δ(s,l) | 0 | 1 | 2 | 3 |
0 | 1 | 1 | 2 | 72 |
1 | 2 | 1 | 2 | 1 |
2 | 2 | 2 | 2 | 14 |
3 | 6 | 13 | 13 | 0 |
In this article, by utilizing the idea of controlled functions, we present a novel notion of triple controlled quasi rectangular metric like spaces and prove Banach fixed point principal in such spaces. A topology in such spaces and its topological properties have been discussed. The result, presented here is a new contribution to the field of fixed point theory. Examples of this new structure are given.
Citation: Mazhar Mehmood, Abdullah Shoaib, Nabil Mlaiki. Fixed point results on triple controlled quasi rectangular metric like spaces[J]. AIMS Mathematics, 2023, 8(5): 10049-10066. doi: 10.3934/math.2023509
[1] | Umar Ishtiaq, Aftab Hussain, Hamed Al Sulami . Certain new aspects in fuzzy fixed point theory. AIMS Mathematics, 2022, 7(5): 8558-8573. doi: 10.3934/math.2022477 |
[2] | Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy b-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885 |
[3] | Tayebe Lal Shateri, Ozgur Ege, Manuel de la Sen . Common fixed point on the bv(s)-metric space of function-valued mappings. AIMS Mathematics, 2021, 6(2): 1065-1074. doi: 10.3934/math.2021063 |
[4] | A. M. Zidan, Z. Mostefaoui . Double controlled quasi metric-like spaces and some topological properties of this space. AIMS Mathematics, 2021, 6(10): 11584-11594. doi: 10.3934/math.2021672 |
[5] | Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335 |
[6] | Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular b-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608 |
[7] | Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112 |
[8] | Gonca Durmaz Güngör, Ishak Altun . Fixed point results for almost (ζ−θρ)-contractions on quasi metric spaces and an application. AIMS Mathematics, 2024, 9(1): 763-774. doi: 10.3934/math.2024039 |
[9] | Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki . Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247 |
[10] | Gunaseelan Mani, Arul Joseph Gnanaprakasam, Vidhya Varadharajan, Fahd Jarad . Solving an integral equation vian orthogonal neutrosophic rectangular metric space. AIMS Mathematics, 2023, 8(2): 3791-3825. doi: 10.3934/math.2023189 |
In this article, by utilizing the idea of controlled functions, we present a novel notion of triple controlled quasi rectangular metric like spaces and prove Banach fixed point principal in such spaces. A topology in such spaces and its topological properties have been discussed. The result, presented here is a new contribution to the field of fixed point theory. Examples of this new structure are given.
Fixed point theory is based on the attempt to solve the equation Ls=s, with L standing for a self mapping on K. Banach [1] developed this theory axiomatically. For extension and improvement of this research field, distinct criteria and different structures on mappings have been proposed by the researchers see [2,3,4,5,6,7,8,9]. In numerous abstract spaces, characterizations of this principle have been proved which have drawn the attention of the researchers who studied it from several perspectives.
Bakhtin [10], initiated a generalization of metric spaces called b-metric spaces. Lately, several generalizations of the b-metric spaces were initiated such as extended b-metric spaces by Kamran et al. [11] and some other can be seen in [12,13]. In 2018, Mlaiki et al. [14], introduced the concept of controlled metric type spaces (CMTS). Few months later, Abdeljawad et al. in [15], initiated a more general metric type so called double controlled metric type spaces denoted by (DCMTS). In 2020, Mlaiki in [16], introduced a generalization of (DCMTS) so called double controlled metric like spaces denoted by (DCMLS), where he assumed that the self distance is not necessary zero. Another type of extension of metric spaces, where we assume that, we do not necessarily have the symmetry condition of metric function which is called quasi metric space for more details of such spaces, we refer the reader to the following references [17,18,19,20]. Haque et al. [21], introduce the concept of double controlled quasi metric like spaces denoted (DCQMLS), where they assume that there is no symmetric condition in the (DCMLS). Further, Branciari [22] in 2000, proposed the concept of rectangular metric space. Then, in 2015, George et al. in [23], generalized rectangular metric spaces to rectangular b-metric spaces. In 2020, Mlaiki et al. in [24], generalized the rectangular b-metric spaces by introducing the controlled rectangular metric spaces. Inspired by the work in [25,26], Haque et al. [27] presented a generalization of controlled rectangular b-metric spaces and partial rectangular metric spaces, so-called controlled rectangular metric-like spaces and prove fixed point results. For more results in rectangular metric space, see [28,29,30,31,32].
The goal of this work is to prove the fixed point theorem for contraction mappings in triple controlled quasi rectangular metric like spaces. The notion of a triple controlled quasi rectangular metric like space that generalizes controlled rectangular metric like spaces and controlled quasi rectangular metric like spaces. In the context of triple controlled quasi rectangular metric like spaces, we have developed a new version of the Banach contraction principle. Additionally, a concrete example is provided to support the outcome. We begin with the following definitions.
Definition 1.1. [22] Suppose that K is a nonempty set and d:K×K→[0,∞). Assume that
da: d(s,l)=0⟺s=l,
db: d(s,l)=d(l,s),
dc: d(s,l)≤d(s,u)+d(u,v)+δ(v,l),
for all s,l,∈K and for all distinct points u≠v∈K∖{s,l}. Then, (K,d) is called a rectangular metric type space.
As a generalization of rectangular metric spaces, rectangular b-metric space was introduced by George et al. [23].
Definition 1.2. [23] Suppose that K is a nonempty set and db:K×K→[0,∞). Assume that a≥1, we have
ba: db(s,l)=0⟺s=l,
bb: db(s,l)=db(l,s),
bc: db(s,l)≤a[db(s,u)+db(u,v)+db(v,l)],
for all s,l,∈K and for all distinct points u≠v∈K∖{s,l}. Then, (K,db) is called a rectangular b-metric space.
In 2020, a new extension to the rectangular metric spaces was defined as follows.
Definition 1.3. [24] Suppose that K≠ϕ and θ:K4→[1,∞), the function D:K×K→[0,∞) is called controlled rectangular b-metric type if
Da: D(s,l)=0⟺s=l,
Db: D(s,l)=D(l,s),
Dc: D(s,l)≤θ(s,l,u,v)[D(s,u)+D(u,v)+D(u,l)],
for all s,l,∈K and for all distinct points u,v∈K∖{s,l}. Then, (K,D) is called a controlled rectangular metric type space.
The concept of controlled rectangular metric like space (CRMLS) is introduced in [27].
Definition 1.4. [27] Let K≠ϕ and α:K4→[1,∞). The function δa:K×K→[0,∞) is called controlled rectangular b-metric like if
δ(i): δa(s,l)=δa(l,s)=0 then s=l,
δ(ii): δa(s,l)=δa(l,s),
δ(iii): δa(s,l)≤α(s,l,u,v)[δa(s,u)+δa(u,v)+δa(u,l)],
for all s,l,∈K and for all distinct points u,v∈K∖{s,l}. Then, (K,δa) is called a controlled rectangular metric like space.
Example 1.5. [27] Consider K=[0,∞) and p:[0,+∞)×[0,+∞)→(1,+∞). Define δa:K2→[0,+∞), by
δa(s,l)=(s+l)p(s,l)for allx,y∈K. |
Note that (K,δa) is a controlled rectangular metric like space with
α(s,l,u,v)=2p(max{s,l},max{u,v})−1. |
Remark 1.6. In Definition 1.4, if the properties δ(i) and δ(iii) are fulfilled only, then the space is called controlled quasi rectangular metric like space.
In this section, first of all we define a triple controlled quasi rectangular metric like space. Our new classification, generalize controlled rectangular, controlled quasi rectangular metric like spaces.
Definition 2.1. Assume that α,β,γ:K×K→[1,∞) are three mappings. If δ:K×K→[0,∞) satisfies
δa: δ(s,l)=δ(l,s)=0 then s=l,
δb: δ(s,l)≤α(s,u)δ(s,u)+β(u,v)δ(u,v)+γ(v,l)δ(v,l),
for all s,l,∈K and for all distinct points u,v∈K∖{s,l}. Then, δ is said to be a triple controlled quasi rectangular metric like by α, β and γ. The pair (K,δ) is called triple controlled quasi rectangular metric like space or (simply, TCQRMLS).
Remark 2.2. Any controlled quasi rectangular metric like space is a special case of triple controlled quasi rectangular metric like space but the converse is not true in general.
Example 2.3. Let K={0,1,2,3}. Consider a function δ:K×K→[0,+∞) and α,β,γ:K×K→[1,+∞) are three mappings, defined by (see Tables 1–4).
δ(s,l) | 0 | 1 | 2 | 3 |
0 | 1 | 1 | 2 | 72 |
1 | 2 | 1 | 2 | 1 |
2 | 2 | 2 | 2 | 14 |
3 | 6 | 13 | 13 | 0 |
α(s,l) | 0 | 1 | 2 | 3 |
0 | 1 | 43 | 2 | 43 |
1 | 1 | 1 | 1 | 32 |
2 | 1 | 1 | 1 | 2 |
3 | 43 | 3 | 3 | 1 |
β(s,l) | 0 | 1 | 2 | 3 |
0 | 1 | 1 | 2 | 1 |
1 | 1 | 1 | 32 | 1 |
2 | 43 | 32 | 1 | 4 |
3 | 1 | 1 | 1 | 1 |
α(s,l) | 0 | 1 | 2 | 3 |
0 | 1 | 43 | 2 | 43 |
1 | 1 | 1 | 1 | 32 |
2 | 1 | 1 | 1 | 2 |
3 | 43 | 3 | 3 | 1 |
It is easy to show that (K,δ) is triple controlled quasi rectangular metric like space for all pairwise different s,l,u,v∈K.
By the use of TCQRMLS a topology will be defined and its characteristics will be examined. Let (K,δ) be a TCQRMLS. Having radius λ>0, the right centered ball at ˜s∈K, is the set
Br(˜s;λ)={u∈K,∣δ(u,˜s)−δ(˜s,˜s)∣<λ}, |
where, the left centered ball at ˜s, having radius λ>0 is
Bl(˜s;λ)={u∈K,∣δ(˜s,u)−δ(˜s,˜s)∣<λ}. |
Note that, the open ball in TCQRMLS is not necessarily an open set. Furthermore, let B be the collection of all subsets U of K satisfying the condition that for each s∈K there exist λ>0 such that Br(s;λ)⊂U or Bl(s;λ)⊂U. Then, B defines a base for the topology on set K which is not necessarily Hausdorff.
As next, we will investigate convergence on TCQRMLS.
Definition 3.1. Suppose that (K,δ) is a TCQRMLS with three mappings α,β and γ.
(i) A sequence {ϱn} is said to be convergent to some ϱ∈K if and only if
limn→+∞δ(ϱn,ϱ)=limn→+∞δ(ϱ,ϱn)=δ(ϱ,ϱ). |
(ii) A sequence {ϱn} is said to be left Cauchy sequence if and only if for all m>n, we have limm,n→+∞δ(ϱm,ϱn) exists and is finite.
(iii) A sequence {ϱn} is said to be right Cauchy sequence if and only if for all m>n, we have limm,n→+∞δ(ϱn,ϱm) exists and is finite.
(iv) A sequence is Cauchy sequence if and only if {ϱn} is left and right Cauchy.
(v) The pair (K,δ) is left complete, right complete and complete if and only if each left Cauchy, right Cauchy and Cauchy sequence in K is convergent respectively.
Remark 3.2. Topology of (TCQRMLS) is not necessarily a Hausdorff topology, so the limit of convergent sequence is not always unique.
Example 3.3. Let K={0,1,2,3}. Consider a function δ:K×K→[0,+∞) and three control functions α,β,γ:K×K→[1,+∞), defined as in Example 2.3. Thus (K,δ) is a (TCQRMLS).
The constant sequence (ϱn=1)n∈N is convergent with both 1 and 2 as limits, since
limn→+∞δ(ϱn,1)=limn→+∞δ(1,ϱn)=δ(1,1)=1 |
limn→+∞δ(ϱn,2)=δ(1,2)=δ(2,1)=limn→+∞δ(2,ϱn)=δ(2,2)=2. |
Thus, the limit of a convergent sequence is not always unique.
Theorem 4.1. Let (K,δ) be a complete triple controlled quasi rectangular metric like space where α,β,γ:K×K→[1,∞) are mappings, suppose that L is a self mapping on K satisfying the following conditions. If there exists k∈(0,1) such that.
δ(Ls,Ll)>0⟹δ(Ls,Ll)≤kδ(s,l)∀s,l∈K. | (4.1) |
For, ϱo∈K take ϱn=Lnϱo,n∈N. Suppose that.
supm≥1limi→+∞γ(ϱi,ϱm)α(ϱi+1,ϱi+2)+kβ(ϱi+2,ϱi+3)α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)<1k. | (4.2) |
We assume that, for ϱ∈K, we have
limn→+∞Δ(ϱn,ϱ), limn→+∞Δ(ϱ,ϱn), limn→+∞Δ(ϱn,Lϱ), limn→+∞Δ(Lϱ,ϱn) and limn,m→+∞Δ(ϱn,ϱm) where Δ∈{α,β,γ}, exist and finite for all n,m∈N, m≠n. Then, L has a fixed point.
Proof. Suppose that ϱo∈K. Then, define {ϱn} as an iterative sequence by
ϱ1=Lϱo,ϱ2=Lϱ1=L2ϱo…ϱn+1=Lϱn=Ln+1ϱo. |
Obviously, if there exists n0∈N for which ϱn0+1=ϱn0, then Lϱn0=ϱn0, and the proof is finished. Thus, we suppose that ϱn+1≠ϱn for every n0∈N Thus, by (4.1), we have
δ(ϱn,ϱn+1)=δ(Lϱn−1,Lϱn)≤kδ(ϱn−1,ϱn)⋮δ(ϱn,ϱn+1)≤knδ(ϱo,ϱ1). | (4.3) |
In the inequality above, if we take limn→+∞, we get
limn→+∞δ(ϱn,ϱn+1)=0. | (4.4) |
Similarly we can prove that
limn→+∞δ(ϱn+1,ϱn)=0. | (4.5) |
Thus, we have two cases.
Case I: We suppose that for all n,m∈N, ϱn≠ϱm. Indeed, assume that ϱn=ϱm for some n=m+c with c>0, and Lϱn=Lϱm, then it follows that.
δ(ϱn,ϱn+1)=δ(ϱm,ϱm+1)=δ(Lϱm−1,Lϱm)≤kδ(ϱm−1,ϱm)≤k2δ(ϱm−2,ϱm−1)≤⋯≤kcδ(ϱm,ϱm+1)=kcδ(ϱn,ϱn+1) |
(1−kc)δ(ϱn,ϱn+1)≤0.This implies thatδ(ϱn,Lϱn)=0. Similarly, δ(Lϱn,ϱn)=0. Thus ϱn is a fixed point of L.
Case II: Let ϱn≠ϱm for all integers n≠m. Let n<m∈N, and to show that {ϱn} is a right Cauchy sequence we consider two sub cases:
Subcase I: Assume that m=n+2p+1 with p≥1. We get the desired outcome by applying the property δq2 of TCQRM repeatedly.
δ(ϱn,ϱm)=δ(ϱn,ϱn+2p+1)≤α(ϱn,ϱn+1)δ(ϱn,ϱn+1)+β(ϱn+1,ϱn+2)δ(ϱn+1,ϱn+2)+γ(ϱn+2,ϱn+2p+1)δ(ϱn+2,ϱn+2p+1)≤α(ϱn,ϱn+1)δ(ϱn,ϱn+1)+β(ϱn+1,ϱn+2)δ(ϱn+1,ϱn+2)+γ(ϱn+2,ϱn+2p+1)[α(ϱn+2,ϱn+3)δ(ϱn+2,ϱn+3)+β(ϱn+3,ϱn+4)δ(ϱn+3,ϱn+4)+γ(ϱn+4,ϱn+2p+1)δ(ϱn+4,ϱn+2p+1)]≤⋯≤α(ϱn,ϱn+1)δ(ϱ0,ϱ1)kn+β(ϱn+1,ϱn+2)δ(ϱ0,ϱ1)kn+1+γ(ϱn+2,ϱn+2p+1)[α(ϱn+2,ϱn+3)kn+2+β(ϱn+3,ϱn+4)kn+3]δ(ϱ0,ϱ1)+⋯γ(ϱn+2,ϱn+2p+1)γ(ϱn+4,ϱn+2p+1)×⋯×γ(ϱn+2p−2,ϱn+2p+1)×[α(ϱn+2p−2,ϱn+2p−1)kn+2p−2+β(ϱn+2p−1,ϱn+2p)kn+2p−1]δ(ϱ0,ϱ1)+γ(ϱn+2,ϱn+2p+1)γ(ϱn+4,ϱn+2p+1)×⋯×γ(ϱn+2p,ϱn+2p+1)kn+2pδ(ϱ0,ϱ1)=α(ϱn,ϱn+1)δ(ϱ0,ϱ1)kn+β(ϱn+1,ϱn+2)δ(ϱ0,ϱ1)kn+1+n+2p∑i=n+2i∏j=n+2γ(ϱj,ϱn+2p+1)[α(ϱi,ϱi+1)ki+β(ϱi+1,ϱi+2)kn+2i+1]δ(ϱ0,ϱ1)+n+2p∏j=n+2γ(ϱj,ϱn+2p+1)kn+2pδ(ϱ0,ϱ1). |
Therefore, we obtain
δ(ϱn,ϱm)≤α(ϱn,ϱn+1)δ(ϱ0,ϱ1)kn+β(ϱn+1,ϱn+2)δ(ϱ0,ϱ1)kn+1+n+2p∑i=n+2i∏j=n+2γ(ϱj,ϱn+2p+1)[α(ϱi,ϱi+1)ki+β(ϱi+1,ϱi+2)ki+1]δ(ϱ0,ϱ1)+n+2p∏j=n+2γ(ϱn+2j,ϱn+2p+1)kn+2pδ(ϱ0,ϱ1). | (4.6) |
Since, supm≥1limi+1→+∞γ(ϱi,ϱm)α(ϱi+1,ϱi+2)+kβ(ϱi+2,ϱi+3)α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)<1k. So, the series
∞∑i=1i∏j=1γ(ϱj,ϱn+2p+1)[α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)]ki | (4.7) |
converges by ratio test, which implies that δ(ϱn,ϱn+2p+1) converges as n→∞.
Now, let
Sn=n∑i=1i∏j=1γ(ϱj,ϱn+2p+1)[α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)]kiδ(ϱ0,ϱ1). | (4.8) |
Then, Eq (4.6) takes the following form
δ(ϱn,ϱm)≤δ(ϱ0,ϱ1)[α(ϱn,ϱn+1)kn+β(ϱn+1,ϱn+2)kn+1+(Sm−1−Sn+1)]+n+2p∏j=n+2γ(ϱj,ϱn+2p+1)kn+2pδ(ϱ0,ϱ1). | (4.9) |
Further, if we take limit in inequality (4.9) as m,n→+∞, we deduce that
limm,n→+∞δ(ϱn,ϱm)=0. | (4.10) |
Subcase II: where m=n+2p, first of all, when p=1 we have
δ(ϱn,ϱm)=δ(ϱn,ϱn+2)≤kδ(ϱn−1,ϱn+1)≤k2δ(ϱn−2,ϱn)≤⋯≤knδ(ϱ0,ϱ2) |
which leads us to conclude that δ(ϱn,ϱm)→0, as n→∞.
When p>1, Similar to subcase I, we have
δ(ϱn,ϱm)=δ(ϱn,ϱn+2p)≤α(ϱn,ϱn+2)δ(ϱn,ϱn+2)+β(ϱn+2,ϱn+3)δ(ϱn+2,ϱn+3)+γ(ϱn+3,ϱn+2p)δ(ϱn+3,ϱn+2p)≤α(ϱn,ϱn+2)δ(ϱn,ϱn+2)+β(ϱn+2,ϱn+3)δ(ϱn+2,ϱn+3)+γ(ϱn+3,ϱn+2p)[α(ϱn+3,ϱn+4)δ(ϱn+3,ϱn+4)+β(ϱn+4,ϱn+5)δ(ϱn+4,ϱn+5)+γ(ϱn+5,ϱn+2p)δ(ϱn+5,ϱn+2p)]≤⋯≤α(ϱn,ϱn+2)δ(ϱ0,ϱ2)kn+β(ϱn+2,ϱn+3)δ(ϱ0,ϱ1)kn+2+γ(ϱn+3,ϱn+2p)[α(ϱn+3,ϱn+4)kn+3+β(ϱn+4,ϱn+5)kn+4]δ(ϱ0,ϱ1)+⋯γ(ϱn+3,ϱn+2p)γ(ϱn+5,ϱn+2p)×⋯×γ(ϱn+2p−5,ϱn+2p)×[α(ϱn+2p−5,ϱn+2p−4)kn+p−5+β(ϱn+2p−4,ϱn+2p−3)kn+p−4]δ(ϱ0,ϱ1)+γ(ϱn+3,ϱn+2p)γ(ϱn+5,ϱn+2p)×⋯×γ(ϱn+2p−3,ϱn+2p)×[α(ϱn+2p−3,ϱn+2p−2)kn+2p−3+β(ϱn+2p−2,ϱn+2p−1)kn+2p−2]δ(ϱ0,ϱ1)+γ(ϱn+3,ϱn+2p)γ(ϱn+5,ϱn+2p)×⋯×γ(ϱn+2p−1,ϱn+2p)kn+2p−1δ(ϱ0,ϱ1). |
Thus, we conclude
δ(ϱn,ϱm)≤α(ϱn,ϱn+2)δ(ϱ0,ϱ2)kn+β(ϱn+2,ϱn+3)δ(ϱ0,ϱ1)kn+2+n+2p−1∑i=n+3i∏j=n+3γ(ϱj,ϱn+2p)[α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)]kiδ(ϱ0,ϱ1)+n+2p−1∏j=n+3γ(ϱj,ϱn+2p)kn+2p−1δ(ϱ0,ϱ1). | (4.11) |
Since, supm≥1limi→+∞γ(ϱi+1,ϱm)α(ϱi+1,ϱi+2)+kβ(ϱi+2,ϱi+3)α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)<1k. So, the series
∞∑i=1i∏j=1γ(ϱj,ϱn+2p)[α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)]ki | (4.12) |
converges by ratio test, which implies that δ(ϱn,ϱn+2p) for p>1 converges as n→∞.
Now, let
Sq=q∑i=1i∏j=1γ(ϱj,ϱn+2p+1)[α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)]kiδ(ϱ0,ϱ1). | (4.13) |
Then, Eq (4.11) takes the following form
δ(ϱn,ϱm)≤δ(ϱ0,ϱ2)α(ϱn,ϱn+2)kn+δ(ϱ0,ϱ1)β(ϱn+2,ϱn+3)kn+2+(Sm−1−Sn+2)δ(ϱ0,ϱ1)+n+2p−1∏j=n+3γ(ϱj,ϱn+2p)kn+2p−1δ(ϱ0,ϱ1). | (4.14) |
Similarly, if we take limit in inequality (4.14) as m,n→+∞, we get
limm,n→+∞δ(ϱm,ϱn)=0. | (4.15) |
Thus, by subcases I and II, we have {ϱn} is a right Cauchy sequence. Similarly, we can prove same for the left Cauchy sequence. Since (K,δ) is complete triple controlled quasi rectangular metric like space. So {ϱn} converges to ϱ∈K. Thus:
limn→+∞δ(ϱ,ϱn)=limn→+∞δ(ϱn,ϱ)=δ(ϱ,ϱ)=limm,n→+∞δ(ϱn,ϱm)=limm,n→+∞δ(ϱm,ϱn)=0. | (4.16) |
Then, δ(ϱ,ϱ)=0.
Existence of fixed point: We will now illustrate that ϱ is a fixed point of L. Suppose that δ(ϱ,Lϱ)>0, and δ(ϱ,Lϱ)>0. Now by the property (δq2), we get
δ(Lϱ,ϱ)≤α(Lϱ,Lϱn)δ(Lϱ,Lϱn)+β(Lϱn,ϱn)δ(Lϱn,ϱn)+γ(ϱn,ϱ)δ(ϱn,ϱ)≤α(Lϱ,ϱn+1)kδ(ϱ,ϱn)+β(ϱn+1,ϱn)δ(ϱn+1,ϱn)+γ(ϱn,ϱ)δ(ϱn,ϱ). |
And,
δ(ϱ,Lϱ)≤α(ϱ,ϱn)δ(ϱ,ϱn)+β(ϱn,Lϱn)δ(ϱn,Lϱn)+γ(Lϱn,Lϱ)δ(Lϱn,Lϱ)≤α(ϱ,ϱn)δ(ϱ,ϱn)+β(ϱn,ϱn+1)δ(ϱn,ϱn+1)+γ(ϱn+1,Lϱ)kδ(ϱn,ϱ). |
By taking limn→+∞ using (4.4), (4.5), (4.16), we deduce that δ(ϱ,Lϱ)=0=δ(Lϱ,ϱ), Thus Lϱ=ϱ is a fixed point of L.
Corollary 4.2. Let (K,δ) be a complete controlled quasi rectangular metric like space where α,K×K→[1,∞) and suppose that L is a self mapping on K satisfying the following conditions. If there exists k∈(0,1) such that.
supm≥1limi→+∞α(ϱi,ϱm)α(ϱi+1,ϱi+2)+kα(ϱi+2,ϱi+3)α(ϱi,ϱi+1)+kα(ϱi+1,ϱi+2)<1k. | (4.17) |
We assume that, for ϱ∈K, we have
limn→+∞α(ϱn,ϱ), limn→+∞α(ϱ,ϱn), limn→+∞α(ϱn,Lϱ), limn→+∞α(Lϱ,ϱn) and limn,m→+∞α(ϱn,ϱm) exist and finite for all n,m∈N, m≠n. Then, L has a fixed point.
Corollary 4.3. Let (K,δ) be a complete triple controlled quasi rectangular metric type space where α,β,γ:K×K→[1,∞) are mappings, suppose that L is a self mapping on K satisfying the following conditions. If there exists k∈(0,1) such that
δ(Ls,Ll)>0⟹δ(Ls,Ll)≤kδ(s,l)∀s,l∈K. | (4.18) |
For, ϱo∈K take ϱn=Lnϱo,n∈N. Suppose that
supm≥1limi→+∞γ(ϱi,ϱm)α(ϱi+1,ϱi+2)+kβ(ϱi+2,ϱi+3)α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)<1k. | (4.19) |
We assume that, for ϱ∈K, we have
limn→+∞Δ(ϱn,ϱ), limn→+∞Δ(ϱ,ϱn), limn→+∞Δ(ϱn,Lϱ), limn→+∞Δ(Lϱ,ϱn) and limn,m→+∞Δ(ϱn,ϱm) where Δ∈{α,β,γ}, exist and finite for all n,m∈N, m≠n. Then, L has a unique fixed point.
Proof. The existence of a fixed point follows immediately from Theorem 4.1. To prove the uniqueness, let L have two distinct fixed points, Y1 and Y2. Then, LY1=Y1 and LY2=Y2.
Consider,
δq(Y1,Y2)=δq(LY1,LY2)≤kδq(Y1,Y2)<δq(Y1,Y2). |
Similarly,
δq(Y2,Y1)≤δq(LY2,LY1)≤kδq(Y2,Y1)<δq(Y2,Y1). |
Which holds, unless δq(Y2,Y1)=0 and δq(Y1,Y2)=0. Thus, δq(Y1,Y2)=0 implies Y1=Y2. Hence fixed point of L is unique.
Theorem 4.4. Let (K,δ) be a complete triple controlled quasi rectangular metric like space where α,β,γ:K×K→(0,∞) are mappings. Suppose that L is a self mapping on K satisfying the following condition. If there exists λ∈(0,12) and δ(Ls,Ll)>0, such that.
δ(Ls,Ll)≤λmin[δ(s,Ls)+δ(l,Ll),δ(Ls,s)+δ(Ll,l)]. | (4.20) |
For, ϱo∈K take ϱn=Lnϱo,n∈N. Suppose that.
supm≥1limi→+∞γ(ϱi+1,ϱm)α(ϱi+1,ϱi+2)+(λ1−λ)β(ϱi+2,ϱi+3)α(ϱi,ϱi+1)+(λ1−λ)β(ϱi+1,ϱi+2)<1−λλ. | (4.21) |
We assume that, for ϱ∈K, we have
limn→+∞Δ(ϱn,ϱ), limn→+∞Δ(ϱ,ϱn) and limn,m→+∞Δ(ϱn,ϱm), where Δ∈{α,β,γ}, exist and finite for all m,n∈N, m≠n such that.
limn→+∞Δ(Lϱ,Lϱn)<1λorlimn→+∞Δ(Lϱn,Lϱ)<1λ. | (4.22) |
Then, L has a fixed point.
Proof. Let ϱo∈K and {ϱn} is an iterative sequence defined by
ϱ1=Lϱo,ϱ2=Lϱ1=L2ϱo…ϱn+1=Lϱn=Ln+1ϱo. |
Obviously, if there exists n0∈N for which ϱn0+1=ϱn0, then Lϱn0=ϱn0, and the proof is finished. Thus, we suppose that ϱn+1≠ϱn for every n0∈N. Thus, by (4.20), we have
δ(ϱn,ϱn+1)=δ(Lϱn−1,Lϱn)≤λ[δ(ϱn−1,Lϱn−1)+δ(ϱn,Lϱn)]≤λδ(ϱn−1,ϱn)+λδ(ϱn,ϱn+1)δ(ϱn,ϱn+1)≤(λ1−λ)δ(ϱn−1,ϱn)≤kδ(ϱn−1,ϱn)wherek=λ1−λandk∈(0,1)≤k2δ(ϱn−2,ϱn−1)⋮δ(ϱn,ϱn+1)≤knδ(ϱo,ϱ1). | (4.23) |
Therefore,
limn→+∞δ(ϱn,ϱn+1)=0. | (4.24) |
Similarly, we consider
δ(ϱn+1,ϱn)=δ(Lϱn,Lϱn−1)≤λ[δ(Lϱn,ϱn)+δ(Lϱn−1,ϱn−1)]≤λδ(ϱn+1,ϱn)+λδ(ϱn,ϱn−1)δ(ϱn+1,ϱn)≤(λ1−λ)δ(ϱn,ϱn−1)≤kδ(ϱn,ϱn−1)≤k2δ(ϱn−1,ϱn−2)⋮δ(ϱn+1,ϱn)≤knδ(ϱ1,ϱo). | (4.25) |
Therefore,
limn→+∞δ(ϱn+1,ϱn)=0. | (4.26) |
Now, consider
δ(ϱn,ϱn+2)=δ(Lϱn−1,Lϱn+1)≤λ[δ(ϱn−1,ϱn)+δ(ϱn+1,ϱn+2)]. |
Taking limit n→+∞, and using (4.26), we have
limn→+∞δ(ϱn,ϱn+2)=0. | (4.27) |
By using similar method as in Theorem (4.1), we can easily show that {ϱn} is a Cauchy sequence in (K,δ). Since (K,δ) is complete triple controlled quasi rectangular metric like space. So {ϱn} converges to ϱ∈K. Thus,
limn→+∞δ(ϱ,ϱn)=limn→+∞δ(ϱn,ϱ)=δ(ϱ,ϱ)=limm,n→+∞δ(ϱn,ϱm)=limm,n→+∞δ(ϱm,ϱn)=0. | (4.28) |
Then, δ(ϱ,ϱ)=0.
Existence of fixed point: Now, we will show that ϱ is a fixed point of L. Suppose that δ(ϱ,Lϱ)>0, and δ(Lϱ,ϱ)>0. Now by property (δq2), we get
δ(Lϱ,ϱ)≤α(Lϱ,Lϱn)δ(Lϱ,Lϱn)+β(Lϱn,ϱn)δ(Lϱn,ϱn)+γ(ϱn,ϱ)δ(ϱn,ϱ)≤α(Lϱ,Lϱn)λ[δ(Lϱ,ϱ)+δ(Lϱn,ϱn)]+β(Lϱn,ϱn)δ(ϱn+1,ϱn)++γ(ϱn,ϱ)δ(ϱn,ϱ)≤α(Lϱ,Lϱn)λδ(Lϱ,ϱ)+α(Lϱ,Lϱn)λδ(ϱn+1,ϱn)++β(Lϱn,ϱn)δ(ϱn+1,ϱn)+γ(ϱn,ϱ)δ(ϱn,ϱ)≤α(Lϱ,Lϱn)λδ(Lϱ,ϱ)+[λα(Lϱ,Lϱn)+β(Lϱn,ϱn)]δ(ϱn+1,ϱn)++γ(ϱn,ϱ)δ(ϱn,ϱ). |
By taking limn→+∞ in both sides of the above inequalities using (4.22), (4.26) and (4.28), we deduce that 0<δ(Lϱ,ϱ)<δ(Lϱ,ϱ). Similarly, we can show that 0<δ(ϱ,Lϱ)<δ(ϱ,Lϱ), which is a contraction. Hence, Lϱ=ϱ is a fixed point of L.
Theorem 4.5. Let (K,δ) be a complete triple controlled quasi rectangular metric like space, where α,β,γ:K×K→(0,∞) are mappings. Suppose that L is a self mapping on K satisfying the following condition. If there exists λ∈(0,13) and δ(Ls,Ll), such that.
δ(Ls,Ll)≤λmin[δ(s,l)+δ(s,Ls)+δ(l,Ll),δ(s,l)+δ(Ls,s)+δ(Ll,l)]. | (4.29) |
For, ϱo∈K take ϱn=Lnϱo,n∈N. Suppose that.
supm≥1limi→+∞γ(ϱi+1,ϱm)α(ϱi+1,ϱi+2)+(2λ1−λ)β(ϱi+2,ϱi+3)α(ϱi,ϱi+1)+(2λ1−λ)β(ϱi+1,ϱi+2)<1−λ2λ. | (4.30) |
We assume that, for ϱ∈K, we have
limn→+∞Δ(ϱn,ϱ), limn→+∞Δ(ϱ,ϱn) and limn,m→+∞Δ(ϱn,ϱm), where Δ∈{α,β,γ}, exist and finite for all n,m∈N, m≠n such that.
limn→+∞Δ(Lϱ,ϱn)<1λ,limn→+∞Δ(ϱn,Lϱ)<1λandlimn→+∞Δ(ϱn,L2ϱn)<1λ. | (4.31) |
Then, L has a fixed point.
Proof. Let ϱo∈K and {ϱn} is an iterative sequence defined by
ϱ1=Lϱo,ϱ2=Lϱ1=L2ϱo,⋯,ϱn+1=Lϱn=Ln+1ϱo. |
Obviously, if there exists n0∈N for which ϱn0+1=ϱn0, then Lϱn0=ϱn0, and the proof is finished. Thus, we suppose that ϱn+1≠ϱn for every n0∈N Thus, by (4.29), we have
δ(ϱn,ϱn+1)=δ(Lϱn−1,Lϱn)≤λ[δ(ϱn−1,ϱn)+δ(ϱn−1,Lϱn−1)+δ(ϱn,Lϱn)]≤λδ(ϱn−1,ϱn)+λδ(ϱn−1,ϱn)+λδ(ϱn,ϱn+1)δ(ϱn,ϱn+1)≤(2λ1−λ)δ(ϱn−1,ϱn)≤kδ(ϱn−1,ϱn)wherek=2λ1−λandk∈(0,1)≤k2δ(ϱn−2,ϱn−1)⋮δ(ϱn,ϱn+1)≤knδ(ϱo,ϱ1). | (4.32) |
Taking, limn→+∞, we get,
limn→+∞δ(ϱn,ϱn+1)=0. | (4.33) |
Similarly, we now consider
δ(ϱn+1,ϱn)=δ(Lϱn,Lϱn−1)≤λ[δ(ϱn,ϱn−1)+δ(Lϱn,ϱn)+δ(Lϱn−1,ϱn−1)]≤λδ(ϱn,ϱn−1)+λδ(ϱn+1,ϱn)+λδ(ϱn,ϱn−1)δ(ϱn+1,ϱn)≤(2λ1−λ)δ(ϱn,ϱn−1)≤kδ(ϱn,ϱn−1)≤k2δ(ϱn−1,ϱn−2)⋮δ(ϱn+1,ϱn)≤knδ(ϱ1,ϱo). | (4.34) |
Taking, limn→+∞, we get,
limn→+∞δ(ϱn+1,ϱn)=0. | (4.35) |
Now, consider
δ(ϱn,ϱn+2)=δ(Lϱn−1,Lϱn+1)≤λ[δ(ϱn−1,ϱn+1)+δ(ϱn−1,Lϱn−1)+δ(ϱn+1,Lϱn+1)]≤λ[δ(ϱn−1,ϱn+1)+δ(ϱn−1,ϱn)+δ(ϱn+1,ϱn+2)]≤λ[α(ϱn−1,ϱn)δ(ϱn−1,ϱn)+β(ϱn,ϱn+2)δ(ϱn,ϱn+2)+γ(ϱn+2,ϱn+1)δ(ϱn+2,ϱn+1)]+λδ(ϱn−1,ϱn)+λδ(ϱn+1,ϱn+2)δ(ϱn,ϱn+2)≤11−λβ(ϱn,L2ϱn)[λ[α(ϱn−1,ϱn)+1]δ(ϱn−1,ϱn)+γ(ϱn+2,ϱn+1)δ(ϱn+2,ϱn+1)+λδ(ϱn+1,ϱn+2)]. |
Taking limit n→+∞, in the above inequality, we get
limn→+∞δ(ϱn,ϱn+2)=0. | (4.36) |
By using similar method as in Theorem (4.1), we can easily show that {ϱn} is a Cauchy sequence in (K,δ). Since (K,δ) is complete triple controlled quasi rectangular metric like space. So {ϱn} converges to ϱ∈K, thus.
limn→+∞δ(ϱ,ϱn)=limn→+∞δ(ϱn,ϱ)=δ(ϱ,ϱ)=limm,n→+∞δ(ϱn,ϱm)=limm,n→+∞δ(ϱm,ϱn)=0. | (4.37) |
Then, δ(ϱ,ϱ)=0.
Existence of fixed point: Now, we will prove that ϱ is a fixed point of L. For this, let δ(Lϱ,ϱ)>0. Now by property (δq2), we get
δ(Lϱ,ϱ)≤α(Lϱ,ϱn)δ(Lϱ,Lϱn)+β(Lϱn,ϱn)δ(Lϱn,ϱn)+γ(ϱn,ϱ)δ(ϱn,ϱ)≤α(Lϱ,ϱn)λ[δ(ϱ,ϱn)+δ(Lϱ,ϱ)+δ(Lϱn,ϱn)]+β(Lϱn,ϱn)δ(ϱn+1,ϱn)++γ(ϱn,ϱ)δ(ϱn,ϱ)≤λα(Lϱ,ϱn)δ(ϱ,ϱn)+λα(Lϱ,ϱn)δ(Lϱ,ϱ)+λα(Lϱ,ϱn)δ(ϱn+1,ϱn)++β(ϱn+1,ϱn)δ(ϱn+1,ϱn)+γ(ϱn,ϱ)δ(ϱn,ϱ). |
By taking limn→+∞ in both sides of the above inequalities and using (4.31), (4.35), (4.37), we deduce that 0<δ(Lϱ,ϱ)<δ(Lϱ,ϱ). Similarly, we can prove that, 0<δ(ϱ,Lϱ)<δ(ϱ,Lϱ), which is a contraction. Hence, Lϱ=ϱ is a fixed point of L.
Example 4.6. Let K=A∪B, where A={1n:n∈{3,4,5,6}} and B=[,2]. Define δ:K×K→[0,∞[ as follows:
δ(s,l)=δ(l,s)=0impliess=l. |
and
{δ(13,14)=δ(14,15)=0.04δ(13,15)=δ(14,16)=0.09δ(13,16)=δ(15,16)=0.36δ(13,13)=δ(15,15)=0.9δ(s,l)=(s−l)2otherwise. |
Then, (K,δ) is a complete triple controlled quasi rectangular metric like space with
α(s,l)={min{s,l}if s,l∈[1,2]1otherwise |
β(s,l)={max{s,l}+2if s,l∈[1,2]4otherwise |
and
γ(s,l)={max{s,l}if s,l∈[1,2]3otherwise. |
Note that δ we have the following
(i) (K,δ) is neither metric type nor a rectangular metric type space, because
δ(13,13)≠0. |
(ii) The symmetric property does not holds in (K,δ), as
δ(13,14)≠δ(14,13). |
(iii) (K,δ) is not a quasi metric like space, because
δ(13,16)=0.36>0.13=δ(13,14)+δ(14,16). |
(iv) (K,δ) is not a quasi rectangular metric like space, because
δ(15,16)=0.36>0.22=δ(15,13)+δ(13,14)+δ(14,16). |
(v) (K,δ) is not a controlled quasi rectangular metric like space, because
δ(15,16)=0.36>0.14=α(15,13)δ(15,13)+α(13,14)δ(13,14)+α(14,16)δ(14,16). |
Define a mapping L:K→K by
L(s)={s12ifs∈[1,2],1ifs∈A. |
Then, L(s)∈[1,2], let k=14. It can easily be seen that δ(L(s),L(l))≤kδ(s,l).
Further, note that for every s in K,
Ln(s)={s12nifs∈[1,2],1ifs∈A. |
Thus we obtain
supm≥1limi→∞γ(ϱi+1,ϱm)α(ϱi+1,ϱi+2)+kβ(ϱi+2,ϱi+3)α(ϱi,ϱi+1)+kβ(ϱi+1,ϱi+2)≤3<4=1k. |
Also,
limn→∞γ(ϱn,ϱ)=limn→∞γ(ϱ,ϱn)≤3andlimn,m→∞γ(ϱn,ϱm)≤3,for allm,n∈N,m≠n. |
According to Theorem 4.1, all hypotheses are true. Here, ϱ=1 is the fixed point of L.
In this article, we have introduced new type of metric spaces so called, triple controlled quasi rectangular metric like spaces. We have proved the existence and uniqueness of fixed point for self mappings on such spaces that satisfy different type of contractions. Moreover, we have provided some examples to illustrate our results. Our work generalizes many results in the literature.
The author N. Mlaiki would like to thank the Prince Sultan University for paying the publication fees for this work through TAS LAB.
The authors declare that they have no competing interests.
[1] |
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
![]() |
[2] |
W. Shatanawi, On w-compatible mappings and common coupled coincidence point in cone metric spaces, Appl. Math. Lett., 25 (2012), 925–931. https://doi.org/10.1016/j.aml.2011.10.037 doi: 10.1016/j.aml.2011.10.037
![]() |
[3] | W. Shatanawi, R. V. Rajic, S. Radenovic, A. Al-Rawashhdeh, Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces, Fixed Point Theory A., 2012 (2012), 106. |
[4] |
A. Al-Rawashdeh, A. Hassen, F. Abdelbasset, S. Sehmim, W. Shatanawi, On common fixed points for α-F-contractions and applications, J. Nonlinear Sci. Appl., 9 (2016), 3445–3458. https://doi.org/10.22436/jnsa.009.05.128 doi: 10.22436/jnsa.009.05.128
![]() |
[5] | W. Shatanawi, Z. Mustafa, N. Tahat, Some coincidence point theorems for nonlinear contraction in ordered metric spaces, Fixed Point Theory A., 2011 (2011), 68. |
[6] |
W. Shatanawi, Some fixed point results for a generalized ψ-weak contraction mappings in orbitally metric spaces, Chaos Soliton. Fract., 45 (2012), 520–526. https://doi.org/10.1016/j.chaos.2012.01.015 doi: 10.1016/j.chaos.2012.01.015
![]() |
[7] |
I. Altun, H. Sahin, M. Aslantas, A new approach to fractals via best proximity point, Chaos Soliton. Fract., 146 (2021), 110850. https://doi.org/10.1016/j.chaos.2021.110850 doi: 10.1016/j.chaos.2021.110850
![]() |
[8] |
H. Sahin, M. Aslantas, I. Altun, Best proximity and best periodic points for proximal nonunique contractions, J. Fix. Point Theory A., 23 (2021), 55. https://doi.org/10.1007/s11784-021-00889-7 doi: 10.1007/s11784-021-00889-7
![]() |
[9] |
M. Aslantas, H. Sahin, I. Altun, Ciric type cyclic contractions and their best cyclic periodic points, Carpathian J. Math., 38 (2022), 315–326. https://doi.org/10.37193/CJM.2022.02.04 doi: 10.37193/CJM.2022.02.04
![]() |
[10] | I. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. |
[11] |
T. Kamran, M. Samreen, Q. UL Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
![]() |
[12] | S. Shukla, Some fixed point theorems for ordered contractions in partial b-metric spaces, Gazi Univ. J. Sci., 30 (2017), 345–354. |
[13] |
S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711. https://doi.org/10.1007/s00009-013-0327-4 doi: 10.1007/s00009-013-0327-4
![]() |
[14] |
N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
![]() |
[15] |
T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
![]() |
[16] |
N. Mlaiki, Double controlled metric-like spaces, J. Inequal. Appl., 2020 (2020), 1–12. https://doi.org/10.1186/s13660-020-02456-z doi: 10.1186/s13660-020-02456-z
![]() |
[17] | W. A. Wilson, On quasi-metric spaces, Am. J. Math., 53 (1931), 675–684. https://doi.org/10.2307/2371174 |
[18] |
D. Doitchinov, On completeness in quasi-metric spaces, Topol. Appl., 30 (1988), 127–148. https://doi.org/10.1016/0166-8641(88)90012-0 doi: 10.1016/0166-8641(88)90012-0
![]() |
[19] | K. Abodayeh, W. Shatanawi, D. Turkoglu, Some fixed point theorems in quasi-metric spaces under quasi weak contractions, Glob. J. Pure Appl. Math., 12 (2016), 4771–4780. |
[20] | F. M. Zeyada, G. H. Hassan, M. A. Ahmed, A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, Arab. J. Sci. Eng., 31 (2006), 111. |
[21] |
S. Haque, A. K. Souayah, N. Mlaiki, D. Rizk, Double controlled quasi metric like spaces, Symmetry, 14 (2022), 618. https://doi.org/10.3390/sym14030618 doi: 10.3390/sym14030618
![]() |
[22] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, 2000. https://doi.org/10.5486/PMD.2000.2133 |
[23] |
R. George, S. Radenović, K. P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013. https://doi.org/10.22436/jnsa.008.06.11 doi: 10.22436/jnsa.008.06.11
![]() |
[24] | N. Mlaiki, M. Hajji, T. Abdeljawad, A new extension of the rectangular-metric spaces, Adv. Math. Phys., 2020. |
[25] | S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[26] |
S. Shukla, Partial rectangular metric spaces and fixed point theorems, Sci. World J., 2014 (2014), 756298. https://doi.org/10.1155/2014/756298 doi: 10.1155/2014/756298
![]() |
[27] |
S. Haque, F. Azmi, N. Mlaiki, Fredholm type integral equation in controlled rectangular metric-like spaces, Symmetry, 14 (2022), 991. https://doi.org/10.3390/sym14050991 doi: 10.3390/sym14050991
![]() |
[28] |
M. Asim, K. S. Nisar, A. Morsy, M. Imdad, Extended rectangular ξ-metric spaces and fixed point results, Mathematics, 7 (2019), 1136. https://doi.org/10.3390/math7121136 doi: 10.3390/math7121136
![]() |
[29] | M. Asim, M. Imdad, S. Radenovic, Fixed point results in extended rectangular b-metric spaces with an application, UPB Sci. Bull., Ser. A, 81 (2019), 11–20. |
[30] |
M. Asim, M. Imdad, S. Shukla, Fixed point results for Geraghty-weak contractions in ordered partial rectangular b-metric spaces, Afr. Mat., 32 (2021), 811–827. https://doi.org/10.1007/s13370-020-00862-6 doi: 10.1007/s13370-020-00862-6
![]() |
[31] |
M. Asim, S. Mujahid, I. Uddin, Meir-Keeler contraction in rectangular m-metric space, Topol. Algebra Appl., 9 (2021), 96–104. https://doi.org/10.1515/taa-2021-0106 doi: 10.1515/taa-2021-0106
![]() |
[32] | M. Asim, Meenu, Fixed point theorem via Meir-Keeler contraction in rectangular Mb-metric spaces, Korean J. Math., 30 (2022), 161–173. |
1. | Tayyab Kamran, Umar Ishtiaq, Khaleel Ahmad, Ghulam Murtaza, Ioannis Argyros, Certain Fixed Point Results via Contraction Mappings in Neutrosophic Semi-Metric Spaces, 2024, 11, 2409-5761, 30, 10.15377/2409-5761.2024.11.3 | |
2. | Sumati Kumari Panda, Velusamy Vijayakumar, Kottakkaran Sooppy Nisar, Applying periodic and anti-periodic boundary conditions in existence results of fractional differential equations via nonlinear contractive mappings, 2023, 2023, 1687-2770, 10.1186/s13661-023-01778-3 |
δ(s,l) | 0 | 1 | 2 | 3 |
0 | 1 | 1 | 2 | 72 |
1 | 2 | 1 | 2 | 1 |
2 | 2 | 2 | 2 | 14 |
3 | 6 | 13 | 13 | 0 |
α(s,l) | 0 | 1 | 2 | 3 |
0 | 1 | 43 | 2 | 43 |
1 | 1 | 1 | 1 | 32 |
2 | 1 | 1 | 1 | 2 |
3 | 43 | 3 | 3 | 1 |
β(s,l) | 0 | 1 | 2 | 3 |
0 | 1 | 1 | 2 | 1 |
1 | 1 | 1 | 32 | 1 |
2 | 43 | 32 | 1 | 4 |
3 | 1 | 1 | 1 | 1 |
α(s,l) | 0 | 1 | 2 | 3 |
0 | 1 | 43 | 2 | 43 |
1 | 1 | 1 | 1 | 32 |
2 | 1 | 1 | 1 | 2 |
3 | 43 | 3 | 3 | 1 |