The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This paper proposes an improved SSA (GMLSSA) based on gravitational search and multi-swarm search strategies. In the gravitational search strategy, using multiple salp individuals to guide the location update of search agents can get rid of the limitation of individual guidance and improve the exploration ability of the algorithm. In the multi-swarm leader strategy, the original population is divided into several independent subgroups to increase population diversity and avoid falling into local optimization. In the experiment, 20 benchmark functions (including the well-known CEC 2014 function) were used to test the performance of the proposed GMLSSA in different dimensions, and the results were compared with the most advanced search algorithm and SSA variants. The experimental results are evaluated through four different analysis methods: numerical, stability, high-dimensional performance, and statistics. These results conclude that GMLSSA has better solution quality, convergence accuracy, and stability. In addition, GMLSSA is used to solve the tension/compression spring design problem (TCSD). The proposed GMLSSA is superior to other competitors in terms of solution quality, convergence accuracy, and stability.
Citation: Xuncai Zhang, Guanhe Liu, Kai Zhao, Ying Niu. Improved salp swarm algorithm based on gravitational search and multi-leader search strategies[J]. AIMS Mathematics, 2023, 8(3): 5099-5123. doi: 10.3934/math.2023256
The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum when solving complex high-dimensional multimodal optimization tasks. This paper proposes an improved SSA (GMLSSA) based on gravitational search and multi-swarm search strategies. In the gravitational search strategy, using multiple salp individuals to guide the location update of search agents can get rid of the limitation of individual guidance and improve the exploration ability of the algorithm. In the multi-swarm leader strategy, the original population is divided into several independent subgroups to increase population diversity and avoid falling into local optimization. In the experiment, 20 benchmark functions (including the well-known CEC 2014 function) were used to test the performance of the proposed GMLSSA in different dimensions, and the results were compared with the most advanced search algorithm and SSA variants. The experimental results are evaluated through four different analysis methods: numerical, stability, high-dimensional performance, and statistics. These results conclude that GMLSSA has better solution quality, convergence accuracy, and stability. In addition, GMLSSA is used to solve the tension/compression spring design problem (TCSD). The proposed GMLSSA is superior to other competitors in terms of solution quality, convergence accuracy, and stability.
[1] | T. Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, Oxford: Oxford university press, 1996. |
[2] | H. Chen, Y. Xu, M. Wang, X. Zhao, A balanced whale optimization algorithm for constrained engineering design problems, Appl. Math. Model., 71 (2019), 45–59. https://doi.org/10.1016/j.apm.2019.02.004 doi: 10.1016/j.apm.2019.02.004 |
[3] | Y. Zhong, L. Wang, M. Lin, H. Zhang, Discrete pigeon-inspired optimization algorithm with Metropolis acceptance criterion for large-scale traveling salesman problem, Swarm Evol. Comput., 48 (2019), 134–144. https://doi.org/10.1016/j.swevo.2019.04.002 doi: 10.1016/j.swevo.2019.04.002 |
[4] | A. Chakraborty, A. K. Kar, Swarm intelligence: a review of algorithms, Nature-Inspired Comput. Optimiz., 2017,475–494. https://doi.org/10.1007/978-3-319-50920-4_19 doi: 10.1007/978-3-319-50920-4_19 |
[5] | X. S. Yang, Nature-inspired metaheuristic algorithms, Beckington: Luniver press, 2010. |
[6] | C. Özgüven, L. Özbakır, Y. Yavuz, Mathematical models for job-shop scheduling problems with routing and process plan flexibility, App. Math. Model., 34 (2010), 1539–1548. https://doi.org/10.1016/j.apm.2009.09.002 doi: 10.1016/j.apm.2009.09.002 |
[7] | H. Salimi, Stochastic fractal search: a powerful metaheuristic algorithm, Know.-Based Syst., 75 (2015), 1–18. https://doi.org/10.1016/j.knosys.2014.07.025 doi: 10.1016/j.knosys.2014.07.025 |
[8] | P. Savsani, V. Savsani, Passing vehicle search (PVS): a novel metaheuristic algorithm, Appl. Math. Model., 40 (2016), 3951–3978. https://doi.org/10.1016/j.apm.2015.10.040 doi: 10.1016/j.apm.2015.10.040 |
[9] | Z. Cui, X. Gao, Theory and applications of swarm intelligence, Neural Comput. Applic., 2012,205–206. https://doi.org/10.1007/s00521-011-0523-8 doi: 10.1007/s00521-011-0523-8 |
[10] | A. Ribeiro, A. Awruch, H. Gomes, An airfoil optimization technique for wind turbines, Appl. Math. Model., 36 (2012), 4898–4907. https://doi.org/10.1016/j.apm.2011.12.026 doi: 10.1016/j.apm.2011.12.026 |
[11] | D. Binu, B. Kariyappa, RideNN: A new rider optimization algorithm-based neural network for fault diagnosis in analog circuits, IEEE T. Instrum. Meas., 68 (2018), 2–26. https://doi.org/10.1109/TIM.2018.2836058 doi: 10.1109/TIM.2018.2836058 |
[12] | F. Wang, H. Zhang, K. Li, Z. Lin, J. Yang, X. L. Shen, A hybrid particle swarm optimization algorithm using adaptive learning strategy, Inform. Sciences, 436 (2018), 162–177. https://doi.org/10.1016/j.ins.2018.01.027 doi: 10.1016/j.ins.2018.01.027 |
[13] | J. Chen, W. Yu, J. Tian, L. Chen, Z. Zhou, Image contrast enhancement using an artificial bee colony algorithm, Swarm Evol. Comput., 38 (2018), 287–294. https://doi.org/10.1016/j.swevo.2017.09.002 doi: 10.1016/j.swevo.2017.09.002 |
[14] | R. Skinderowicz, Improving ant colony optimization efficiency for solving large TSP instances, Appl. Soft Comput., 120 (2022), 108653. https://doi.org/10.1016/j.asoc.2022.108653 doi: 10.1016/j.asoc.2022.108653 |
[15] | W. Deng, J. Xu, H. Zhao, An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem, IEEE Access, 7 (2019), 20281–20292. https://doi.org/10.1109/ACCESS.2019.2897580 doi: 10.1109/ACCESS.2019.2897580 |
[16] | J. Lu, J. Zhang, J. Sheng, Enhanced multi-swarm cooperative particle swarm optimizer, Swarm Evol. Comput., 69 (2022), 1942–1948. https://doi.org/10.1016/j.swevo.2021.100989 doi: 10.1016/j.swevo.2021.100989 |
[17] | D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview, Soft Comput., 22 (2018), 387–408. https://doi.org/10.1007/s00500-016-2474-6 doi: 10.1007/s00500-016-2474-6 |
[18] | D. Kumar, K. Mishra, Portfolio optimization using novel co-variance guided Artificial Bee Colony algorithm, Swarm Evol. Comput., 33 (2017), 119–130. https://doi.org/10.1016/j.swevo.2016.11.003 doi: 10.1016/j.swevo.2016.11.003 |
[19] | S. Ghambari, A. Rahati, An improved artificial bee colony algorithm and its application to reliability optimization problems, Appl. Soft Comput., 62 (2018), 736–767. https://doi.org/10.1016/j.asoc.2017.10.040 doi: 10.1016/j.asoc.2017.10.040 |
[20] | D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE T. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893 |
[21] | X. S. Yang, S. Deb, Cuckoo search via Lévy flights, 2009 World congress on nature & biologically inspired computing (NaBIC), 2009,210–214. |
[22] | S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007 |
[23] | W. T. Pan, A new fruit fly optimization algorithm: taking the financial distress model as an example, Know.-Based Syst., 26 (2012), 69–74. https://doi.org/10.1016/j.knosys.2011.07.001 doi: 10.1016/j.knosys.2011.07.001 |
[24] | S. Mirjalili, The ant lion optimizer, Adv. Eng. Software, 83 (2015), 80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010 doi: 10.1016/j.advengsoft.2015.01.010 |
[25] | A. Askarzadeh, A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm, Comput. Struct., 169 (2016), 1–12. https://doi.org/10.1016/j.compstruc.2016.03.001 doi: 10.1016/j.compstruc.2016.03.001 |
[26] | A. H. Gandomi, A. H. Alavi, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci., 17 (2012), 4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010 doi: 10.1016/j.cnsns.2012.05.010 |
[27] | X. S. Yang, Firefly algorithms for multimodal optimization, International symposium on stochastic algorithms, 5792 (2009). https://doi.org/10.1007/978-3-642-04944-6_14 doi: 10.1007/978-3-642-04944-6_14 |
[28] | M. Jain, V. Singh, A. Rani, A novel nature-inspired algorithm for optimization: Squirrel search algorithm, Swarm Evol. Comput., 44 (2019), 148–175. https://doi.org/10.1016/j.swevo.2018.02.013 doi: 10.1016/j.swevo.2018.02.013 |
[29] | S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for stochastic optimization, Future Gener. Comp. Sy., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055 |
[30] | S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp Warm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002 doi: 10.1016/j.advengsoft.2017.07.002 |
[31] | R. Abbassi, A. Abbassi, A. A. Heidari, S. Mirjalili, An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models, Energ. Convers. Manage., 179 (2019), 362–372. https://doi.org/10.1016/j.enconman.2018.10.069 doi: 10.1016/j.enconman.2018.10.069 |
[32] | M. Tolba, H. Rezk, A. A. Z. Diab, M. Al-Dhaifallah, A novel robust methodology based salp swarm algorithm for allocation and capacity of renewable distributed generators on distribution grids, Energies, 11 (2018), 2556. https://doi.org/10.3390/en11102556 doi: 10.3390/en11102556 |
[33] | R. A. Ibrahim, A. A. Ewees, D. Oliva, M. Abd Elaziz, S. Lu, Improved salp swarm algorithm based on particle swarm optimization for feature selection, J. Amb. Intell. Hum. Comp., 10 (2019), 3155–3169. https://doi.org/10.1007/s12652-018-1031-9 doi: 10.1007/s12652-018-1031-9 |
[34] | N. Neggaz, A. A. Ewees, M. Abd Elaziz, M. Mafarja, Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection, Expert Syst. Appl., 145 (2020), 113103. https://doi.org/10.1016/j.eswa.2019.113103 doi: 10.1016/j.eswa.2019.113103 |
[35] | G. I. Sayed, G. Khoriba, M. H. Haggag, A novel chaotic salp swarm algorithm for global optimization and feature selection, Appl. Intell., 48 (2018), 3462–3481. https://doi.org/10.1007/s10489-018-1158-6 doi: 10.1007/s10489-018-1158-6 |
[36] | Q. Zhang, H. Chen, A. A. Heidari, X. Zhao, Y. Xu, P. Wang, et al., Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers, IEEE Access, 7 (2019), 31243–31261. https://doi.org/10.1109/ACCESS.2019.2902306 doi: 10.1109/ACCESS.2019.2902306 |
[37] | H. Faris, M. M. Mafarja, A. A. Heidari, I. Aljarah, A. Z. Ala'M, S. Mirjalili, et al., An efficient binary salp swarm algorithm with crossover scheme for feature selection problems, Know.-Based Syst., 154 (2018), 43–67. https://doi.org/10.1016/j.knosys.2018.05.009 doi: 10.1016/j.knosys.2018.05.009 |
[38] | B. Yang, L. Zhong, X. Zhang, H. Shu, T. Yu, H. Li, et al., Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition, J. Clean. Prod., 215 (2019), 1203–1222. https://doi.org/10.1016/j.jclepro.2019.01.150 doi: 10.1016/j.jclepro.2019.01.150 |
[39] | A. A. El-Fergany, Extracting optimal parameters of PEM fuel cells using salp swarm optimizer, Renew. Energ., 119 (2018), 641–648. https://doi.org/10.1016/j.renene.2017.12.051 doi: 10.1016/j.renene.2017.12.051 |
[40] | Q. Fan, Z. Chen, Z. Li, Z. Xia, Y. Lin, An efficient refracted salp swarm algorithm and its application in structural parameter identification, Eng. Comput., 38 (2021), 175–189. https://doi.org/10.1007/s00366-020-01034-7 doi: 10.1007/s00366-020-01034-7 |
[41] | A. E. Hegazy, M. Makhlouf, G. S. El-Tawel, Improved salp swarm algorithm for feature selection, J. King Saud Uni. Comput. Inform. Sci., 32 (2020), 335–344. https://doi.org/10.1016/j.jksuci.2018.06.003 doi: 10.1016/j.jksuci.2018.06.003 |
[42] | W. Chao, R. Xu, L. Ma, J. Zhao, L. Wang, An efficient salp swarm algorithm based on scale-free informed followers with self-adaption weight, Appl. Intell., 2022, 1–33. https://doi.org/10.1007/s10489-022-03438-y doi: 10.1007/s10489-022-03438-y |
[43] | M. Tawhid, A. Ibrahim, Improved salp swarm algorithm combined with chaos, Math. Comput. Simulat., 202 (2022), 113–148. https://doi.org/10.1016/j.matcom.2022.05.029 doi: 10.1016/j.matcom.2022.05.029 |
[44] | C. Lin, P. Wang, X. Zhao, H. Chen, Double mutational salp swarm algorithm: from optimal performance design to analysis, J. Bionic Eng., 2022, 1–28. https://doi.org/10.1007/s42235-022-00262-5 doi: 10.1007/s42235-022-00262-5 |
[45] | N. Singh, L. Hoang, F. Chiclana, J. Magnot, A new fusion of salp swarm with sine cosine for optimization of non-linear functions, Eng. Comput., 36 (2020), 185–212. https://doi.org/10.1007/s00366-018-00696-8 doi: 10.1007/s00366-018-00696-8 |
[46] | E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm, Inform. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004 |
[47] | V. Andersen, P. Nival, A model of the population dynamics of salps in coastal waters of the Ligurian Sea, J. Plankton Res., 8 (1986), 1091–1110. https://doi.org/10.1093/plankt/8.6.1091 doi: 10.1093/plankt/8.6.1091 |
[48] | D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459–471. https://doi.org/10.1007/s10898-007-9149-x doi: 10.1007/s10898-007-9149-x |
[49] | A. R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecol. Inform., 1 (2006), 355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003 doi: 10.1016/j.ecoinf.2006.07.003 |
[50] | J. Barraza, L. Rodríguez, O. Castillo, P. Melin, F. Valdez, A new hybridization approach between the fireworks algorithm and grey wolf optimizer algorithm, J. Optim., 2018 (2018), 6495362. https://doi.org/10.1155/2018/6495362 doi: 10.1155/2018/6495362 |
[51] | N. Singh, F. Chiclana, J. P. Magnot, A new fusion of salp swarm with sine cosine for optimization of non-linear functions, Eng. Comput., 36 (2020), 185–212. https://doi.org/10.1007/s00366-018-00696-8 doi: 10.1007/s00366-018-00696-8 |
[52] | J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1 (2011), 3–18. https://doi.org/10.1016/j.swevo.2011.02.002 doi: 10.1016/j.swevo.2011.02.002 |
[53] | A. Kaveh, V. R. Mahdavi, Colliding bodies optimization: a novel meta-heuristic method, Comput. Struct., 139 (2014), 18–27. https://doi.org/10.1016/j.compstruc.2014.04.005 doi: 10.1016/j.compstruc.2014.04.005 |
[54] | A. Kaveh, T. Bakhshpoori, E. Afshari, An efficient hybrid particle swarm and swallow swarm optimization algorithm, Comput. Struct., 143 (2014), 40–59. https://doi.org/10.1016/j.compstruc.2014.07.012 doi: 10.1016/j.compstruc.2014.07.012 |
[55] | W. Long, X. Liang, Y. Huang, Y. Chen, An effective hybrid cuckoo search algorithm for constrained global optimization, Neural Comput. Appl., 25 (2014), 911–926. https://doi.org/10.1007/s00521-014-1577-1 doi: 10.1007/s00521-014-1577-1 |