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1. Introduction

Let m and n be two positive integers, m ≥ 2 and n ≥ 2, [n] be the set {1, 2, . . . , n}, C (resp. R) be the
set of all complex (resp. real) numbers, Rn be the set of all dimension n real vectors, R[m,n] be the set
of all order m dimension n real tensors. Let x = (x1, x2, . . . , xn)> ∈ Rn. LetA = (ai1i2···im) ∈ R[m,n], i.e.,

ai1i2···im ∈ R, i j ∈ [n], j ∈ [m].

Furthermore, A is called symmetric [15] if ai1i2···im = aiπ(1)···iπ(m) for π ∈ Πm, where Πm is the
permutation group of m indices.

Given a tensorA ∈ R[m,n], if there are λ ∈ C and x ∈ Cn\{0} such that

Axm−1 = λx and x>x = 1,

whereAxm−1 is an n-dimensional vector whose ith component is

(Axm−1)i =
∑

i2,...,im∈[n]

aii2···im xi2 · · · xim ,
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then λ is called an E-eigenvalue of A and x an E-eigenvector of A associated with λ. If both λ and x
are real, then λ is called a Z-eigenvalue ofA and x a Z-eigenvector ofA associated with λ. Let σ(A)
be the set of all Z-eigenvalues ofA.

The Z-eigenvalues of an even order real symmetric tensorA is introduced by Qi in [15] in order to
identify the positive definiteness of an m-th degree homogeneous polynomial form

f (x) = Axm =
∑

i1,...,im∈[n]

ai1i2···im xi1 xi2 · · · xim , (1.1)

and f (x) is positive definite, i.e., f (x) > 0 for any x ∈ Rn\{0}, if and only ifA is positive definite [15].
Furthermore, A is positive definite if and only if all of its Z-eigenvalues are positive. The positive
definiteness of f (x) is widely used in the stability study of nonlinear autonomous systems via
Lyapunov’s direct method in automatic control [1–4, 17].

Next, a special tensor, the Z-identity tensor, is recalled.

Definition 1.1. [10, 11, 15] A tensor I = (ei1i2···im) ∈ R[m,n] with m even is called a Z-identity tensor if
for any vector x ∈ Rn,

Ixm−1 = x and x>x = 1.

Note here that an even order n dimension Z-identity tensor is not unique in general. For instance,
the following two tensors are both Z-identity tensors:

Case I. ( [11, Definition 2.1]): Let I1 = (ei1i2···im) ∈ R[m,n], where

ei1i1i2i2···ikik = 1, i1, i2, . . . , ik ∈ [n], and m = 2k;

Case II. ( [10, Property 2.4]): Let I2 = (ei1i2···im) ∈ R[m,n], where

ei1···im =
1

m!

∑
π∈Πm

δiπ(1)iπ(2)δiπ(3)iπ(4) · · · δiπ(m−1)iπ(m) ,

where δ is the standard Kronecker delta, i,e., δi j = 1 if i = j and δi j = 0 if i , j.
For convenient applications, the Z-identity tensor I2 = (ei1i2···i6) ∈ R

[6,n] is listed as follows:

ei1i2···i6 =



1, if i1 = i2 = · · · = i6,

1/5, if (i1, i2, . . . , i6) ∈
⋃
i, j,

i, j∈[n]

{π(i, i, i, i, j, j)},

1/15, if (i1, i2, . . . , i6) ∈
⋃

i, j,k,
i, j,k∈[n]

