This paper is concerned with several existence results of multiple solutions for Schrödinger-type problems involving the double phase operator for the case of a combined effect of concave-convex nonlinearities. The first one is to discuss that our problem has infinitely many large energy solutions. Second, we obtain the existence of a sequence of infinitely many small energy solutions to the given problem. To establish such multiplicity results, we employ the fountain theorem and the dual fountain theorem as the primary tools, respectively. In particular we give the existence result of small energy solutions on a new class of nonlinear term.
Citation: Jae-Myoung Kim, Yun-Ho Kim. Multiple solutions to the double phase problems involving concave-convex nonlinearities[J]. AIMS Mathematics, 2023, 8(3): 5060-5079. doi: 10.3934/math.2023254
This paper is concerned with several existence results of multiple solutions for Schrödinger-type problems involving the double phase operator for the case of a combined effect of concave-convex nonlinearities. The first one is to discuss that our problem has infinitely many large energy solutions. Second, we obtain the existence of a sequence of infinitely many small energy solutions to the given problem. To establish such multiplicity results, we employ the fountain theorem and the dual fountain theorem as the primary tools, respectively. In particular we give the existence result of small energy solutions on a new class of nonlinear term.
[1] | A. Aberqi, O. Benslimane, M. Elmassoudi, M. A. Ragusa, Nonnegative solution of a class of double phase problems with logarithmic nonlinearity, Bound. Value Probl., 2022 (2022), 57. https://doi.org/10.1186/s13661-022-01639-5 doi: 10.1186/s13661-022-01639-5 |
[2] | C. O. Alves, S. B. Liu, On superlinear $p(x)$-Laplacian equations in $ {\mathbb R}^N$, Nonlinear Anal., 73 (2010), 2566–2579. https://doi.org/10.1016/j.na.2010.06.033 doi: 10.1016/j.na.2010.06.033 |
[3] | A. Bahrouni, V. D. Rǎdulescu, D. D. Repovš, Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves, Nonlinearity, 32 (2019), 2481–2495. https://doi.org/10.1088/1361-6544/ab0b03 doi: 10.1088/1361-6544/ab0b03 |
[4] | P. Baroni, M. Colombo, G. Mingione, Harnack inequalites for double phase funtionals, Nonlinear Anal., 121 (2015), 206–222. https://doi.org/10.1016/j.na.2014.11.001 doi: 10.1016/j.na.2014.11.001 |
[5] | P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347–379. https://doi.org/10.1090/spmj/1392 doi: 10.1090/spmj/1392 |
[6] | P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Dif., 57 (2018), 206–222. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z |
[7] | T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 20 (1993), 1205–1216. https://doi.org/10.1016/0362-546X(93)90151-H doi: 10.1016/0362-546X(93)90151-H |
[8] | T. Bartsch, M. Willem, On an elliptic equation with concave and convex nonlinearitiese, P. Am. Math. Soc., 123 (1995), 3555–3561. |
[9] | S. S. Byun, J. Oh, Regularity results for generalized double phase functionals, Anal. PDE, 13 (2020), 1269–1300. https://doi.org/10.2140/apde.2020.13.1269 doi: 10.2140/apde.2020.13.1269 |
[10] | J. Cen, S. J. Kim, Y. H. Kim, S. Zeng, Multiplicity results of solutions to the double phase anisotropic variational problems involving variable exponent, Adv. Differential Equ., 28 (2023), In press. |
[11] | F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917–1959. https://doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7 |
[12] | M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2 |
[13] | M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9 doi: 10.1007/s00205-015-0859-9 |
[14] | M. Colombo, G. Mingione, Calderón-Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. https://doi.org/10.1016/j.jfa.2015.06.022 doi: 10.1016/j.jfa.2015.06.022 |
[15] | Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differential Equ., 323 (2022), 182–228. https://doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029 |
[16] | L. Diening, P. Harjulehto, P. Hästö, M. R$\dot{\rm u}$žička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011. |
[17] | M. Fabian, P. Habala, P. Hajék, V. Montesinos, V. Zizler, Banach space theory: The basis for linear and nonlinear analysis, Springer, New York, 2011. |
[18] | L. Gasiński, P. Winkert, Existence and uniqueness results for double phase problems with convection terms, J. Differential Equ., 268 (2020), 4183–4193. https://doi.org/10.1016/j.jde.2019.10.022 doi: 10.1016/j.jde.2019.10.022 |
[19] | L. Gasiński, P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differential Equ., 274 (2021), 1037–1066. https://doi.org/10.1016/j.jde.2020.11.014 doi: 10.1016/j.jde.2020.11.014 |
[20] | L. Gasiński, N. S. Papageorgiou, Double phase logistic equations with superdiffusive reaction, Nonlinear Anal.-Real, 70 (2023), 103782. https://doi.org/10.1016/j.nonrwa.2022.103782 doi: 10.1016/j.nonrwa.2022.103782 |
[21] | B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 188 (2019), 294–315. https://doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007 |
[22] | B. Ge, L. Y Wang, J. F. Lu, On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions, Appl. Anal., 100 (2021), 1–16. https://doi.org/10.1080/00036811.2019.1679785 doi: 10.1080/00036811.2019.1679785 |
[23] | B. Ge, P. Pucci, Quasilinear double phase problems in the whole space via perturbation methods, Adv. Differential Equ., 27 (2022), 1–30. https://doi.org/10.57262/ade027-0102-1 doi: 10.57262/ade027-0102-1 |
[24] | P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, Springer, Cham, 2019. |
[25] | E. J. Hurtado, O. H. Miyagaki, R. S. Rodrigues, Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions, J. Dyn. Differ. Equ., 30 (2018), 405–432. https://doi.org/10.1007/s10884-016-9542-6 doi: 10.1007/s10884-016-9542-6 |
[26] | I. H. Kim, Y. H. Kim, C. Li, K. Park, Multiplicity of solutions for quasilinear schrödinger type equations with the concave-convex nonlinearities, J. Korean Math. Soc., 58 (2021), 1461–1484. https://doi.org/10.4134/JKMS.j210099 doi: 10.4134/JKMS.j210099 |
[27] | I. H. Kim, Y. H. Kim, M. W. Oh, S. Zeng, Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent, Nonlinear Anal.-Real, 67 (2022), 103627. https://doi.org/10.1016/j.nonrwa.2022.103627 doi: 10.1016/j.nonrwa.2022.103627 |
[28] | N. C. Kourogenis, N. S. Papageorgiou, A weak nonsmooth Palais-Smale condition and coercivity, Rend. Circ. Mat. Palermo, 49 (2000), 521–526. https://doi.org/10.1007/BF02904262 doi: 10.1007/BF02904262 |
[29] | J. Lee, J. M. Kim, Y. H. Kim, Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving $p(x)$-Laplacian on the whole space, Nonlinear Anal.-Real, 45 (2019), 620–649. |
[30] | J. Lee, J. M. Kim, Y. H. Kim, A. Scapellato, On multiple solutions to a non-local Fractional $p(\cdot)$-Laplacian problem with concave-convex nonlinearities, Adv. Cont. Discrete Models, 2022 (2022), 14. https://doi.org/10.1186/s13662-022-03689-6 doi: 10.1186/s13662-022-03689-6 |
[31] | X. Lin, X. H. Tang, Existence of infinitely many solutions for $p$-Laplacian equations in $\Bbb R^{N}$, Nonlinear Anal., 92 (2013), 72–81. https://doi.org/10.1016/j.na.2013.06.011 doi: 10.1016/j.na.2013.06.011 |
[32] | D. C. Liu, On a $p(x)$-Kirchhoff-type equation via fountain theorem and dual fountain theorem, Nonlinear Anal., 72 (2010), 302–308. |
[33] | W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equ., 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006 |
[34] | O. H. Miyagaki, M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equ., 245 (2008), 3628–3638. https://doi.org/10.1016/j.jde.2008.02.035 doi: 10.1016/j.jde.2008.02.035 |
[35] | J. Musielak, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, Springer, Berlin, 1983. |
[36] | N. S. Papageorgiou, V. D. Rǎdulescu, D. D. Repovš, Double-phase problems and a discontinuity property of the spectrum, P. Am. Math. Soc., 147 (2019), 2899–2910. https://doi.org/10.1090/proc/14466 doi: 10.1090/proc/14466 |
[37] | N. S. Papageorgiou, V. D. Rǎdulescu, D. D. Repovš, Existence and multiplicity of solutions for double-phase Robin problems, Bull. Lond. Math. Soc., 52 (2020), 546–560. https://doi.org/10.1112/blms.12347 doi: 10.1112/blms.12347 |
[38] | K. Perera, M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023. https://doi.org/10.1142/S0219199717500237 doi: 10.1142/S0219199717500237 |
[39] | M. A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 9 (2020), 710–728. https://doi.org/10.1515/anona-2020-0022 doi: 10.1515/anona-2020-0022 |
[40] | J. H. Shen, L. Y. Wang, K. Chi, B. Ge, Existence results for double-phase problems via Morse theory, Complex Var. Elliptic, to be accepted. https://doi.org/10.1080/17476933.2021.1988585 |
[41] | R. Stegliński, Infinitely many solutions for double phase problem with unbounded potential in $ {\mathbb R}^N$, Nonlinear Anal., 214 (2022), 112580. https://doi.org/10.1016/j.na.2021.112580 doi: 10.1016/j.na.2021.112580 |
[42] | K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\Bbb R^N$, Nonlinear Anal.-Real, 21 (2015), 76–86. https://doi.org/10.1016/j.nonrwa.2014.06.008 doi: 10.1016/j.nonrwa.2014.06.008 |
[43] | M. Willem, Minimax theorems, Birkhauser, Basel, 1996. |
[44] | S. D. Zeng, Y. R. Bai, L. Gasiński, P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Dif., 59 (2020), 176. https://doi.org/10.1007/s00526-020-01841-2 doi: 10.1007/s00526-020-01841-2 |
[45] | S. D. Zeng, Y. R. Bai, L. Gasiński, P. Winkert, Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal., 10 (2021), 659–672. https://doi.org/10.1515/anona-2020-0155 doi: 10.1515/anona-2020-0155 |
[46] | Q. Zhang, V. D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pure. Appl., 118 (2018), 159–203. https://doi.org/10.1016/j.matpur.2018.06.015 doi: 10.1016/j.matpur.2018.06.015 |
[47] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710. https://doi.org/10.1070/IM1987v029n01ABEH000958 doi: 10.1070/IM1987v029n01ABEH000958 |
[48] | V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269. |
[49] | Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, 2Eds., World Scientific Publishing Co. Pte. Ltd., Singapore, 2017. |