Research article

Fixed point approach to solve nonlinear fractional differential equations in orthogonal $ \mathcal{F} $-metric spaces

  • Received: 27 September 2022 Revised: 18 November 2022 Accepted: 05 December 2022 Published: 13 December 2022
  • MSC : 46S40, 47H10, 54H25

  • In this paper, we introduce the notion of a generalized ($ \alpha $, $ \Theta _{\mathcal{F}}) $-contraction in the context of an orthogonal $ \mathcal{F} $-complete metric space and obtain some new fixed point results for this newly introduced contraction. A nontrivial example is also provided to satisfy the validity of the established results. As consequences of our obtained results, we derive the leading results in [Fixed Point Theory Appl., 2015,185, 2015] and [Symmetry, 2020, 12,832]. As an application, we investigate the existence and uniqueness of the solution for a nonlinear fractional differential equation.

    Citation: Abdullah Eqal Al-Mazrooei, Jamshaid Ahmad. Fixed point approach to solve nonlinear fractional differential equations in orthogonal $ \mathcal{F} $-metric spaces[J]. AIMS Mathematics, 2023, 8(3): 5080-5098. doi: 10.3934/math.2023255

    Related Papers:

  • In this paper, we introduce the notion of a generalized ($ \alpha $, $ \Theta _{\mathcal{F}}) $-contraction in the context of an orthogonal $ \mathcal{F} $-complete metric space and obtain some new fixed point results for this newly introduced contraction. A nontrivial example is also provided to satisfy the validity of the established results. As consequences of our obtained results, we derive the leading results in [Fixed Point Theory Appl., 2015,185, 2015] and [Symmetry, 2020, 12,832]. As an application, we investigate the existence and uniqueness of the solution for a nonlinear fractional differential equation.



    加载中


    [1] M. Bestvina, Real trees in topology, geometry and group theory, arXiv: math/9712210.
    [2] W. Kirk, Some recent results in metric fixed point theory, J. Fixed Point Theory Appl., 2 (2007), 195–207. http://dx.doi.org/10.1007/s11784-007-0031-8 doi: 10.1007/s11784-007-0031-8
    [3] C. Semple, M. Steel, Phylogenetics, Oxford: Oxford University Press, 2003.
    [4] M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. http://dx.doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
    [5] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11.
    [6] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalizedmetric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. http://dx.doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133
    [7] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. http://dx.doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
    [8] M. Gordji, D. Rameani, M. De La Sen, Y. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578. http://dx.doi.org/10.24193/fpt-ro.2017.2.45 doi: 10.24193/fpt-ro.2017.2.45
    [9] T. Kanwal, A. Hussain, H. Baghani, M. De La Sen, New fixed point theorems in orthogonal $\mathcal{F}$-metric spaces with application to fractional differential equation, Symmetry, 12 (2020), 832. http://dx.doi.org/10.3390/sym12050832 doi: 10.3390/sym12050832
    [10] I. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal, 30 (1989), 26–37.
    [11] M. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal.-Theor., 73 (2010), 3123–3129. http://dx.doi.org/10.1016/j.na.2010.06.084 doi: 10.1016/j.na.2010.06.084
    [12] J. Ahmad, A. Al-Rawashdeh, A. Al-Mazrooei, Fixed point results for ($\alpha, \bot _{\mathcal{F}}$)-contractions in orthogonal $F$-metric spaces with applications, J. Funct. Space., 2022 (2022), 8532797. http://dx.doi.org/10.1155/2022/8532797 doi: 10.1155/2022/8532797
    [13] L. Alnaser, D. Lateef, H. Fouad, J. Ahmad, Relation theoretic contraction results in $F$-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 337–344. http://dx.doi.org/10.22436/jnsa.012.05.06 doi: 10.22436/jnsa.012.05.06
    [14] S. Al-Mezel, J. Ahmad, G. Marino, Fixed point theorems for generalized ($\alpha \beta $-$\psi $)-contractions in $F$-metric spaces with applications, Mathematics, 8 (2020), 584. http://dx.doi.org/10.3390/math8040584 doi: 10.3390/math8040584
    [15] M. Alansari, S. Mohammed, A. Azam, Fuzzy fixed point results in $F$-metric spaces with applications, J. Funct. Space., 2020 (2020), 5142815. http://dx.doi.org/10.1155/2020/5142815 doi: 10.1155/2020/5142815
    [16] D. Lateef, J. Ahmad, Dass and Gupta's Fixed point theorem in $F $-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 405–411. http://dx.doi.org/10.22436/jnsa.012.06.06 doi: 10.22436/jnsa.012.06.06
    [17] A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, T. A. Razmadze Math. In., 172 (2018), 481–490. http://dx.doi.org/10.1016/j.trmi.2018.08.006 doi: 10.1016/j.trmi.2018.08.006
    [18] Z. Ahmadi, R. Lashkaripour, H. Baghani, A fixed point problem with constraint inequalities via a contraction in incomplete metric spaces, Filomat, 32 (2018), 3365–3379. http://dx.doi.org/10.2298/FIL1809365A doi: 10.2298/FIL1809365A
    [19] H. Baghani, M. Ramezani, Coincidence and fixed points for multivalued mappings in incomplete metric spaces with applications, Filomat, 33 (2019), 13–26. http://dx.doi.org/10.2298/FIL1901013B doi: 10.2298/FIL1901013B
    [20] A. Ran, M. Reuring, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc., 132 (2004), 1435–1443. http://dx.doi.org/10.1090/S0002-9939-03-07220-4 doi: 10.1090/S0002-9939-03-07220-4
    [21] K. Javed, H. Aydi, F. Uddin, M. Arshad, On orthogonal partial $b$-metric spaces with an application, J. Math., 2021 (2021), 6692063. http://dx.doi.org/10.1155/2021/6692063 doi: 10.1155/2021/6692063
    [22] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $ \alpha $-$\psi $-contractive type mappings, Nonlinear Anal.-Theor., 75 (2012), 2154–2165. http://dx.doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [23] M. Ramezani, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal., 6 (2015), 127–132. http://dx.doi.org/ 10.22075/IJNAA.2015.261 doi: 10.22075/IJNAA.2015.261
    [24] A. Asif, M. Nazam, M. Arshad, S. Kim, $F$-metric, $F$ -contraction and common fixed point theorems with applications, Mathematics, 7 (2019), 586. http://dx.doi.org/10.3390/math7070586 doi: 10.3390/math7070586
    [25] G. Mani, A. Gnanaprakasam, N. Kausar, M. Munir, Salahuddin. Orthogonal $F$-contraction mapping on $O$-complete metric space with applications, Int. J. Fuzzy Log. Inte., 21 (2021), 243–250. http://dx.doi.org/10.5391/IJFIS.2021.21.3.243 doi: 10.5391/IJFIS.2021.21.3.243
    [26] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181. http://dx.doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [27] J. Ahmad, A. Al-Rawashdeh, A. Azam, Fixed point results for $ \{ \alpha, \xi \}$-expansive locally contractive mappings, J. Inequal. Appl., 2014 (2014), 364. http://dx.doi.org/10.1186/1029-242X-2014-364 doi: 10.1186/1029-242X-2014-364
    [28] J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized $F$-contractions in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 80. http://dx.doi.org/10.1186/s13663-015-0333-2 doi: 10.1186/s13663-015-0333-2
    [29] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. http://dx.doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
    [30] J. Ahmad, A. Al-Mazrooei, Y. Cho, Y. Yang, Fixed point results for generalized $\Theta $-contractions, J. Nonlinear Sci. Appl., 10 (2017), 2350–2358. http://dx.doi.org/10.22436/jnsa.010.05.07 doi: 10.22436/jnsa.010.05.07
    [31] N. Hussain, V. Parvaneh, B. Samet, C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 185. http://dx.doi.org/10.1186/s13663-015-0433-z doi: 10.1186/s13663-015-0433-z
    [32] N. Hussain, J. Ahmad, New Suzuki-Berinde type fixed point results, Carpathian J. Math., 33 (2017), 59–72. http://dx.doi.org/10.37193/CJM.2017.01.07 doi: 10.37193/CJM.2017.01.07
    [33] Z. Li, S. Jiang, Fixed point theorems of JS-quasi-contractions, Fixed Point Theory Appl., 2016 (2016), 40. http://dx.doi.org/10.1186/s13663-016-0526-3 doi: 10.1186/s13663-016-0526-3
    [34] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math, 31 (2015), 403–410.
    [35] H. Ali, H. Isik, H. Aydi, E. Ameer, J. Lee, M. Arshad, On multivalued Suzuki-type $\Theta $-contractions and related applications, Open Math., 18 (2020), 386–399. http://dx.doi.org/10.1515/math-2020-0139 doi: 10.1515/math-2020-0139
    [36] E. Ameer, H. Aydi, M. Arshad, A. Hussain, A. Khan, Ćirić type multi-valued $\alpha _{\ast }$-$\eta _{\ast }$-$\Theta $ -contractions on $b$-meric spaces with applications, Int. J. Nonlinear Anal., 12 (2021), 597–614. http://dx.doi.org/10.22075/IJNAA.2021.4865 doi: 10.22075/IJNAA.2021.4865
    [37] L. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 9–26.
    [38] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76.
    [39] S. Chatterjea, Fixed point theorem, C. R. Acad. Bulg. Sci., 25 (1972), 727–730.
    [40] S. Reich, Kannan's fixed point theorem, Bull. Univ. Mat. Italiana, 4 (1971), 1–11.
    [41] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. http://dx.doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [42] S. Kumar, P. Shaw, A. Abdel-Aty, E. Mahmoud, A numerical study on fractional differential equation with population growth model, Numer. Meth. Part. D. E., in press. http://dx.doi.org/10.1002/num.22684
    [43] P. Shaw, S. Kumar, S. Momani, S. Hadid, Dynamical analysis of fractional plant disease model with curative and preventive treatments, Chaos, Soliton. Fract., 164 (2022), 112705. http://dx.doi.org/10.1016/j.chaos.2022.112705 doi: 10.1016/j.chaos.2022.112705
    [44] D. Gopal, M. Abbas, D. Patel, C. Vetro, Fixed point of $ \alpha $-type $F$-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci., 36 (2016), 957–970. http://dx.doi.org/10.1016/S0252-9602(16)30052-2 doi: 10.1016/S0252-9602(16)30052-2
    [45] D. Baleanu, S. Rezapour, H. Mohammadi, Some existence results on nonlinear fractional differential equations, Philos. Trans. A Math. Phys. Eng. Sci., 371 (2013), 20120144. http://dx.doi.org/10.1098/rsta.2012.0144 doi: 10.1098/rsta.2012.0144
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1151) PDF downloads(122) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog