Research article

An optimal $ Z $-eigenvalue inclusion interval for a sixth-order tensor and its an application

  • Received: 17 August 2021 Accepted: 14 October 2021 Published: 19 October 2021
  • MSC : 15A18, 15A42, 15A69

  • An optimal $ Z $-eigenvalue inclusion interval for a sixth-order tensor is presented. As an application, a sufficient condition for the positive definiteness of a sixth-order real symmetric tensor (also a homogeneous polynomial form) is obtained, which is used to judge the asymptotically stability of time-invariant polynomial systems.

    Citation: Tinglan Yao. An optimal $ Z $-eigenvalue inclusion interval for a sixth-order tensor and its an application[J]. AIMS Mathematics, 2022, 7(1): 967-985. doi: 10.3934/math.2022058

    Related Papers:

  • An optimal $ Z $-eigenvalue inclusion interval for a sixth-order tensor is presented. As an application, a sufficient condition for the positive definiteness of a sixth-order real symmetric tensor (also a homogeneous polynomial form) is obtained, which is used to judge the asymptotically stability of time-invariant polynomial systems.



    加载中


    [1] B. D. Anderson, N. K. Bose, E. I. Jury, Output feedback stabilization and related problems-solution via decision methods, IEEE T. Automat. Contr., 20 (1975), 53–66. doi: 10.1109/TAC.1975.1100846. doi: 10.1109/TAC.1975.1100846
    [2] N. K. Bose, P. S. Kamt, Algorithm for stability test of multidimensional filters, IEEE T. Acoust. Speech Signal Proc., 22 (1974), 307–314. doi: 10.1109/TASSP.1974.1162592. doi: 10.1109/TASSP.1974.1162592
    [3] N. K. Bose, R. W. Newcomb, Tellegon's theorem and multivariate realizability theory, Int. J. Electron, 36 (1974), 417–425. doi: 10.1080/00207217408900421. doi: 10.1080/00207217408900421
    [4] C. L. Deng, H. F. Li, C. J. Bu, Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55–69. doi: 10.1016/j.laa.2018.06.032. doi: 10.1016/j.laa.2018.06.032
    [5] P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2 (2017), 288–303. doi: 10.1016/j.idm.2017.06.002. doi: 10.1016/j.idm.2017.06.002
    [6] J. He, Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290–1301.
    [7] J. He, Y. M. Liu, H. Ke, J. K. Tian, X. Li, Bounds for the $Z$-spectral radius of nonnegative tensors, SpringerPlus, 5 (2016), 1727. doi: 10.1186/s40064-016-3338-3. doi: 10.1186/s40064-016-3338-3
    [8] J. He, T. Z. Huang, Upper bound for the largest $Z$-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110–114. doi: 10.1016/j.aml.2014.07.012. doi: 10.1016/j.aml.2014.07.012
    [9] Z. Gajic, M. T. J. Qureshi, Lyapunov matrix equation in system stability and control, London: Academic Press, 1995.
    [10] T. G. Kolda, J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095–1124. doi: 10.1137/100801482. doi: 10.1137/100801482
    [11] C. Q. Li, Y. J. Liu, Y. T. Li, Note on $Z$-eigenvalue inclusion theorems for tensors, JIMO, 17 (2021), 687–693. doi: 10.3934/jimo.2019129. doi: 10.3934/jimo.2019129
    [12] W. Li, D. D. Liu, S. W. Vong, $Z$-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182–199. doi: 10.1016/j.laa.2015.05.033. doi: 10.1016/j.laa.2015.05.033
    [13] L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132.
    [14] Q. L. Liu, Y. T. Li, Bounds for the $Z$-eigenpair of general nonnegative tensors, Open Math., 14 (2016), 181–194. doi: 10.1515/math-2016-0017. doi: 10.1515/math-2016-0017
    [15] L. Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324. doi: 10.1016/j.jsc.2005.05.007. doi: 10.1016/j.jsc.2005.05.007
    [16] L. Q. Qi, H. B. Chen, Y. N. Chen, Tensor eigenvalues and their applications, Singapore: Springer, 2018.
    [17] Q. Ni, L. Q. Qi, F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE T. Automat. Contr., 53 (2008), 1096–1107. doi: 10.1109/TAC.2008.923679. doi: 10.1109/TAC.2008.923679
    [18] C. L. Sang, A new Brauer-type $Z$-eigenvalue inclusion set for tensors, Numer. Algor., 80 (2019), 781–794. doi: 10.1007/s11075-018-0506-2. doi: 10.1007/s11075-018-0506-2
    [19] C. L. Sang, J. X. Zhao, $E$-eigenvalue inclusion theorems for tensors, Filomat, 33 (2019), 3883–3891. doi: 10.2298/FIL1912883S. doi: 10.2298/FIL1912883S
    [20] C. L. Sang, Z. Chen, $E$-eigenvalue localization sets for tensors, JIMO, 16 (2020), 2045–2063. doi: 10.3934/jimo.2019042. doi: 10.3934/jimo.2019042
    [21] C. L. Sang, Z. Chen, $Z$-eigenvalue localization sets for even order tensors and their applications, Acta Appl. Math., 169 (2020), 323–339. doi: 10.1007/s10440-019-00300-1. doi: 10.1007/s10440-019-00300-1
    [22] C. L. Sang, Z. Chen, Optimal $Z$-eigenvalue inclusion intervals of tensors and their applications, JIMO, 2021. doi: 10.3934/jimo.2021075. doi: 10.3934/jimo.2021075
    [23] Y. S. Song, L. Q. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581–1595. doi: 10.1137/130909135. doi: 10.1137/130909135
    [24] L. X. Sun, G. Wang, L. X. Liu, Further Study on $Z$-eigenvalue localization set and positive definiteness of fourth-order tensors, Bull. Malays. Math. Sci. Soc., 44 (2021), 105–129. doi: 10.1007/s40840-020-00939-2. doi: 10.1007/s40840-020-00939-2
    [25] G. Wang, G. L. Zhou, L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, DCDS-B, 22 (2017), 187–198. doi: 10.3934/dcdsb.2017009. doi: 10.3934/dcdsb.2017009
    [26] Y. N. Wang, G. Wang, Two $S$-type $Z$-eigenvalue inclusion sets for tensors, J. Inequal. Appl., 2017 (2017), 152. doi: 10.1186/s13660-017-1428-6. doi: 10.1186/s13660-017-1428-6
    [27] L. Xiong, J. Z. Liu, $Z$-eigenvalue inclusion theorem of tensors and the geometric measure of entanglement of multipartite pure states, Comput. Appl. Math., 39 (2020), 135. doi: 10.1007/s40314-020-01166-y. doi: 10.1007/s40314-020-01166-y
    [28] J. X. Zhao, A new $Z$-eigenvalue localization set for tensors, J. Inequal. Appl., 2017 (2017), 85. doi: 10.1186/s13660-017-1363-6. doi: 10.1186/s13660-017-1363-6
    [29] J. X. Zhao, C. L. Sang, Two new eigenvalue localization sets for tensors and theirs applications, Open Math., 15 (2017), 1267–1276. doi: 10.1515/math-2017-0106. doi: 10.1515/math-2017-0106
    [30] J. X. Zhao, $E$-eigenvalue localization sets for fourth-order tensors, Bull. Malays. Math. Sci. Soc., 43 (2020), 1685–1707. doi: 10.1007/s40840-019-00768-y. doi: 10.1007/s40840-019-00768-y
    [31] J. X. Zhao, Optimal $Z$-eigenvalue inclusion intervals of even order tensors and their applications, Acta Appl. Math., 174 (2021), 2. doi: 10.1007/s10440-021-00420-7. doi: 10.1007/s10440-021-00420-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1536) PDF downloads(61) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog