquely determined such that

u2 + 3v2 = 4p, u ≡ 1(mod 3), v ≡ 0(mod 3) and 3v ≡ u(2α(q−1)/3 + 1)(mod p).

Corollary 1.4 is a special case of [17]. If k = 1, then Corollary 1.4 is a special case of [7].
This paper is organized as follows. In Section 2, we present several basic concepts including the

Jacobi sums, and give some preliminary lemmas. In Section 3, we prove Theorems 1.2 and 1.3 and
finally, in Section 4, we supply some examples to illustrate the validity of our results.

2. Preliminary lemmas

In this section, we present some auxiliary lemmas that are needed in the proof of Theorems 1.2 and
1.3.

If λ is a multiplicative character of Fq, then λ is defined for all nonzero elements of Fq. It is now
convenient to extend the definition of λ by setting λ(0) = 1 if λ is the trivial character and λ(0) = 0
otherwise.

For any element α ∈ Fq = Fpk , the norm of α relative to Fp is defined by (see, for example, [14,15])

NFq/Fp(α) := ααp · · ·αpk−1
= α

pk−1
p−1 .

For the simplicity, we write N(α) for NFq/Fp(α). For any α ∈ Fq, it is clear that N(α) ∈ Fp. Furthermore,
if α is a primitive element of Fq, then N(α) is a primitive element of Fp.

Let χ be a multiplicative character of Fp. Then χ can be lifted to a multiplicative character λ of Fq by
setting λ(α) = χ(N(α)). The characters of Fp can be lifted to the characters of Fq, but not all characters
of Fq can be obtained by lifting a character of Fp. The following lemma tells us when p ≡ 1(mod 3),
then any multiplicative character λ of order 3 of Fq can be lifted by a multiplicative character of order
3 of Fp.

Lemma 2.1. [15] Let Fp be a finite field and Fq be an extension of Fp. A multiplicative character λ
of Fq can be lifted by a multiplicative character χ of Fp if and only if λp−1 is trivial.

Let λ1, . . . , λs be s multiplicative characters of Fq. The Jacobi sum J(λ1, · · · , λs) is defined by

J(λ1, · · · , λs) :=
∑

γ1+···+γs=1

λ1(γ1) · · · λs(γs),

AIMS Mathematics Volume 8, Issue 3, 6375–6388.
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where the summation is taken over all s-tuples (γ1, · · · , γs) of elements of Fq with γ1 + · · · + γs = 1. It
is clear that if σ is a permutation of {1, · · · , s}, then

J(λσ(1), · · · , λσ(s)) = J(λ1, · · · , λs).

The readers are referred to [2] and [15] for basic facts on Jacobi sums.
The following theorem is an analog of Hasse-Davenport theorem for Jacobi sums which establishes

an important relationship between the Jacobi sums in Fq and the Jacobi sums in Fp.
Lemma 2.2. [15] Let χ1, . . . , χs be s multiplicative characters of Fp, not all of which are trivial.

Suppose χ1, . . . , χs are lifted to characters λ1, . . . , λs, respectively, of the finite extension field Fpk of Fp.
Then

J(λ1, · · · , λs) = (−1)(s−1)(k−1)J(χ1, · · · , χs)k.

We give the reduction formula for Jacobi sums as follows.
Lemma 2.3. [2] Let λ1, · · · , λs−1, λs be s nontrivial multiplicative characters of Fq. If s ≥ 2, then

J(λ1, · · · , λs−1, λs) =

{
−qJ(λ1, · · · , λs−1), if λ1 · · · λs−1 is trivial,
J(λ1 · · · λs−1, λs)J(λ1, · · · , λs−1), if λ1 · · · λs−1 is nontrivial.

The value of some needed Jacobi sums are listed in the following two lemmas.
Lemma 2.4. [2] Let p ≡ 1(mod 3) be a prime, q = pk, α be a primitive element of Fq, and let χ be a
multiplicative character of order 3 over Fp. Then

2J(χ, χ) = u + iv
√

3,

where the integers u and v are uniquely determined such that

u2 + 3v2 = 4p, u ≡ 1(mod 3), v ≡ 0(mod 3) and 3v ≡ u(2α(q−1)/3 + 1)(mod p).

Lemma 2.5. [2] Let p ≡ 1(mod 3), g be a primitive element of Fp and let χ be a multiplicative character
of order 3 over Fp such that χ(g) = −1+i

√
3

2 . Let the integers u and v be defined as in Lemma 2.4. Then
the values of the nine Jacobi sums J(χm, χn) (m, n = 0, 1, 2) are given in the following Table 1.

Table 1. the values of the Jacobi sums J(χm, χn)

m \ n 0 1 2

0 p 0 0
1 0 1

2 (u + iv
√

3) −1
2 0 −1 1

2 (u − iv
√

3)

The following lemma gives the number of solutions of the diagonal equation in terms of Jacobi
sums.
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Lemma 2.6. [2] Let k1, . . . , ks be positive integers, a1, . . . , as ∈ F
∗
q and let c ∈ Fq. Set di = gcd(ki, q−

1), and let λi be a multiplicative character of order di of Fq, i = 1, . . . , s. Then the number N of solutions
of the equation a1xk1

1 + · · · + asx
ks
s = c is given by

N = qs−1 − (q − 1)
d1−1∑
j1=1

λ
j1
1 ···λ

jn
n trivial

· · ·

ds−1∑
js=1

λ
j1
1 (a−1

1 ) · · · λ js
s (a−1

s )J(λ j1
1 , . . . , λ

js
s )

if c = 0, and by

N = qs−1 +

d1−1∑
j1=1

· · ·

ds−1∑
js=1

λ
j1
1 (ca−1

1 ) · · · λ js
s (ca−1

s )J(λ j1
1 , · · · , λ

js
s )

if c , 0.

3. Proof of Theorems 1.2 and 1.3

In this section, we give the proof of Theorems 1.2 and 1.3. First, we begin with a lemma.
Lemma 3.1. Let p ≡ 1(mod 3) be a prime, q = pk, α be a primitive element of Fq and let λ be the

multiplicative character of order 3 of Fq such that λ(α) = −1+i
√

3
2 . Then for any positive integers a, b

and β ∈ F∗q, we have

λ(β) + λ(β2) =

 2, if indαβ ≡ 0(mod 3),

−1, if indαβ . 0(mod 3)

and

λ(β)(a + ib
√

3)k + λ(β2)(a − ib
√

3)k

=


2E(a, b, k), if indαβ ≡ 0(mod 3),

−
(
E(a, b, k) + O(a, b, k)

)
, if indαβ ≡ 1(mod 3),

−
(
E(a, b, k) − O(a, b, k)

)
, if indαβ ≡ 2(mod 3),

where E(a, b, k) and O(a, b, k) are defined as in Theorem 1.2.
Proof. The first part of the lemma is obvious. Now we focus on the proof of the second part of the

lemma. One can divide this into the following three cases.
If indαβ ≡ 0(mod 3), then λ(β) = λ(β2) = 1. One has

(a + ib
√

3)k + (a − ib
√

3)k

=

k∑
t=0

(
k
t

)
ak−t[(ib

√
3)t + (−ib

√
3)t]

= 2ak +

k∑
t=1

(
k
t

)
ak−t[(ib

√
3)t + (−ib

√
3)t]
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6382

= 2ak − 2
k∑

t=1
ν2(t)=1

(
k
t

)
ak−tbt3

t
2 + 2

k∑
t=1

ν2(t)≥2

(
k
t

)
ak−tbt3

t
2

= 2E(a, b, k). (3.1)

If indαβ ≡ 1(mod 3), then λ(β) = −1+i
√

3
2 and λ(β2) = −1−i

√
3

2 . One has

1
2

(
(−1 + i

√
3)(a + ib

√
3)k − (1 + i

√
3)(a − ib

√
3)k

)
=

1
2

(
− (a + ib

√
3)k − (a − ib

√
3)k + i

√
3(a + ib

√
3)k − i

√
3(a − ib

√
3)k

)
= −

1
2

(
2

k∑
t=0

t=even

(
k
t

)
ak−titbt3

t
2 − 2i

√
3

k∑
t=1

t=odd

(
k
t

)
ak−titbt3

t
2
)

= −ak +

k∑
t=1

ν2(t)=1

(
k
t

)
ak−tbt3

t
2 −

k∑
t=1

ν2(t)≥2

(
k
t

)
ak−tbt3

t
2 −

k∑
t=1

ν2(t+1)=1

(
k
t

)
ak−tbt3

t+1
2

+

k∑
t=1

ν2(t+1)≥2

(
k
t

)
ak−tbt3

t+1
2

= −
(
E(a, b, k) + O(a, b, k)

)
. (3.2)

If indαβ ≡ 2(mod 3), then λ(β) = −1−i
√

3
2 and λ(β2) = −1+i

√
3

2 . One has

1
2

(
(−1 − i

√
3)(a + ib

√
3)k + (−1 + i

√
3)(a − ib

√
3)k

)
= −

k∑
t=0

t=even

(
k
t

)
ak−titbt3

t
2 − i
√

3
k∑

t=1
t=odd

(
k
t

)
ak−titbt3

t
2

= −ak +

k∑
t=1

ν2(t)=1

(
k
t

)
ak−tbt3

t
2 −

k∑
t=1

ν2(t)≥2

(
k
t

)
ak−tbt3

t
2 +

k∑
t=1

ν2(t+1)=1

(
k
t

)
ak−tbt3

t+1
2

−

k∑
t=1

ν2(t+1)≥2

(
k
t

)
ak−tbt3

t+1
2

= −
(
E(a, b, k) − O(a, b, k)

)
. (3.3)

The result follows immediately from (3.1)–(3.3). �

Now we can turn our attention to prove Theorems 1.2 and 1.3.
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Proof of Theorem 1.2. Since gcd(3, q − 1) = 3, by Lemma 2.6, let α be a primitive element of Fq

and λ be the multiplicative character of Fq of order 3 with λ(α) = −1+i
√

3
2 . Then we deduce that

N1 = q − (q − 1)
2∑

j1=1

2∑
j2=1

λ j1 λ j2 trivial

λ(a− j1
1 a− j2

2 )J(λ j1 , λ j2), (3.4)

if c = 0, and

N1 = q +

2∑
j1=1

2∑
j2=1

λ(c j1+ j2a− j1
1 a− j2

2 )J(λ j1 , λ j2), (3.5)

if c , 0.
Since p ≡ 1(mod 3), it follows that λp−1 is trivial. By Lemma 2.1, the cubic multiplicative character

λ can be lifted by a cubic multiplicative character χ of Fp. Combining with the Lemma 2.2, Table 1 of
Lemma 2.5 and Lemma 3.1, we obtain

2∑
j1=1

2∑
j2=1

λ j1 λ j2 trivial

λ(a− j1
1 a− j2

2 )J(λ j1 , λ j2)

= (−1)k−1J(χ, χ2)k(λ(a2
1a2) + λ(a1a2

2))

= −(λ(a2
1a2) + λ(a1a2

2))

= δ(a1, a2), (3.6)

and

2∑
j1=1

2∑
j2=1

λ(c j1+ j2a− j1
1 a− j2

2 )J(λ j1 , λ j2)

= (−1)k−1(λ(c2a2
1a2

2)J(χ, χ)k + λ(a2
1a2)J(χ, χ2)k + λ(a1a2

2)J(χ2, χ)k

+ λ(ca1a2)J(χ2, χ2)k)
= −

(
λ(a2

1a2) + λ(a1a2
2)
)

+ (−1)k−1(λ(c2a2
1a2

2)J(χ, χ)k + λ(ca1a2)J(χ2, χ2)k)
= δ(a1, a2) +

(−1)k−1

2k

(
λ(c2a2

1a2
2)(u + iv

√
3)k + λ(ca1a2)(u − iv

√
3)k)

=


(−1)k−1

2k−1 E(u, v, k) + δ(a1, a2), if indαca1a2 ≡ 0(mod 3),
(−1)k

2k (E(u, v, k) − O(u, v, k)) + δ(a1, a2), if indαca1a2 ≡ 1(mod 3),
(−1)k

2k (E(u, v, k) + O(u, v, k)) + δ(a1, a2), if indαca1a2 ≡ 2(mod 3).

(3.7)

Then from (3.4)–(3.7), one can easily deduce the result of Theorem 1.2. �
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Proof of Theorem 1.3. By the same argument as in the proof of theorem 1.2, let α be a primitive
element of Fq and λ be the multiplicative character of Fq of order 3 with λ(α) = −1+i

√
3

2 . We deduce that

N2 = q2 − (q − 1)
2∑

j1=1

2∑
j2=1

λ j1 λ j2 λ j3 trivial

2∑
j3=1

λ(b− j1
1 b− j2

2 b− j3
3 )J(λ j1 , λ j2 , λ j3) (3.8)

if c = 0, and

N2 = q2 +

2∑
j1=1

2∑
j2=1

2∑
j3=1

λ(c j1+ j2+ j3b− j1
1 b− j2

2 b− j3
3 )J(λ j1 , λ j2 , λ j3) (3.9)

if c , 0.
Similarly, the cubic multiplicative character λ can be lifted by a cubic multiplicative character χ of

Fp. By using the Lemmas 2.2, 2.3, Table 1 of Lemma 2.5 and Lemma 3.1, we get

2∑
j1=1

2∑
j2=1

λ j1 λ j2 λ j3 trivial

2∑
j3=1

λ(b− j1
1 b− j2

2 b− j3
3 )J(λ j1 , λ j2 , λ j3)

= λ(b2
1b2

2b2
3)J(χ, χ)kJ(χ2, χ)k + λ(b1b2b3)J(χ, χ2)kJ(χ2, χ2)k

=

(
−1
2

)k (
λ(b2

1b2
2b2

3)(u + iv
√

3)k + λ(b1b2b3)(u − iv
√

3)k
)

=


(−1)k

2k−1 E(u, v, k), if indαb1b2b3 ≡ 0(mod 3),
(−1)k+1

2k

(
E(u, v, k) − O(u, v, k)

)
, if indαb1b2b3 ≡ 1(mod 3),

(−1)k+1

2k

(
E(u, v, k) + O(u, v, k)

)
, if indαb1b2b3 ≡ 2(mod 3)

(3.10)

and

2∑
j1=1

2∑
j2=1

2∑
j3=1

λ(c j1+ j2+ j3b− j1
1 b− j2

2 b− j3
3 )J(λ j1 , λ j2 , λ j3)

= λ(b1b2b3)J(χ, χ2)kJ(χ2, χ2)k + λ(b2
1b2

2b2
3)J(χ2, χ)kJ(χ, χ)k

+ λ(cb2
1b2

2b3)J(χ2, χ2)kJ(χ, χ)k + λ(c2b1b2b2
3)J(χ, χ)kJ(χ2, χ2)k

+ (−1)kq
(
λ(cb2

1b2b2
3)J(χ, χ2)k + λ(c2b1b2

2b3)J(χ2, χ)k

+ λ(c2b2
1b2b3)J(χ, χ2)k + λ(cb1b2

2b2
3)J(χ2, χ)k

)
=

(
−1
2

)k (
λ(b1b2b3)(u − iv

√
3)k + λ(b2

1b2
2b2

3)(u + iv
√

3)k
)

+
1

22k (u2 + 3v2)k
(
λ(cb2

1b2
2b3) + λ(c2b1b2b2

3)
)
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+ q
(
λ(cb2

1b2b2
3) + λ(c2b1b2

2b3) + λ(c2b2
1b2b3) + λ(cb1b2

2b2
3)
)
. (3.11)

By second part of Lemma 3.1, we derive that(
−1
2

)k (
λ(b1b2b3)(u − iv

√
3)k + λ(b2

1b2
2b2

3)(u + iv
√

3)k
)

=


(−1)k

2k−1 E(u, v, k), if indαb1b2b3 ≡ 0(mod 3),
(−1)k+1

2k (E(u, v, k) − O(u, v, k)), if indαb1b2b3 ≡ 1(mod 3),
(−1)k+1

2k (E(u, v, k) + O(u, v, k)), if indαb1b2b3 ≡ 2(mod 3).
(3.12)

Note that Lemma 2.4 tells us u2 + 3v2 = 4p. Then from the first part of Lemma 3.1, one has

1
22k (u2 + 3v2)k

(
λ(cb2

1b2
2b3) + λ(c2b1b2b2

3)
)

=

{
2q, if indαcb2

1b2
2b3 ≡ 0(mod 3),

−q, if indαcb2
1b2

2b3 . 0(mod 3)
(3.13)

and

λ(cb2
1b2b2

3) + λ(c2b1b2
2b3) + λ(c2b2

1b2b3) + λ(cb1b2
2b2

3)) = ω(c, b1, b2, b3) + ω′(c, b1, b2, b3). (3.14)

Thus from (3.8)–(3.14), the desired result of Theorem 1.3 follows immediately. �

4. Some examples

In this section, we present some examples to demonstrate the validity of our results.

Example 4.1. Let q = 134. One can check that 2 is a primitive element of F13. Let ω be a primitive
element of Fq such thatN(ω) = ω

134−1
13−1 = 2. We consider the numbers of solutions of the cubic equations

x3
1 + ω2x3

2 = 0

and
x3

1 + ω2x3
2 = ω

over Fq.

Since ω
134−1

3 = (ω
134−1
13−1 )

13−1
3 = 24, the integers u and v in Lemma 2.4 are determined by

u2 + 3v2 = 52, u ≡ 1(mod 3), v ≡ 0(mod 3) and 3v ≡ u(2 × 24 + 1)(mod 13).

We can get that u = −5 and v = −3. Therefore, by Theorem 1.2, we have

N(x3
1 + ω2x3

2 = 0) = 1

and
N(x3

1 + ω2x3
2 = ω) = 28899.
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Example 4.2. Let q = 312. One can check that 3 is a primitive element of F31. Let ω be a primitive
element of Fq such thatN(ω) = ω

312−1
31−1 = 3. We consider the numbers of solutions of the cubic equations

ω4x3
1 + x3

2 + ωx3
3 = 0

and
ω4x3

1 + x3
2 + ωx3

3 = ω

over Fq.

Since ω
312−1

3 = (ω
312−1
31−1 )

31−1
3 = 310, the integers u and v are determined by

u2 + 3v2 = 124, u ≡ 1(mod 3), v ≡ 0(mod 3) and 3v ≡ u(2 × 310 + 1)(mod 31).

We get u = 4 and v = 6. Thus by Theorem 1.3, we deduce that

N(ω4x3
1 + x3

2 + ωx3
3 = 0) = 936001

and
N(ω4x3

1 + x3
2 + ωx3

3 = ω) = 920625.

Example 4.3. Let q = 73. It is clear that 3 is a primitive element of F7. Let ω be a primitive element
of Fq such that N(ω) = ω

73−1
7−1 = 3. We consider the the numbers of solutions of the cubic equations

x3
1 + ω2x3

2 + ω3x3
3 = 0

and
x3

1 + ω2x3
2 + ω3x3

3 = ω

over Fq.

Similarly, since ω
73−1

3 = (ω
73−1
7−1 )

7−1
3 = 32, the integers u and v are determined by

u2 + 3v2 = 28, u ≡ 1(mod 3), v ≡ 0(mod 3) and 3v ≡ u(2 × 32 + 1)(mod 7).

We deduce that u = 1 and v = −3. Thus by Theorem 1.3, we have

N(x3
1 + ω2x3

2 + ω3x3
3 = 0) = 111835

and
N(x3

1 + ω2x3
2 + ω3x3

3 = ω) = 117666.

5. Conlusions

Studying the number of solutions of the polynomial equation f (x1, x2, · · · , xn) = 0 over Fq is one
of the main topics in the theory of finite fields. Generally speaking, it is difficult to give an explicit
formula for the number of solutions of the equation f (x1, x2, · · · , xn) = 0. There are many researchers
who concentrated on finding the formula for the number of solutions of f (x1, x2, · · · , xn) = 0 under
certain conditions. Exponential sums are important tools for solving problems involving the number of
solutions of the equation f (x1, x2, · · · , xn) = 0 over Fq. In this paper, by using the Jacobi sums and the
Hasse-Davenport theorem for Jacobi sums, we give an explicit formulae for the numbers of solutions
of cubic diagonal equations a1x3

1 +a2x3
2 = c and b1x3

1 +b2x3
2 +b3x3

3 = c over Fq are given, with ai, b j ∈ F
∗
q

(1 ≤ i ≤ 2, 1 ≤ j ≤ 3), c ∈ Fq and p ≡ 1(mod 3). Furthermore, by using the reduction formula for
Jacobi sums, the number of solutions of the cubic diagonal equations a1x3

1 + a2x3
2 + · · · + asx3

s = c of
s ≥ 4 variables with ai ∈ F

∗
q (1 ≤ i ≤ s), c ∈ Fq and p ≡ 1(mod 3), can also be deduced.
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