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Abstract: The salp swarm algorithm (SSA) will converge prematurely and fall into local optimum 

when solving complex high-dimensional multimodal optimization tasks. This paper proposes an 

improved SSA (GMLSSA) based on gravitational search and multi-swarm search strategies. In the 

gravitational search strategy, using multiple salp individuals to guide the location update of search 

agents can get rid of the limitation of individual guidance and improve the exploration ability of the 

algorithm. In the multi-swarm leader strategy, the original population is divided into several 

independent subgroups to increase population diversity and avoid falling into local optimization. In 

the experiment, 20 benchmark functions (including the well-known CEC 2014 function) were used to 

test the performance of the proposed GMLSSA in different dimensions, and the results were compared 

with the most advanced search algorithm and SSA variants. The experimental results are evaluated 

through four different analysis methods: numerical, stability, high-dimensional performance, and 

statistics. These results conclude that GMLSSA has better solution quality, convergence accuracy, and 

stability. In addition, GMLSSA is used to solve the tension/compression spring design problem 

(TCSD). The proposed GMLSSA is superior to other competitors in terms of solution quality, 

convergence accuracy, and stability. 
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1. Introduction 

Because optimization problems are widely present in various research fields, this makes 

optimization technology develops rapidly. Since traditional optimization methods are easily affected 

by objective functions, constraint functions, and variable types[1–4], researchers have become 

increasingly interested in meta-heuristics [5,6]. The main characteristics of meta-heuristic methods 

are as follows: they are naturally inspired; random components are a necessary component of these 

methods; do not rely on gradient information. The meta-heuristic algorithm combines intelligent 

processes to guide the basic heuristic algorithm [7,8]. These algorithms are inspired by natural 

selection, physical phenomena, animal group habits, etc., and are used to solve optimization 

problems. 

The swarm-based algorithm, also known as the swarm intelligence optimization method (SI) [9], 

is among the most famous examples of meta-heuristic algorithms. Because of its simple concept and 

easy programming, SI has been extensively applied in various practical engineering problems, such as 

wind turbine optimization [10], and fault diagnosis [11]. The most representative swarm intelligence 

methods are artificial bee colony algorithm (ABC) [12,13], ant colony optimization (ACO) [14,15], 

and particle swarm optimization (PSO) [16,17]. The idea of the PSO algorithm stems from the foraging 

behavior of bird swarms. The PSO algorithm has a simple structure and high computational efficiency. 

However, it tends to fall into the local optima in multimodal problems, and the exploration and 

exploitation capabilities are easily affected by the parameters. The ABC simulates the collective 

behavior of bees collecting honey. Because of its excellent global exploration capabilities, ABC has 

been used in various real-world optimization algorithms, such as portfolio optimization [18] and 

reliability optimization [19]. Based on No Free Lunch (NFL) [20], algorithms’ effectiveness in one 

optimization problem cannot be extended to other optimization problems. In other words, no algorithm 

can be fully applicable to all optimization problems. Researchers are studying new swarm intelligence 

algorithms or improving proposed algorithms' performance to explore better solutions to artificial or 

real-world optimization problems. Recently, more advanced SI algorithms have been proposed, such 

as cuckoo search algorithm(CS) [21], grey wolf optimizer (GWO) [22], fruit fly optimization algorithm 

(FFOA) [23], ant lion optimizer (ALO) [24], crow search algorithm (CSA) [25], krill herd algorithm 

(KH) [26], firefly algorithm (FF) [27], squirrel search algorithm [28], slime mold algorithm [29]. These 

algorithms are inspired by cuckoo, grey wolf, fruit fly, ant lion, crow, krill, firefly, squirrel, slime mold 

swarm behavior. 

The SSA is a novel SI method first proposed by Mirjalili in 2017, which was inspired by the 

chain movement and foraging behavior of salps in the ocean[30]. In SSA, the leader (the individual 

with the best fitness) in the swarm leads the follower (other individuals) to find food sources (global 

optima) to achieve the optimization process. The SSA’s performance is tested on 19 traditional 

benchmark functions and 20 CEC 2015 function sets. The test results show that the SSA has higher 

accuracy and robustness in solving high-dimensional numerical optimization problems than PSO, 

gravitational search algorithm (GSA), bat algorithm (BA), and genetic algorithm (GA). Compared 

with the existing SI algorithms, SSA’s principle is simple and fewer parameters need to be adjusted. 

Based on these advantages, since SSA was proposed, it has been widely applied to various practical 

engineering problems such as feature selection [29], parameter identification [31], and power 

dispatching [32]. 
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Table 1. Some variants for SSA. 

Variant Algorithms Method and Strategy analyze 

Modifications 

of SSA 

CMSSA 

Apply Gaussian and Cauchy 

mutations to the update process of 

candidate solutions. 

It can significantly improve the detection 

capability of SSA, but the computational 

complexity is relatively high. 

E-SSA 
Introduce adaptive weight and scale-

free network mechanism. 

It alleviates the slow convergence speed 

of the algorithm and the tendency of 

falling into the local minimum, but 

increases the computational complexity. 

MSSA 

The original salp group is divided 

into multiple salp groups to 

independently perform global and 

local searches. 

Significantly improve the global search 

capability of SSA, but more parameters 

need to be adjusted, and the robustness is 

poor 

RSSA 
Using Refractive Reverse Learning 

Strategies 

Improve the detection capability of SSA 

to avoid falling into local optimization 

and high-dimensional problems. The 

performance of RSSA is insufficient in 

terms of convergence speed and 

optimization accuracy 

Hybridization 

of SSA 

DMSSA 

Introducing Cuckoo Mutation 

Strategy (CMS) and Adaptive DE 

Mutation Strategy (ADMS) into the 

structure of the original SSA 

Improve the utilization rate of population 

information, and balance exploration and 

development 

HSSASCA 
Combining SSA with sine cosine 

algorithm 

Enhance the performance of the original 

SSA, which can be used for 

unconstrained and constrained 

optimization problems 

Binary SSA BSSA 

Use eight transfer functions to 

represent the eight variants of binary 

SSA 

Improve the global search capability of 

the original SSA 

Chaotic SSA 

CSSA 

Replace the original random variable 

with the variable generated by the 

chaotic sequence 

Improve the exploration ability and 

robustness of SSA, but the precision of 

CSSA is low when solving high-

dimensional optimization problems 

CSCA 
Use tent mapping to adjust leader 

movement in the population 

Increase global search mobility for 

powerful global optimization 

Conclusion 

The above research generally exchanges for the optimization effect of exploration or 

exploitation capability, increasing the time complexity and lacking a balanced method between 

exploration and exploitation that has a significant impact on the overall performance of the 

algorithm. Also, these researches still have some shortcomings in solving problems with 

complex mathematics. 

Although SSA has achieved success in many areas, the algorithm itself still has some 

shortcomings. For example, the exploration capability of SSA is weak, and there is the problem of 

premature convergence[31,33,34]. Besides, the convergence rate of SSA is not high enough to obtain 

high-precision solutions for complex problems. Therefore, to improve SSA’s global search capability, 

researchers have conducted a lot of research. For example, Sayed et al. proposed a novel Chao-induced 

SSA (CSSA) [35], and variables generated by chaotic sequences were used to replace original random 

variables. The test results on 34 benchmark problems show that CSSA can improve the exploratory 

ability and robustness of the SSA, but CSSA has low accuracy in solving high-dimensional 

optimization problems. Zhang et al. [36] applied Gaussian and Cauchy mutations to the update process 

of candidate solutions and used chaotic vectors to define food sources. Experimental results show that 
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CMSSA can significantly improve SSA’s exploration capability. However, the computational 

complexity of CMSSA is relatively high, mainly because the amount of evaluations of the CMSSA 

function in each iteration is the square of the original SSA. In the study of Faris et al., eight transfer 

functions are used to represent eight variants of binary SSA, and the crossover operator is used instead 

of the average operator(BSSA), which improves the global search capability of the original SSA [37]. 

However, the exploitation of ssa is slightly inadequate.Yang et al. proposed a memetic salp swarm 

algorithm (MSSA) [38]. The algorithm divides the original salp swarm into multiple salp swarms to 

perform global and local searches independently. Simulation experiments and statistical results show 

that the MSSA can significantly improve the global search capability of SSA. However, MSSA needs 

to adjust more parameters and is less robust. El-Fergany et al. used the SSA to optimize the parameters 

of the fuel cell model [39]. The simulation results show that the improved algorithm effectively 

improves the accuracy of the fuel cell model. Fan et al. improved the original SSA by using a refracted 

oppositional learning strategy and proposed a refracted salp swarm algorithm (RSSA) [40]. This 

strategy can enhance the exploration capability of SSA and avoid falling into local optima. 

Experimental results show that RSSA is superior to other optimizers in terms of accuracy and 

robustness and achieves higher recognition accuracy in structural parameter recognition problems with 

a low signal-to-noise ratio. However, the performance of RSSA is inadequate in terms of convergence 

rate and optimization accuracy in high dimensions problems. Hegazy et al. added an inertia weight 

parameter to the original SSA to modify the leader and follower’s position equation. This method 

improves the performance of SSA in solving the feature selection problem [41]. In the study of Wang 

et al. [42], two effective mechanisms, adaptive weight and scale-free network, were integrated into the 

following evolutionary process (E-SSA) of the salp algorithm, which alleviated the slow convergence 

speed of the salp swarm algorithm and the tendency of falling into local minima. However, changes in 

these strategies increased the computational complexity, but they do not always effectively obtain the 

exploration ability of the optimization algorithm. Nasri et al. introduced chaos (CSCA) into the 

salp swarm algorithm and used tent maps to adjust the attractive movement of the leader in the 

population around the food source, to increase the global search mobility and achieve strong global 

optimization [43]. Lin et al. added mutation structure to the original SSA, and introduced Cuckoo 

Mutation Strategy (CMS) and Adaptive DE Mutation Strategy (ADMS) into the structure of the 

original SSA to obtain a Double Mutation Salp Swarm Algorithm (DMSSA) [44]. In the former 

mutation, judgment, shuffling, and mutation act on leaders. The latter mutation selection, mutation, 

and adaptation act on followers to improve the utilization rate of population information, and also 

make some balance in exploration and development. Sigh et al. proposed a hybrid algorithm 

(HSSASCA) to enhance the performance of the original SSA by combining SSA with the sine cosine 

algorithm [45]. The convergence effect with global and local search is better than other comparative 

test algorithms and can be applied to unconstrained and constrained optimization problems. Table 1 

shows some variations for SSA. However, the above research generally to exchange for the 

optimization effect of exploration or exploitation capability, increasing the time complexity and lacks 

a balanced method between exploration and exploitation that has a significant impact on the overall 

performance of the algorithm. Also, these researches still have some shortcomings in solving problems 

with complex mathematics. For example, there are premature convergence phenomena in highly 

complex multi-dimensional and multimodal optimization problems. This paper proposes an improved 

SSA (GMLSSA) based on gravitational search and multi-swarm search strategies to overcome these 

problems, which has the following two main improvements: 
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1) A gravitational search strategy is proposed, which replaces the original single individual 

guidance method with multiple individual coordinated guidance methods to update the follower salps’ 

position. This strategy avoids the shortcomings of the single neighborhood topology of the traditional 

SSA and improves the algorithm’s ability to explore. 

2) based on the gravitational search strategy, a multi-swarm strategy is introduced. This strategy 

expands the single salp swarm of the traditional SSA into multiple independent salp swarms. Moreover, 

dividing the followers of all sub-swarms into ordinary followers and communication followers 

promotes the exchange of information between sub-swarms. In this way, a balance between the 

exploration and exploitation capabilities can be managed appropriately and avoid the algorithm falling 

into local optima. 

The remaining sections are arranged as follows: Section 2 briefly introduces the traditional SSA. 

Section 3 describes the proposed GMLSSA, and Section 4 gives the experimental results and 

discussion. Section 5 summarizes the research conclusions of this paper. 

2. An overview of the salp swarm algorithm 

The SSA mimics the chain movement mode and dynamic foraging salp populations’ behavior in 

the ocean. It is a new SI algorithm proposed by Mirjalili et al. [30]. The movement of salps in the sea 

has aggregation, usually forming a long salp chain. Many scholars believe that this chain-like structure 

can help salps to coordinate their activities quickly and effectively foraging. Individuals in a salp chain 

can be divided into leaders and followers, and the structure is shown in Figure 1. The leader is the 

individual at the top of the chain. It updates the position based on the food source. Therefore, the 

leader’s exploration and exploitation are always carried out near the food source. The leader’s 

movement model is as follows: 

Salps chain

Leader salp
Follower salp

Direction of motion

 

Figure 1. Swarm behavior of salps. 

𝑋1,𝑗 = {
𝐹𝑜𝑜𝑑𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑖)   𝑐3 ≥ 0.5

𝐹𝑜𝑜𝑑𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑖)   𝑐3 < 0.5
     (1) 

where X1, j is the first salp position in the jth dimension, Foodj represents the food source position in 

the j dimension. ubj and lbj are the upper and lower bounds of the jth dimension in the search space. c2 

and c3 are random numbers uniformly distributed between 0 and 1. c1 is a convergence factor, which 

balances the algorithm’s exploration and exploitation capabilities in the iterative process. 
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𝑐1 = 2𝑒−(
4𝑡

𝑇
)

2

          (2) 

where T is the maximum iteration, and t is the current iteration. From the formula (2), the value of the 

convergence factor c1 adaptively decreases with iteration. At the beginning of the iteration, the 

convergence factor c1 slowly decreases, and the leader leads the followers to conduct a large-scale 

global exploration. At the later stage of the iteration, the value of c1 decreased significantly, and the 

leader carried out detailed exploitation of promising areas. Follower salps update their positions after 

the leader, and this equation can be expressed as follows: 

𝑋𝑖,𝑗 =
(𝑋𝑖,𝑗+𝑋𝑖−1,𝑗)

2
, 𝑖 ≥ 2         (3) 

where Xi, j is the i-th salp individual (follower) position vector on the jth dimension. When i=2, the 

follower’s position update is directly related to the leader X1, j, that is, the leader directly leads the 

follower. When i>2, the follower’s position update is only related to the previous follower Xi-1, j, that 

is, the leader indirectly leads the follower. 

The flow chart of SSA is shown in Figure 2. 

Evaluate the fitness value

i=1?

Y

Start

Population Initialization

N

Sort the fitness values in 

ascending order

End

Update c1, c2 and c3

Update the position of the 

leader by Eq. (1)

Satisfy the 

stop condition?

N

The best search agent so 

far is Fj

Update the position of the 

followers by Eq. (3)

Check if any search agent 

goes beyond the search 

space and amend it

Return to the optimal value

Y

 

Figure 2. Flow chart of traditional SSA. 

3. Improved salp swarm algorithm 

3.1. Gravitational search strategy 

In SSA, the only leader in the salp chain and the rest of the followers have a clear labor division. 

As the number of iterations increases, the leader gradually approaches the food source, and followers 

connect and follow the leader. From formula (3), the i-th individual in the salp swarm is updated 
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according to the (i-1)-th individual, where i = 1 represents the leader. Therefore, once the leader’s 

position is determined, the search trajectories of other individuals are determined. This structure makes 

the salp populations only move around the leader without escaping the current search trajectory. When 

the leader falls into the local optima, it will mislead all followers into the local optima. Essentially, 

there is a lack of exploration ability in the follower’s search equation. Inspired by the Gravitational 

Search Algorithm (GSA) [46], the gravitational search mechanism between particles is introduced into 

the salp swarm to guide the follower’s search. This strategy effectively improves the search 

performance of SSA. 

First, suppose that the salp swarm forms a chain structure according to the mass of the individual. 

The salp individual with the highest mass has the least fitness (for minimizing problems) and is 

considered the leader. According to Newton's law of gravity, the greater the salp individual’s mass, the 

more attractive it is to other individuals around it. Also, the closer the distance between the two 

individuals, the greater the gravitational force. Therefore, in the t-th generation, the gravitational force 

of individual j on individual i is defined as follows: 

𝐹𝑖𝑗,𝑑
𝑡 = 𝐺

𝑀𝑎𝑠𝑠𝑖
𝑡×𝑀𝑎𝑠𝑠𝑗

𝑡

𝑅𝑖𝑗
𝑡 (𝑥𝑗,𝑑

𝑡 − 𝑥𝑖,𝑑
𝑡 )       (4) 

where 𝑀𝑎𝑠𝑠𝑖
𝑡 and 𝑀𝑎𝑠𝑠𝑗

𝑡 are the inertial masses of salp individuals i and j, the mass is calculated 

according to fitness. The updated formulas are as formulas (6) and (7); 𝑅𝑖𝑗 is the Euclidean distance 

between two salp individuals i and j, such as 𝑅𝑖𝑗,𝑑
𝑡 = ‖𝑋𝑖

𝑡 , 𝑋𝑗
𝑡‖

2
. G is the gravitational constant of the 

t-th generation, and its calculation formula is: 

𝐺 = 𝐺0 × 𝑒−
𝛿𝑡

𝑇           (5) 

where T is the maximum iteration, δ is the attenuation coefficient with a value of 20. G0 is the initial 

gravitational constant, and when its value is 100, the algorithm’s optimization ability is more stable. 

𝑚𝑖
𝑡 =

𝑓𝑖𝑡𝑖
𝑡−𝑤𝑜𝑟𝑠𝑡𝑡

𝑏𝑒𝑠𝑡𝑡−𝑤𝑜𝑟𝑠𝑡𝑡          (6) 

𝑀𝑖
𝑡 =

𝑚𝑖
𝑡

∑ 𝑚𝑗
𝑡𝑁

𝑗=1

            (7) 

where 𝑓𝑖𝑡𝑖
𝑡 represents the fitness of the individual i of salp in the t generation. 

Second, the salp swarm must have enough opportunities to expand the search space to avoid 

falling into local optima. Different from the single-individual guidance method in SSA, in our method, 

each salp individual will be attracted by all individuals with greater mass than its own. Therefore, the 

location update of each salp individual is guided by multiple individuals in the salp swarm, which 

increases the exploration capability of SSA. In dimension d, the total force of salp individual i is the 

resultant force of the forces exerted by individuals with greater mass than its own. Therefore, for the 

follower salps (i≥2), the resultant force can be calculated by the following formula: 

𝐹𝑖,𝑑
𝑡 = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗,𝑑

𝑡𝑁
𝑗=1,𝑗≠𝑖         (8) 

https://www.sciencedirect.com/topics/engineering/newtons-law
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where 𝑟𝑎𝑛𝑑𝑗 represents a random number between [0, 1], it is worth noting that if j is equal to i, the 

attractive force 𝐹𝑖𝑖 is set to 0 to avoid selecting the current individual itself. 

Finally, according to Newton’s second law, the i-th salp’s acceleration in the d-th dimension is 

shown in formula (9). Also, for the follower salps (i≥2), the speed and position update equations are 

shown in formulas (10) and (11), respectively. 

𝑎𝑖,𝑑
𝑡 =

𝐹𝑖,𝑑
𝑡

𝑀𝑎𝑠𝑠𝑖
𝑡           (9) 

𝑣𝑖,𝑑
𝑡+1 = 𝑟𝑎𝑛𝑑𝑖 + 𝑣𝑖,𝑑

𝑡 + 𝑎𝑖,𝑑
𝑡 , 𝑖 ≥ 2        (10) 

𝑋𝑖,𝑑
𝑡+1 = 𝑋𝑖,𝑑

𝑡 + 𝑣𝑖,𝑑
𝑡+1, 𝑖 ≥ 2       (11) 

where 𝑟𝑎𝑛𝑑𝑖 represents a random number between [0, 1]. 

It is worth noting that when individuals with higher masses are in the salp swarm, other 

individuals will move towards them, making the algorithm efficiently converge to the optima. Besides, 

the effect of gravity does not require any propagation medium, and all salp individuals will be attracted 

by other individuals of greater mass regardless of distance. Therefore, the proposal of the gravitational 

search strategy makes the SSA have a more robust exploration performance. The schematic diagram 

of the gravitational search strategy is shown in Figure 3. 

Leader salp Follower salp

Xi

Xi-1

Xi

Xi-1

Xi-2

Xi-3

X1

 

Figure 3. Schematic diagram of the gravitational search strategy. 

As shown in Figure 3, the salp individual 𝑋𝑖 is only affected by the neighbor's individual 𝑋𝑖−1 

in the traditional SSA. This topology has a low degree of freedom, resulting in low exploration 

efficiency. In the SSA with a gravitational search strategy, the salp individual 𝑋𝑖 will be attracted by 

all individuals with better fitness when the search process is in the exploration stage. In this way, each 

exchanges information with at least one outstanding individual. This improved topology means that 

the swarm can obtain a higher level of diversity than the SSA’s leader-follower structure. Therefore, it 

is not surprising that it performs better on complex multimodal problems. 

The pseudo-code of the gravitational search strategy is provided in Algorithm 1. 
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Algorithm 1. Gravitational search strategy (GSS) 

Input: Maximum iteration T, the total number of salps N, parameter G0, δ. 

Output: 𝑋𝑖,𝑑
𝑡+1 

01：Initialize the search agent population 𝑋𝑖,𝑑
𝑡 (i = 1, 2,…, N) 

02：for each salp (𝑋𝑖,𝑑
𝑡 ) do 

03：  if 𝑋𝑖,𝑑
𝑡  is the leader then 

04：    Update the leading salp’s position using Eq (1) 

05：  else 

06：  Updates the G, bestt, worstt and Massi
t of the population 

07：  Compute the total forces in different directions with the Eq (8) 

08：  Find the accelerations and velocities with the Eq (9) and Eq (10) 

09：  Update the follower salp’s position 𝑋𝑖,𝑑
𝑡+1 using Eq (11) 

10：  end if 

11：end for 

3.2. Multi-leader strategy 

In the SSA, only one leader is responsible for the food search, while other individuals in the 

population only follow the previous individual, which means that the SSA has lower population 

diversity[39,40]. When solving more complex problems, this strategy tends to fall into local optima. 

In reality, salp swarm formation is through the independent feeding of multiple small-scale salp swarms, 

and they gradually gather together according to a specific method [47]. 

Based on this, a multi-leader strategy is proposed. In this strategy, the salp swarm is divided into 

multiple sub-swarms led by different leaders, and each sub-swarm uses the GSS topology to perform 

search tasks independently. Because the population is divided into various leaders to search the solution 

space in parallel, it encourages the population to explore more and helps maintain the population’s 

diversity during the initial stage of the iteration. Also, the followers in each subgroup are divided into 

ordinary followers and communication followers. Ordinary followers follow the previous individual 

in the salp chain in the traditional way, while communication followers leave their subgroups to find a 

source of food (global optima). This effectively promotes the exchange of information between sub-

swarms. 

First, the original single salp swarm is divided into several sub-swarms according to population 

fitness. For example, We can divide the salp swarm with a population size of M*Q into M sub-swarms 

according to specific rules. As shown in Figure 4, the best individual is assigned to salp swarm #1, and 

the second-best individual is assigned to salp swarm #2, and so on. It is worth noting that the best 

individual in each sub-swarm is also considered the sub-swarm leader, and the remaining individuals 

are followers. Based on this idea, all salp swarm individuals are no longer constrained by a single 

leader, but multiple leaders independently guide their sub-swarm. 
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M=4

Salp swarm #1

Salp swarm #2Salp swarm #4

Salp swarm #3

 

Figure 4. Partition rules of sub-swarms. 

Algorithm 2 Multi-leader strategy (MLS) 

Input: Maximum iterations T, the total number of salps N, parameter M, Q. 

Output: 𝑋𝑖,𝑑
𝑡+1 

01: Initialize M*Q salp individuals. Divide the salp swarm with a population size of M*Q into M 

sub-swarms. Each sub-swarm contains Q salp individuals. 

02: for t=1 to T do 

03:  for i=1 to M * R do  

04:  Generate a random number between [0, 1]. 

05:    if rand< t/T then 

06:      Update the follower salp’s position 𝑋𝑖,𝑑
𝑡+1 using Eq (12) 

07:    else 

08:      Update the follower salp’s position 𝑋𝑖,𝑑
𝑡+1 using Eq (11) 

09:    end if 

10: End for 

Second, divide the followers of all sub-swarms into ordinary followers and communication 

followers. Ordinary followers are responsible for their evolution under the leadership of the sub-swarm 

leader, and the leader still controls their search methods. In contrast, communication followers can 

break through the control of the sub-swarm leader and play a role in information exchange between 

sub-swarms. We define individuals with probability 1-p as ordinary followers and update their 

positions according to the formula (11). Individuals with probability p are defined as communication 

particles, and information exchange is realized according to the position update formula (12). This 

strategy sets up a dynamic control mechanism in the search process to realize the classification of 

followers. As mentioned above, the two types of followers’ division are based on the probability p

∈[0, 1]. When p=0, all followers have not evolved into communication followers, and individual 

location updates are performed traditionally. When p=1, all followers evolve into communication 

followers. When p increases from 0 to 1, the population gradually transitions from exploration to 

exploitation. Also, the parameter p is set as a function of iteration t: p=t/T to control the classification 

mechanism. The p gradually increases with iteration, leading to the growth of communication salps. 

In this way, ordinary followers are continuously provided with opportunities to evolve into 
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communication followers, which has a continuous and effective impact on exploration and exploitation. 

The increasing number of communication individuals between each sub-swarm promotes exchanging 

information between the sub-swarm and increases the population’s diversity. Algorithm 2 gives the 

pseudo-code of the multi-leader strategy. 

𝑋𝑖,𝑑
𝑡+1 = (

1

𝑀
∑ 𝑙𝑏𝑒𝑠𝑡𝑚,𝑑

𝑡𝑀
𝑚=1 − 𝑋𝑖,𝑑

𝑡 ) + (𝐹𝑜𝑜𝑑𝑚,𝑑
𝑡 − 𝑋𝑖,𝑑

𝑡 ), 𝑖 ≥ 2    (12) 

where 𝑙𝑏𝑒𝑠𝑡𝑚 represents the leader of the n-th sub-swarm, the Food is the food source’s position. It 

can be seen from formula (12) that ordinary followers do not completely rely on the leader for location 

update operations but evolve into communication followers to find food sources. This method avoids 

the shortcomings of traditional SSA. Besides, communication followers also realize the exchange of 

information between sub-swarms in finding food sources. A schematic diagram of the multi-leader 

strategy is shown in Figure 5. Algorithm 3 gives the pseudo-code of the GMLSSA. 

Food source

Leader Ordinary follower 

Communication  

follower 

 

Figure 5. Schematic diagram of multi-leader strategy. 

It is worth noting that in population initialization and population location update when the 

individual information in the population exceeds the constraint conditions of the decision variables, 

the information will be placed at the boundary of the constraint. 

GMLSSA does not change the computational complexity of SSA. During the cycle, the 

computational complexity of evaluating the fitness of each search agent is O(T·N), and the 

computational complexity of updating the position vector of each search agent is O(T·N·D). Finally, 

the computational complexity of GMLSSA is O(T·N·D). 

The flow chart of GMLSSA is shown in Figure 6. 
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N

N

Evaluate the fitness value

i=1

Y

Start

Related parameters  initialization

N

Sort the fitness values  of each sub-swarm in 

ascending order

End

Update parameter c1

Satisfy the 

stop condition

The best search agent so far is Fj

Update the position of the followers by Eq. (1)

Check if any search agent goes beyond the 

search space and amend it

Return to the optimal value

Y

Population initialization

The population is divided into M sub-swarms, 

and each sub-swarm contains R individuals
rand<t/Tmax

Y

Update the position of 

the leader by Eq. (12)

Update the position of 

the leader by Eq. (12)

 

Figure 6. Flow chart of traditional GMLSSA. 

Algorithm 3 Pseudo-code of GMLSSA  

01: Initialize maximum iteration T, the total number of salps N, attenuation coefficient δ, initial 

gravitational constant G0, sub-swarm size Q, and sub-swarm’s number M; 

02: Determine the fitness function according to the specific optimization problem; 

03: Divide the salp swarm with a population size of M*Q into M sub-swarms and  

each sub-swarm contains Q salp individuals; 

04: Initialize swarm at first-generation; 

05: Calculate each salp’s fitness; 

06: Sort all salps’ fitness in descending order and the individual with the best fitness was selected 

as F; 

07: Update parameter c1; 

08: while t<T do 

09:   for i = 1 to M do 

10:     for j = 1 to R do 

11:       Evaluate the fitness of the jth salp in the ith salp swarm; 

12:     end for 

13:   end for 

14:   for i=1 to M do 

15:     Determine the food source of the ith salp swarm; 

16:     Update the position of the leader in the ith salp swarm by Eq (1); 

17:     for j = 2 to R do 

18:       Generate a random number between [0, 1]; 

19:       if rand< t/T then 

20:         Update the position of the jth follower salp in the ith salp swarm by Eq (12) 

21:       else 

22:         Update the position of the jth follower salp in the ith salp swarm by Eq (11) 

23:       end if 

24:     end for 

25:     Update the salps which go further than the search space limits based on the upper and 

lower limits of the problem variables 

26:     t = t+1 

27:  End 
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4. Experimental results and analysis 

To evaluate GMLSSA’s performance, the traditional SSA [40] and other state-of-the-art SI 

algorithms including the ABC [48], invasive weed optimization (IWO) [49], Hybridization 

Approach between the fireworks algorithm and grey wolf optimizer (FWAGWO) [50] and The 

improved SSA version (HSSASCA) [51] was used for comparative experiments. For the fairness 

of the experiment, all algorithms’ population size is set to 50, and the maximum iterations are 1000. 

For the complex CEC 2014 function involved in the experiment, the maximum iterations are set 

to 6000 to obtain a sufficient number of function evaluations (NFE). For statistical analysis 

experiments, each benchmark function performs 30 independent runs to minimize the results’ 

statistical error. The parameter settings of SSA, IWO, ABC, FWAGWO, and HSSASCA are 

consistent with the literature[40,48–51]. The parameters of the proposed GMLSSA are set as 

follows: attenuation coefficient δ=0.5, initial gravitational constant conversion G0=1, number of 

sub-swarm M=5, each swarm’s population R=10. The specific parameter settings are shown in 

Table 2. All algorithms were implemented using Matlab. 

Table 2. Parameter settings of various algorithms. 

Algorithm Parameter setting 

SSA c2, c3∈[0,1], the parameter c1 adaptively decreases with iteration. 

IWO Initial population size Ninitial = 10, initial standard deviation σinitial = 10, final standard deviation 

σfinal = 0.02, nonlinear modulation index n = 3. 

ABC Number of Onlookers nOnlooker = 0.25, expansion coefficient acc = 1. 

FWAGWO The parameter а linearly decreased from 2 to 0. 

HSSASCA Parameter c1, c2, c3∈[0,1], r1=2π×rand(), r2=2×rand(), v0=0 and Iruns=30. 

GMLSSA Attenuation coefficient δ =0.5, initial gravitational constant conversion G0 =1, number of sub-

swarm M=5, each swarm’s population R=10. 

4.1. Benchmark function 

Table 3 shows all the benchmark functions used in this experiment. These benchmark functions 

include three categories: unimodal functions (F1- F6), multimodal functions (F7- F12), and complex 

composite functions (F13- F20). Among them, the unimodal functions are used to test algorithms’ 

convergence rate and exploitation capability. The multimodal functions contain multiple local optima, 

and as the dimension of the problem increases, the number of local optima increases exponentially. 

Therefore, these multimodal functions are suitable for further evaluating the algorithm’s exploration 

capability and global optimization performance. The composite functions used in this experiment are 

the CEC2014 benchmark functions. These functions have shifted, rotated, expanded, and combined 

the most complex numerical optimization problems. Therefore, solving such functions is the most 

challenging. These functions are used to evaluate the comprehensive optimization capabilities of the 

algorithm.  
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Table 3. Benchmark functions. 

Function d Range fmin Type 

F1(x) = ∑ 𝑥𝑖
2𝑛

𝑖=1  30/50/100 [-100,100] 0 Unimodal 

F2(x) = ∑ |𝑥𝑖|𝑛
𝑖=1 + ∏ |𝑥𝑖|𝑛

𝑖=1  30/50/100 [-10,10] 0 Unimodal 

F3(x) = ∑ (∑ 𝑥𝑗
𝑖
𝑗−1 )2𝑛

𝑖=1  30/50/100 [-100,100] 0 Unimodal 

F4(x) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 30/50/100 [-100,100] 0 Unimodal 

F5(x) = ∑ ([𝑥𝑖 + 0.5])2𝑛
𝑖=1  30/50/100 [-100,100] 0 Unimodal 

F6(x) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)𝑛

𝑖=1  30/50/100 [-1.28,1.28] 0 Unimodal 

F7(x) = ∑ −𝑥𝑖sin (√|𝑥𝑖|)𝑛
𝑖=1  30/50/100 [-500, 500] -418.98×d Multimodal 

F8(x) = ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]𝑛

𝑖=1  30/50/100 [-5.12, 5.12] 0 Multimodal 

F9(x) = −20 exp (−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) −

exp (
1

𝑛
∑ cos(2𝜋𝑥𝑖)𝑛

𝑖=1 ) + 20 + 𝑒 

30/50/100 [-32, 32] 0 Multimodal 

F10(x) = 
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 − ∏ cos (

𝑥𝑖

√𝑖
)𝑛

𝑖=1 + 1 30/50/100 [-600, 600] 0 Multimodal 

F11(x) = 
𝜋

𝑛
{10 sin(𝜋𝑦1)+ ∑ (𝑦𝑖 − 1)2[1 +𝑛−1

𝑖=1

10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2} + ∑ 𝑢(𝑥𝑖 , 10, 100, 4)𝑛
𝑖=1  

yi = 1 +
𝑥𝑖+1

4
𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚    𝑥𝑖 > 𝑎 
     0    −𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚    𝑥𝑖 < 𝑎
 

30/50/100 [-50, 50] 0 Multimodal 

F12(x) = 0.1{𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ (𝑥1 − 1)2[1 +𝑛
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)] + (𝑥𝑛 − 1)2 [1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} +
 ∑ 𝑢(𝑥𝑖 , 5, 100, 4)𝑛

𝑖=1  

30/50/100 [-50, 50] 0 Multimodal 

F13(x) = (CEC1: Rotated High Conditioned Elliptic 

Function) 
30/50/100 [-100, 100] 100 CEC 2014 

F14(x) = (CEC2: Rotated Bent Cigar Function) 30/50/100 [-100, 100] 200 CEC 2014 

F15(x) = (CEC8: Shifted and Rastrigin’s Function) 30/50/100 [-100, 100] 800 CEC 2014 

F16(x) = (CEC19: Hybrid Function 3 (N=4)) 30/50/100 [-100, 100] 1900 CEC 2014 

F17(x) = (CEC20: Hybrid Function 4 (N=4)) 30/50/100 [-100, 100] 2000 CEC 2014 

F18(x) = (CEC21: Hybrid Function 5 (N=5)) 30/50/100 [-100, 100] 2100 CEC 2014 

F19(x) = (CEC24: Composition Function 2 (N=3)) 30/50/100 [-100, 100] 2400 CEC 2014 

F20(x) = (CEC25: Composition Function 3 (N=3)) 30/50/100 [-100, 100] 2500 CEC 2014 

4.2. Numerical analysis 

To ensure the fairness of the experiment, when the dimension of the test function is 30, each 

algorithm runs 30 times on 20 benchmark functions independently. The specific results are shown in 

Table 4 (the best solution (best), average (Mean), and standard deviation (Std) of the experimental 

results, which are recorded (the best results are highlighted in bold). For the minimum problem, the 

smaller the mean, the better the optimization ability of the algorithm. The smaller the standard 

deviation, the better the algorithm stability. 

From Table 4, for unimodal functions F1-F6, the proposed GMLSSA obtains the best average and 

standard deviation on 5 unimodal functions (F1, F2, F3, F4, and F6). For F5, the results of the GMLSSA 

are not as good as HSSASCA and SSA in terms of average values. For most unimodal functions, 

GMLSSA has the smallest standard deviation. For most unimodal functions, GMLSSA has the smallest 

standard deviation. These results indicate that GMLSSA exhibits better stability in the unimodal 

functions. Therefore, the experimental results prove that the GMLSSA has better exploration capability. 
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Table 4. Experimental results of benchmark functions (F1-F20) with D=30 dimensions 

using IWO, FWAGWO, ABC, HSSASCA, SSA, and GMLSSA. 

Function  IWO FWAGWO ABC HSSASCA SSA GMLSSA 

F1 

Best 2.6081E-48 1.8593E-79 2.3918E-63 0.0000E+00 1.2313E-75 0.0000E+00 

Mean 3.8046E-42 7.4525E-78 8.9267E-60 0.0000E+00 2.9299E-72 0.0000E+00 

Std 1.5178E-42 8.0547E-78 9.4909E-60 0.0000E+00 4.6601E-72 0.0000E+00 

F2 

Best 2.3359E-22 9.0727E-25 3.0143E-48 0.0000E+00 6.2682E-42 0.0000E+00 

Mean 4.0453E-21 7.7868E-24 1.3308E-43 0.0000E+00 9.9800E-39 0.0000E+00 

Std 9.8118E-20 4.1931E-25 6.5932E-43 0.0000E+00 9.5909E-39 0.0000E+00 

F3 

Best 1.0403E-18 2.8120E-21 5.5415E-53 1.6417E-66 3.2586E-39 4.0777E-126 

Mean 3.0751E-17 3.1214E-19 2.3359E-52 8.6639E-65 1.2290E-38 7.5697E-122 

Std 7.3926E-17 2.9378E-20 1.4448E-52 6.6679E-66 1.7526E-37 2.1285E-121 

F4 

Best 9.4909E-15 2.9836E-34 7.9027E-21 2.3359E-48 3.6801E-112 1.1973E-137 

Mean 1.5047E-14 7.0597E-33 8.5656E-20 5.0046E-46 6.8733E-111 3.9791E-136 

Std 5.9393E-15 6.7752E-31 6.7752E-21 1.0917E-47 5.7649E-110 3.0237E-136 

F5 

Best 4.2575E-06 1.6299E-07 5.4987E-07 5.4745E-13 5.1202E-09 7.4120E-08 

Mean 7.3791E-05 4.5464E-06 3.5138E-06 3.7815E-12 9.7448E-08 7.9302E-07 

Std 7.7337E-06 7.1975E-07 7.6589E-05 1.5325E-13 5.2053E-08 7.4969E-14 

F6 Best 8.2002E-03 6.0786E-02 9.5941E-06 6.8284E-08 8.3166E-12 5.2093E-19 

Mean 3.6341E-02 1.7895E-01 7.2428E-05 5.3984E-07 9.8026E-11 7.2136E-18 

Std 6.8152E-03 6.0501E-02 1.1931E-06 8.9524E-08 4.9335E-10 6.0192E-18 

F7 Best 5.9504E-02 8.6871E-03 6.2144E-03 7.4032E-05 2.5664E-03 6.3857E-04 

Mean 8.9235E-01 9.0543E-02 5.5163E-02 7.6882E-04 7.3455E-02 2.4619E-03 

Std 8.8516E-02 5.4971E-03 8.7123E-03 1.0964E-05 3.4416E-02 2.3875E-03 

F8 Best 1.2894E+01 4.4875E+01 5.5275E+00 8.0633E-07 8.6749E-14 0.0000E+00 

Mean 8.0064E+02 6.2205E+02 8.2599E+01 6.0001E-07 3.2434E-13 0.0000E+00 

Std 1.5505E+02 1.7831E+01 8.3875E+00 3.3711E-07 6.3708E-13 0.0000E+00 

F9 Best 4.8941E-05 1.3028E-11 4.2700E-06 7.7839E-14 4.4092E-13 6.6229E-12 

Mean 3.9468E-04 4.1276E-10 5.4626E-05 9.7331E-13 8.7804E-12 6.0738E-11 

Std 5.5993E-05 5.2911E-10 8.1977E-05 2.7352E-13 8.0281E-13 8.0774E-12 

F10 Best 4.1144E-08 3.8551E-11 9.9557E-14 6.3544E-14 2.3831E-12 5.9966E-32 

Mean 3.0542E-07 3.1985E-10 1.5129E-13 7.1096E-13 8.6988E-11 8.5321E-31 

Std 4.8943E-08 7.7261E-11 8.4553E-13 2.2311E-14 2.5847E-10 6.4589E-31 

F11 Best 9.8049E-03 8.0633E-07 1.9977E-04 6.2854E-08 9.4361E-11 9.0467E-19 

Mean 3.0223E-02 6.0001E-07 3.7533E-03 7.6095E-07 4.3303E-10 9.3678E-18 

Std 4.5166E-03 3.3711E-07 3.9525E-03 1.6296E-08 9.6364E-11 3.9176E-18 

F12 Best 6.4982E-02 3.7126E-04 9.7395E+00 5.2254E-06 4.6799E-07 3.9127E-09 

Mean 2.7038E-01 3.8022E-03 5.5969E+01 9.8782E-05 2.2053E-07 5.7973E-08 

Std 8.1339E-01 6.1099E-04 3.0966E+00 6.5066E-06 1.6212E-06 1.5533E-09 

F13 Best 2.3482E+02 3.4194E+03 5.3809E+03 2.3281E+02 2.4153E+02 2.2501E+02 

Mean 7.8951E+02 5.3553E+03 5.9991E+03 3.0937E+02 3.3705E+02 2.4461E+02 

Std 7.0729E+03 2.574E+03 9.9176E+02 3.0069E+02 2.5272E+02 2.9251E+02 

F14 Best 1.5807E+04 9.2451E+04 4.9462E+05 2.7958E+03 3.2078E+02 4.1263E+02 

Mean 9.9361E+04 8.2934E+05 6.1345E+05 4.7618E+03 2.6954E+03 3.1796E+03 

Std 5.1871E+03 1.4931E+04 2.7738E+05 4.2665E+04 6.1027E+03 7.8993E+03 

F15 Best 8.9231E+05 6.8772E+03 1.7763E+04 1.0494E+04 1.8971E+03 1.9772E+03 

Mean 4.8673E+06 7.1543E+04 1.7999E+05 1.9671E+05 2.2237E+03 2.5811E+03 

Std 7.2773E+05 5.3726E+03 5.9354E+05 7.2915E+04 2.3721E+03 2.9373E+04 

F16 Best 5.9768E+05 1.9318E+06 4.0681E+04 3.0714E+04 4.5712E+05 1.9679E+03 

Mean 6.6879E+06 3.1788E+08 3.3792E+05 4.6051E+05 5.3261E+06 2.1421E+04 

Std 6.8161E+06 2.7297E+07 7.4911E+05 1.8512E+05 9.6331E+06 2.7796E+04 

F17 Best 8.0495E+05 4.0814E+06 6.7969E+04 2.2392E+04 2.3261E+03 2.8577E+03 

Mean 9.5221E+06 9.0595E+06 8.6331E+04 7.1014E+05 2.5463E+03 5.8231E+04 

Std 4.0845E+06 3.4474E+07 5.5345E+05 9.1659E+05 8.9283E+04 5.0558E+04 

F18 Best 4.3167E+06 5.6387E+05 1.8402E+04 8.2811E+04 2.4549E+04 5.1566E+04 

Mean 7.1424E+06 6.2974E+06 8.9546E+06 2.2664E+05 2.6029E+04 9.5815E+05 

Std 7.1368E+06 6.7653E+05 5.2802E+06 9.6823E+06 8.8775E+05 3.4174E+05 

F19 Best 3.8917E+04 8.4372E+04 1.1043E+04 2.8206E+03 2.6176E+03 2.5604E+03 

Mean 5.3351E+05 8.363E+05 8.9571E+04 2.8237E+04 2.6138E+03 2.5168E+03 

Std 2.9921E+05 8.7512E+04 3.4528E+04 5.3012E+03 1.1543E+00 2.5687E-10 

F20 Best 2.8269E+04 5.2459E+03 4.5164E+03 3.5788E+03 3.1842E+03 2.8335E+03 

Mean 4.4951E+04 8.0381E+03 5.8928E+03 3.7683E+03 3.2123E+03 2.8822E+03 

Std 7.2506E+04 1.1702E+02 2.7486E+01 6.3667E+00 8.4287E+00 7.8388E-02 
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In the test experiment on the multimodal functions F7-F12, the mean and standard deviation of 

GMLSSA on F8, F10, F11, and F12 are significantly better than other algorithms. Besides, the GMLSSA 

can obtain accurate optima on F8 and F10. GMLSSA only lost to the HSSASCA in F9 but ranked second 

among all algorithms. GMLSSA has the smallest standard deviation on most multimodal functions (F7, 

F8, F10, F11, and F12). Since multimodal functions contain multiple local minima, the algorithm must 

have a strong exploration ability in solving such functions. From the analysis of experimental results, 

the GMLSSA is also the best algorithm for multimodal function problems. 

Among the 8 selected CEC2014 functions, GMLSSA beats other algorithms on 6 functions. Only 

the average value on F15 and F18 is inferior to the SSA. These experimental results prove that the 

GMLSSA still has strong stability and effectiveness in solving complex high-dimensional and 

multimodal optimization problems. This is due to the collaboration and information exchange of 

multiple leaders making the GMLSSA maintain high population diversity. 

4.3. Convergence analysis 

To show the convergence characteristics of the GMLSSA more clearly, this section records the 

average convergence curve of all algorithms on the 30-dimensional benchmark function (Figure 7). 

 

Figure 7. The convergence graphs of average best-so-far solutions obtained by 

GMLSSA and five heuristic algorithms on F1-F20 with 30 dimensions. 

GMLSSA has the fastest convergence speed and highest accuracy on most unimodal functions. 

Especially for F1, F2, F3, and F5, the GMLSSA converges to the optima very early. 

On the multimodal function (F7-F12), The GMLSSA still has the fastest convergence speed on 

most multimodal functions and obtained the optima on F8 and F10. Only on F7, the convergence rate 

of HSSASCA is slightly higher than that of GMLSSA. Therefore, GMLSSA still has good exploration 

capabilities. 

For complex CEC 2014 functions, most algorithms such as IWO, ABC, and FWAGWO fall into local 
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optima, and the convergence rate is slow. However, the GMLSSA converges faster than other algorithms 

on F15, F18, and F19 and obtains higher accuracy. Even successfully obtain the optimal solution on F19. 

In summary, the experimental results prove the effectiveness of the proposed multi-leader search 

strategy and gravitational search strategy. The co-evolution among multiple salp swarms has expanded 

the search range and developed several valuable areas. 

4.4. Stability analysis 

To test the stability of the GMLSSA, this part studies and analyzes the distribution characteristics 

of the GMLSSA and the comparison algorithms in 30 independent experimental results. Randomly 

select the test results of 6 test functions (respectively from 2 unimodal, multimodal, and CEC2014 

functions) to draw the box plots. As shown in Figure 8, the mean, worst, and best results obtained by 

GMLSSA are almost the same as the global optima, especially for F3, F7, F12, and F20. The box plot 

results prove that compared with other algorithms, the proposed GMLSSA has more powerful 

optimization capability and more excellent stability. 

 

Figure 8. Boxplots on some selected functions. 

4.5. High-dimensional performance analysis 

To test the performance of GMLSSA on high-dimensional problems, we increased the 

dimensionality of the benchmark function from 30 to 50 and 100. All parameter settings remain 

unchanged and run independently 30 times on the benchmark functions. Table 5 records the simulation 

results of 20 benchmark functions of the six algorithms. 

From Table 5, as the problem scale increases, it becomes more and more challenging for all 

algorithms to obtain the optima. However, the proposed GMLSSA has achieved good results in more 

than 14 benchmark functions. As the scale and complexity of the problem increase, GMLSSA still has 

higher accuracy and better robustness. As shown in Table 6, when the problem dimension increases to 

100, GMLSSA achieves the best effect on 12 benchmark functions. These results also prove that 

GMLSSA still has high optimization performance on high-dimensional optimization tasks. 

  
F3 F6 

  
F7 F12 

  
F17 F20 
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Table 5. Experimental results of benchmark functions (F1-F20) with D=50 dimensions 

using IWO, FWAGWO, ABC, HSSASCA, SSA, and GMLSSA. 

Function  IWO FWAGWO ABC HSSASCA SSA GMLSSA 

F1 

Best 6.5625E-26 5.5869E-56 5.5483E-42 3.6977E-53 7.8577E-54 4.9187E-74 

Mean 9.7707E-24 2.9092E-55 3.3066E-41 2.9615E-51 2.1217E-52 4.0162E-71 

Std 6.2661E-24 6.8138E-55 4.9931E-42 3.1818E-51 3.1968E-52 8.5859E-71 

F2 

Best 2.3722E-05 8.9659E-13 4.1913E-26 1.4164E-51 9.4418E-24 3.1153E-63 

Mean 5.5366E-03 9.7085E-12 5.2346E-26 5.0884E-50 5.9027E-23 7.7148E-62 

Std 9.1132E-03 6.9932E-11 2.4792E-26 8.2075E-51 2.7747E-22 6.4778E-62 

F3 

Best 3.3984E-06 6.4612E-08 8.0628E-34 5.7192E-45 1.0816E-18 2.3861E-48 

Mean 2.4448E-04 2.7668E-06 3.4511E-31 4.2074E-43 7.4066E-17 2.4917E-42 

Std 1.8906E-04 8.6568E-05 4.4322E-31 4.5251E-42 1.2923E-17 6.8984E-41 

F4 

Best 6.9927E-08 3.8649E-17 9.3002E-16 7.1154E-28 1.1628E-39 2.4427E-52 

Mean 3.9217E-06 5.4359E-15 9.9557E-14 3.4419E-26 3.3224E-38 7.0162E-51 

Std 5.3148E-06 7.9224E-15 3.8786E-12 5.4505E-27 9.9777E-38 2.3952E-50 

F5 

Best 2.4681E-03 8.8824E-04 2.7534E-04 4.4005E-10 4.5366E-04 1.3812E-06 

Mean 8.6621E-02 4.4623E-03 2.2239E-03 9.9229E-09 8.2432E-05 7.4278E-05 

Std 9.2091E-03 6.5445E-04 4.6295E-02 9.7557E-10 8.4244E-08 8.8741E-05 

F6 Best 9.1757E-02 6.6024E-01 2.3389E-04 4.7318E-06 3.7363E-09 6.3534E-16 

Mean 9.6208E-01 4.3808E+00 5.8323E-03 4.4059E-06 5.1158E-08 3.9032E-15 

Std 5.4815E-02 3.4015E-01 3.9863E-04 3.6296E-05 4.6117E-07 8.8052E-15 

F7 Best 3.1723E-01 5.9986E-02 5.4602E-02 7.1396E-04 7.5961E-02 2.1838E-03 

Mean 4.3701E+00 3.9698E-01 4.9704E-01 7.3411E-03 5.4504E-01 6.2766E-02 

Std 5.5444E-01 5.5391E-02 7.2187E-02 4.5624E-04 1.7984E-01 8.3074E-02 

F8 Best 8.5213E+03 8.9355E+02 2.3281E+01 9.3205E-28 6.8885E-11 4.9353E-31 

Mean 9.4955E+04 5.5752E+03 7.0235E+02 1.3612E-26 4.6528E-10 2.4808E-30 

Std 9.2205E+05 7.8922E+02 5.1623E+01 2.2996E-25 7.3361E-10 9.3749E-28 

F9 Best 8.1573E-04 3.8392E-08 5.7682E-04 5.0566E-10 9.8749E-09 3.0731E-08 

Mean 7.2976E-03 3.0304E-07 7.7088E-03 3.9392E-09 9.6408E-08 6.3845E-07 

Std 2.6971E-04 4.2961E-07 1.5138E-03 9.8881E-09 1.5058E-09 3.2692E-08 

F10 Best 9.5193E-06 6.9743E-08 8.7291E-11 8.4918E-11 1.3318E-10 4.1468E-28 

Mean 7.3464E-04 8.9365E-07 2.9814E-10 1.6895E-10 7.8312E-09 8.9055E-26 

Std 8.3284E-04 3.0582E-06 7.8083E-10 8.2925E-11 3.5323E-08 5.5175E-26 

F11 Best 1.0335E-02 6.2432E-04 3.3467E-02 2.6992E-06 6.7225E-09 4.4421E-14 

Mean 2.2393E-01 7.5968E-04 5.8466E-01 2.1973E-05 4.8416E-08 1.7692E-13 

Std 2.7641E-02 7.3541E-04 5.9252E-01 8.7461E-05 7.4698E-08 2.7443E-13 

F12 Best 5.9113E+00 1.3262E-07 2.6539E+01 3.1541E-04 9.4644E-05 2.2238E-03 

Mean 2.7465E+01 4.8938E-06 9.5758E+02 6.5907E-03 8.0103E-05 4.1045E-02 

Std 4.4378E+00 5.6771E-07 4.8528E+01 8.2349E-04 1.7171E-04 8.9537E-03 

F13 Best 3.6232E+02 5.7344E+03 6.8169E+03 3.8734E+02 4.3283E+02 5.7885E+02 

Mean 8.2417E+02 6.6395E+03 7.3368E+03 4.0191E+02 6.1476E+02 5.9028E+03 

Std 9.5695E+03 1.3227E+03 1.8318E+03 2.7669E+02 4.9701E+03 5.2799E+03 

F14 Best 2.0613E+04 9.9267E+04 5.1665E+05 3.6163E+03 4.9008E+02 5.0535E+02 

Mean 8.3161E+04 9.7345E+05 7.1442E+06 5.0369E+03 3.3269E+03 4.7412E+03 

Std 7.0224E+03 5.8417E+04 9.8754E+05 4.4241E+04 6.7299E+03 4.7128E+04 

F15 Best 9.9701E+05 7.5304E+03 3.9673E+04 3.4533E+04 3.0307E+03 3.7067E+03 

Mean 9.0618E+06 8.8663E+04 3.0318E+05 4.2056E+05 4.5612E+03 4.7108E+03 

Std 4.3823E+05 2.2288E+03 4.9066E+05 7.2162E+04 4.3726E+03 9.2597E+04 

F16 Best 6.7656E+05 3.0597E+06 5.0819E+04 4.9404E+04 5.4888E+05 3.1312E+03 

Mean 7.2346E+06 4.7219E+08 4.4285E+05 5.1041E+05 6.7541E+06 4.6512E+04 

Std 7.3735E+06 3.4076E+07 8.9683E+05 2.2639E+05 2.2376E+06 1.4962E+04 

F17 Best 8.5478E+05 5.9604E+06 7.7398E+04 3.5606E+04 3.0117E+03 3.4378E+03 

Mean 9.7044E+06 9.7223E+07 9.1678E+04 8.9731E+05 4.0568E+03 6.5791E+04 

Std 4.8381E+06 3.3982E+07 1.8378E+05 8.3413E+05 1.6421E+04 6.2723E+04 

F18 Best 5.7988E+06 6.0692E+05 2.0716E+04 9.1436E+04 3.3641E+04 6.3291E+04 

Mean 8.1442E+06 7.0712E+06 9.9547E+06 3.9243E+05 3.2655E+05 9.9447E+05 

Std 7.1232E+06 6.7044E+05 5.9107E+06 9.9644E+06 3.6668E+05 3.8345E+05 

F19 Best 4.1627E+04 9.7415E+04 2.5391E+04 2.5968E+03 4.7786E+03 4.0305E+03 

Mean 6.1216E+05 9.3754E+05 9.5933E+04 4.3539E+04 5.5272E+03 4.8299E+03 

Std 3.2172E+05 6.8492E+04 9.4336E+04 1.7031E+03 4.3527E+00 1.7068E-08 

F20 Best 4.9025E+04 7.0107E+03 6.8072E+03 5.9022E+03 4.5313E+03 4.2624E+03 

Mean 6.8215E+04 9.8124E+03 7.8591E+03 5.6549E+03 4.9402E+03 4.0431E+03 

Std 4.0513E+04 1.1134E+02 5.6432E+02 5.9431E+00 5.1874E+00 4.0975E+00 
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Table 6. Experimental results of benchmark functions (F1-F20) with D=100 dimensions 

using IWO, FWAGWO, ABC, HSSASCA, SSA, and GMLSSA. 

Function  IWO FWAGWO ABC HSSASCA SSA GMLSSA 

F1 

Best 4.2986E-14 9.0076E-34 5.6571E-25 3.7772E-32 2.4246E-36 9.2857E-52 

Mean 1.7481E-12 4.0679E-33 4.1531E-24 8.9059E-31 6.7324E-34 1.7498E-50 

Std 8.1698E-12 4.6231E-32 8.2772E-24 1.1216E-31 3.3736E-34 4.4317E-50 

F2 

Best 4.8451E-03 7.6312E-10 5.5201E-21 4.7364E-32 4.4834E-18 7.1913E-44 

Mean 7.8051E-02 3.3859E-09 2.1827E-20 4.4779E-30 7.2621E-16 5.4484E-41 

Std 7.0876E-02 8.7247E-08 6.8919E-20 6.9884E-30 9.9512E-16 2.9465E-40 

F3 

Best 6.8101E-05 4.1929E-06 4.4779E-16 6.5178E-23 8.7187E-14 3.0686E-25 

Mean 1.8832E-03 8.0939E-04 4.3806E-14 4.4159E-22 2.6791E-13 9.3378E-24 

Std 7.6583E-03 4.9208E-03 5.7046E-14 1.9586E-20 8.0782E-13 9.1392E-22 

F4 

Best 8.1046E-06 5.4634E-10 6.1525E-09 7.9804E-11 6.0274E-21 8.8006E-31 

Mean 3.5405E-04 6.0042E-10 8.4974E-08 5.6192E-10 6.8729E-19 1.7846E-30 

Std 2.4141E-03 8.8699E-09 7.1558E-08 2.3076E-10 7.0736E-19 5.3798E-30 

F5 

Best 9.2952E-02 6.3237E-03 1.7623E-03 9.9396E-08 3.2621E-03 9.9384E-04 

Mean 3.8407E-01 6.1498E-02 6.2403E-02 7.1916E-07 6.5544E-04 4.4021E-03 

Std 9.1279E-02 3.9741E-03 9.4783E-01 2.1358E-07 5.6524E-08 8.6439E-03 

F6 Best 3.2139E-01 2.5448E+00 4.2298E-03 1.1659E-05 8.6186E-07 5.0535E-11 

Mean 8.8233E+00 6.0751E+01 1.1055E-02 1.0829E-05 1.3211E-06 9.3161E-10 

Std 3.2521E-01 4.9712E+00 8.2668E-03 9.5455E-04 1.8031E-07 5.8435E-10 

F7 Best 1.2154E+01 6.4072E-01 5.1931E+00 1.7061E-02 5.3657E+00 7.9623E+00 

Mean 2.2769E+01 6.5643E+00 5.7773E+01 9.8965E-01 1.5639E+01 8.5791E+01 

Std 6.8343E+00 5.8762E-03 6.2241E+00 8.9669E-01 4.8282E-01 7.1042E+00 

F8 Best 8.8241E+03 1.6801E+03 6.8394E+03 4.6917E-14 8.9556E-08 5.9551E-26 

Mean 4.5953E+04 2.6352E+03 7.1442E+03 8.5237E-13 3.9433E-07 9.4541E-24 

Std 3.8072E+02 9.7936E+03 1.7847E+02 7.0525E-12 8.0424E-05 4.9393E-23 

F9 Best 4.9262E-03 2.1156E-06 1.3066E-03 3.2388E-08 9.7621E-07 4.4023E-07 

Mean 1.2763E-02 2.2836E-05 7.8842E-02 7.2577E-07 4.3674E-06 8.7865E-06 

Std 6.1967E-03 1.0189E-05 6.3476E-02 6.8478E-05 2.5248E-04 9.9832E-05 

F10 Best 7.2513E-06 2.5342E-07 3.2845E-10 2.9439E-09 9.8874E-08 3.4152E-21 

Mean 7.1472E-04 6.2765E-06 9.8959E-09 4.0423E-08 4.9383E-07 9.2796E-20 

Std 3.8254E-04 8.6791E-05 4.4869E-09 8.4029E-06 5.6543E-05 5.1611E-18 

F11 Best 4.2237E-01 5.3848E-03 1.5835E-01 5.4483E-05 5.6423E-08 6.1647E-11 

Mean 6.4504E-01 7.5412E-03 6.0988E+00 2.6484E-04 8.4386E-07 2.0503E-10 

Std 6.1743E-01 4.5961E-02 9.1524E+00 2.2245E-04 5.8194E-05 8.3719E-10 

F12 Best 9.0567E+00 5.0146E-05 6.9793E+01 9.8428E-03 5.8585E-04 3.3267E-02 

Mean 6.6118E+01 7.3783E-04 7.1856E+02 3.5696E-02 9.7514E-04 2.7533E-01 

Std 2.6271E+00 7.3322E-05 6.8782E+00 7.7619E-03 2.2375E-03 4.2072E-01 

F13 Best 6.2848E+02 6.4736E+03 7.0481E+03 5.9585E+02 4.9146E+02 4.4053E+02 

Mean 6.5908E+03 2.0679E+04 8.2136E+03 6.5393E+03 6.8076E+02 5.5295E+02 

Std 2.4471E+02 1.7985E+02 1.9632E+02 6.5645E+03 3.9949E+03 3.3839E+02 

F14 Best 2.1032E+04 6.0802E+05 6.6072E+05 7.9744E+02 5.4718E+02 3.9891E+03 

Mean 9.9419E+04 9.5842E+05 8.5232E+06 7.6321E+03 4.2284E+03 4.2446E+03 

Std 3.1373E+03 7.2811E+04 9.1567E+05 4.6275E+02 8.1189E+02 6.8028E+02 

F15 Best 5.9299E+06 7.8622E+03 4.2711E+04 4.5759E+04 3.2709E+03 4.8343E+03 

Mean 8.6796E+06 9.2891E+04 4.3128E+05 5.0167E+05 4.6244E+03 5.5814E+03 

Std 2.1871E+05 4.8055E+03 1.8658E+04 9.9523E+03 1.9864E+02 4.8415E+05 

F16 Best 7.5666E+05 4.1268E+06 6.0756E+05 1.9356E+05 6.7949E+05 4.0709E+03 

Mean 7.8429E+06 8.5496E+08 7.1576E+05 8.9972E+05 1.0162E+07 4.8435E+04 

Std 6.3753E+05 2.7245E+05 6.3637E+05 4.1524E+04 8.6638E+04 8.7163E+03 

F17 Best 3.3427E+06 5.2524E+04 3.6387E+05 7.5465E+04 7.8017E+03 9.8447E+07 

Mean 9.7692E+07 6.6661E+05 2.6191E+05 2.0286E+06 6.9228E+03 9.1268E+07 

Std 6.6735E+06 7.9546E+04 1.3064E+04 5.2666E+05 3.3435E+04 2.7195E+06 

F18 Best 2.3545E+07 8.8332E+06 2.5913E+05 4.8306E+05 6.8061E+04 7.6244E+04 

Mean 5.5479E+06 6.2467E+07 3.5145E+07 7.8867E+05 4.8241E+05 3.3209E+06 

Std 4.8569E+05 7.8581E+06 8.7763E+06 2.4986E+04 9.9825E+04 4.6641E+04 

F19 Best 5.2581E+05 1.6266E+05 4.4188E+05 8.5506E+04 7.7727E+03 6.6683E+03 

Mean 5.4088E+06 3.2572E+06 7.0784E+05 4.2107E+05 7.6382E+03 6.6264E+03 

Std 8.6232E+06 6.9688E+05 2.3764E+05 1.3292E+05 2.2319E+02 7.1028E+00 

F20 Best 2.1444E+05 8.7627E+04 3.3055E+04 7.5205E+03 6.7764E+03 5.0894E+03 

Mean 6.9416E+05 6.6174E+04 2.2624E+04 7.3329E+03 6.8794E+03 6.5084E+03 

Std 6.9806E+05 1.9808E+03 5.9156E+03 3.8302E+03 8.6008E+03 7.7965E+01 
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4.6. Statistical analysis 

Although the advantages of the GMLSSA have been proven through the mean, standard deviation, 

convergence, and stability, a significance test is still needed to prove whether there are significant 

differences between the proposed method and competitors [52]. Wilcoxon’s rank-sum test [52] is a 

non-parametric statistical method used to detect significant differences between the two algorithms. It 

is performed at a significance level of 5%. Table 7 records the statistical results, and the symbol “+/=/-” 

indicates that GMLSSA is better, closer, or worse than the comparison method. From Table 7, the 

proposed GMLSSA is significantly different from other algorithms in most cases, and the results 

are 91/1/8, 93/1/6, and 94/1/5, respectively. The results show that with the increase of problem 

dimension, the results provided by GMLSSA are more significant, indicating the superiority of 

GMLSSA. 

Table 7. Wilcoxon’s rank-sum test results. 

GMLSSA VS.  F1-F20 (Dim=30) F1-F20 (Dim=50) F1-F20 (Dim=100) 

Wilcoxon’s 

rank 

sum test 

(+/=/-) 

IWO 20/0/0 20/0/0 20/0/0 

FWAGWO 19/0/1 19/1/0 19/0/1 

ABC 18/0/2 20/0/0 19/1/0 

HSSASCA 16/1/3 16/0/4 18/0/2 

SSA 18/0/2 18/0/2 18/0/2 

Overall(+/=/-) 91/1/8 93/1/6 94/1/5 

4.7. GMLSSA for tension/compression spring design problem 

In recent years, stochastic optimization technology has become a hot spot in structural design 

research [53,54]. To test the effectiveness of GMLSSA in handling practical engineering optimization 

problems, we apply GMLSSA to an engineering design problem called the tension/compression spring 

design problem (TCSD) [55]. The optimization goal of this problem is to determine the best values of 

the three variables, namely wire diameter (d), mean coil diameter (D), and the number of active coils 

(P), to minimize the weight of the tension/compression spring. The specific structural parameters of 

the problem are shown in Figure 9, and the following equation gives its mathematical definition: 

Consider �⃗�=[x1 x2 x3]=[d D P], 

Minimize f (�⃗�) = (x3+2) x2 x1
2 

Subject to Disturbance: g1(�⃗�)=1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤0, 

Shear stress: g2(�⃗�)=
4𝑥2

3−𝑥1𝑥2

12566(𝑥2𝑥1
3−𝑥1

4)
+

1

5108𝑥1
2 ≤0, 

Fluctuation frequency: g3(�⃗�)=1 −
140.45𝑥1

𝑥2
2𝑥3

≤0, 

Outside diameter: g4(�⃗�)=
𝑥1+𝑥2

1.5
− 1 ≤0, 

Variable range: 0.05≤x1≤2.00; 0.25≤x2≤1.30; 2.00≤x3≤15.0. 
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PPD
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Figure 9. Tension/compression spring design problem. 

In this experiment, GMLSSA ran 30 times independently and compared the best solutions 

obtained with IWO [45], FWAGWO [46], ABC [44], HSSASCA [47], and SSA [40]. The comparison 

results are shown in Table 8. Compared with IWO, FWAGWO, ABC, HSSASCA, and SSA, the 

optimization results of GMLSSA are the best among all algorithms. The design with the minimum 

weight is �⃗�=[0.051621 0.35510 11.384638]，Minimizef(�⃗�)=0.012665. 

The comparison results prove that the proposed GMLSSA is superior to the SSA and other SI 

algorithms. GMLSSA enhances global search capability and avoids local optima, which can effectively 

solve engineering design problems. 

Table 8. Comparison results of various algorithms for TCSD problem. 

Algorithm Optimal values for variables Optimal cost 

d D P  

GMLSSA 0.051621 0.355100 11.384638 0.012665 

SSA 0.052021 0.364768 10.832300 0.012667 

HSSASCA 0.051918 0.362248 10.971940 0.012666 

ABC 0.051728 0.357644 11.244543 0.012674 

FWAGWO 0.051690 0.356737 11.288850 0.012666 

IWO 0.051989 0.363965 10.890522 0.012681 

5. Conclusions and future work 

To improve the SSA’s performance on complex optimization problems, an improved SSA based 

on gravitational search and multi-leader search strategies(GMLSSA) is proposed. First, a gravitational 

search strategy is proposed. This strategy uses multiple individuals with better fitness to guide the 

current individual to search, eliminating a single individual’s limitation to guide the current individual 

to search and improving the algorithm’s exploration ability. Second, a multi-leader strategy is proposed. 

Divide the entire population into multiple sub-swarms, containing a leader and multiple followers to 

maintain the population’s diversity. Moreover, dividing the followers in the sub-swarms into ordinary 

followers and communication followers to realize the sub-swarms’ information exchange. In this way, 

independent sub-swarms can maintain information exchange through collaboration, thereby achieving 

a balance between exploration and exploitation. 

The analysis of search behavior supports the advantages of GMLSSA in finding better solutions. 

Besides, the experimental results and statistical analysis of 20 benchmark functions also show that 

compared with other state-of-the-art algorithms and other improved SSA versions, GMLSSA has better 

quality solutions and stability. Also, the proposed GMLSSA is used to solve the TCSD problem. On 

this problem, the performance of GMLSSA is better than most competitors. Therefore, the proposed 
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GMLSSA has achieved significant improvements. However, the topology of GMLSSA algorithm leads 

to a slow convergence rate, and the gravitational search strategy inhibits the exploitation ability of the 

algorithm. Therefore, it is necessary to do more research on how to improve the efficiency of individual 

search. In addition, our future work also includes multi-objective optimization problems and practical 

engineering problems, such as vehicle path planning and workshop schedule. 
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