{π(i, i, j, j, k, k)},

0, otherwise,

where {π(i1, i2, . . . , i6)} is the set of all combinations of i1, i2, . . . , i6; also see [22] for details.
According to Theorem 8.5 in [16], in order to judge the strong ellipticity condition of anisotropic

elastic materials, it is necessary to judge the positive definiteness of three second order symmetric
tensors, a fourth-order symmetric tensor and a sixth-order symmetric tensor based on Z-eigenvalues of
these tensors. Hence, one can calculate the smallest Z-eigenvalue or all Z-eigenvalues of an even order
tensor to judge its positive definiteness.
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However, when m and n are large, it is not easy to compute all Z-eigenvalues or even the smallest
Z-eigenvalue of a tensor. Fortunately, for the problem of judging the positive definiteness of an even
order real symmetric tensor A, we do not need to calculate all Z-eigenvalues of A, but only need
to know the symbols of all Z-eigenvalues. In view of this, a general approach is adopted: one can
construct a set including all Z-eigenvalues of A, and if this set is just in the right-half complex plane,
then he can conclude that all Z-eigenvalues are positive, and consequently, the tensor A is positive
definite. The related results are showed in [6–8, 11–14, 18–31].

In order to obtain many sufficient conditions for the positive definiteness of an even order real
symmetric tensor, Li et al. [11] and Sang and Chen [22], respectively, presented their Z-eigenvalue
inclusion intervals with n parameters for an even order real tensor as follows:

Theorem 1.2. [11, Theorem 2.2] Let A = (ai1i2···im) ∈ R[m,n] with m being even. Then for any vector
α = (α1, . . . , αn)> ∈ Rn,

σ(A) ⊆ G(A, α) :=
⋃
i∈[n]

(
Gi(A, α) := {z ∈ R : |z − αi| ≤ Ri(A, αi)}

)
, (1.2)

where

Ri(A, αi) =
∑

(i2,...,im)∈Λi

|aii2···im − αieii2···im | +
∑

(i2,...,im)∈Λi

|aii2···im |, (1.3)

and

Λi = {(i2, . . . , im) : eii2···im , 0, i2, . . . , im ∈ [n]},

Λi = {(i2, . . . , im) : eii2···im = 0, i2, . . . , im ∈ [n]}.

Theorem 1.3. [22, Theorem 3.1] Let A = (ai1i2···im) ∈ R[m,n] with m being even, and α = (α1, . . . ,

αn)> ∈ Rn. Then

σ(A) ⊆ Υ(A, α) :=
⋃
i∈[n]

(
Υi(A, α) := {z ∈ R : |z − αi| ≤ ri(A, αi)}

)
, (1.4)

where

ri(A, αi) = r∆∩Λi
i (A, αi) + r∆∩Λi

i (A, αi) + r∆∩Λi
i (A) + r∆∩Λi

i (A),

r∆∩Λi
i (A, αi) =

1

(m − 2)
m−2

2

∑
(i2,...,im)∈∆∩Λi

|aii2···im − αieii2···im |,

r∆∩Λi
i (A, αi) =

∑
(i2,...,im)∈∆∩Λi

|aii2···im − αieii2···im |,

r∆∩Λi
i (A) =

1

(m − 2)
m−2

2

∑
(i2,...,im)∈∆∩Λi

|aii2···im |,

r∆∩Λi
i (A) =

∑
(i2,...,im)∈∆∩Λi

|aii2···im |,
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and

∆ = {(i2, . . . , im) : i2 , · · · , im, or only two of i2, . . . , im ∈ [n] are the same},

∆ = {(i2, . . . , im) : (i2, . . . , im) < ∆, i2, . . . , im ∈ [n]}.

Furthermore, Υ(A, α) ⊆ G(A, α).

From Theorems 1.2 and 1.3, it can be seen that the forms of Ri(A, αi) and ri(A, αi) are closely
related to the Z-identify tensor I. For convenient applications, when the Z-identify tensor I is taken
as I1, the specific forms of Ri(A, αi) and ri(A, αi) had been given in [11, Corollary 1]
and [22, Corollary 3]. However, when the Z-identify tensor I is taken as I2, the specific forms of
Ri(A, αi) and ri(A, αi) have not been given.

Hence, we in this paper focus on giving the specific forms of Ri(A, αi) and ri(A, αi) when the
Z-identify tensor I is taken as I2 and partially answering the two questions proposed in [22]:

Question 1: What is the specific form of Theorem 1.3 for m ≥ 6 and m is even if the Z-identity
tensor I as I2?

Question 2: What is the specific form of the Z-identity tensor I2 for the order m ≥ 8 and m is even?
The remaining chapters are arranged as follows. In Section 2, for a sixth-order tensor A, the

specific forms of the inclusion intervals G(A, α) and Υ(A, α) with a parameter vector α are given.
Subsequently, by selecting appropriate parameter vector α, the optimal interval of Υ(A, α) is
presented. In Section 3, an application of the optimal Z-eigenvalue inclusion interval is considered.
This optimal interval is used to present a sufficient condition for the positive definiteness of
sixth-order real symmetric tensors (also homogeneous polynomial forms), which is used to judge the
asymptotically stability of time-invariant polynomial systems.

2. An optimal Z-eigenvalue inclusion interval for a sixth-order tensor with I2

The specific forms of Theorems 1.2 and 1.3 are firstly listed.Subsequently, an appropriate parameter
vector α is taken to optimize the interval of Υ(A, α) in Theorem 1.3.

Let m = 6 and the Z-identity tensor I be I2. Consider Ri(A, αi) in (1.3). Then, for each i ∈ [n],

Λi = {(i, i, i, i, i), π(i, i, i, j, j), π(i, j, j, j, j), π(i, j, j, k, k)},

and eiiiiii = 1, eπ(i,i,i,i, j, j) = eπ(i,i, j, j, j, j) = 1
5 and eπ(i,i, j, j,k,k) = 1

15 for j, k ∈ [n] and j , k , i. Consequently,

∑
(i2,...,im)∈Λi

|aii2···im − αieii2···im | =|aiiiiii − αi| +
∑
j,i

 ∑
υ∈{π(i,i,i, j, j)}

|aiυ −
1
5
αi| +

∑
υ∈{π(i, j, j, j, j)}

|aiυ −
1
5
αi|


+

∑
j,k,i

∑
υ∈{π(i, j, j,k,k)}

|aiυ −
1
15
αi|, (2.1)

and∑
(i2,...,im)∈Λi

|aii2···im | =
∑

i2,...,im∈[n]

|aii2···im | −
∑

(i2,...,im)∈Λi

|aii2···im |

AIMS Mathematics Volume 7, Issue 1, 967–985.



971

=
∑

i2,...,im∈[n]

|aii2···im | − |aiiiiii| −
∑
j,i

 ∑
υ∈{π(i,i,i, j, j)}

|aiυ| +
∑

υ∈{π(i, j, j, j, j)}

|aiυ|

 − ∑
j,k,i

∑
υ∈{π(i, j, j,k,k)}

|aiυ|,

where, in order to shorten formulas,
∑

(i2,...,i6)∈S
aii2···i6 is written as

∑
υ∈S

aiυ for i, i2, . . . , i6 ∈ [n] and a set S .

Hence, the specific form of Theorem 1.2 for m = 6 is listed as follows:

Corollary 2.1. LetA = (ai1i2···i6) ∈ R
[6,n] and α = (α1, . . . , αn)> ∈ Rn. Then (1.2) holds, where

Ri(A, αi) =|aiiiiii − αi| +
∑
j,i

 ∑
υ∈{π(i,i,i, j, j)}

|aiυ −
1
5
αi| +

∑
υ∈{π(i, j, j, j, j)}

|aiυ −
1
5
αi|


+

∑
j,k,i

∑
υ∈{π(i, j, j,k,k)}

|aiυ −
1

15
αi| +

∑
(i2,...,im)∈Λi

|aii2···im |.

Next, the specific form of Theorem 1.3 for m = 6 is considered. Let m = 6. Then

∆ = {π( j, k, l, s, t), π( j, j, k, l, s), where j, k, l, s, t ∈ [n] and j , k , l , s , t},

and ∑
(i2,...,i6)∈∆

|aii2···i6 | =
∑

j,k,l,s,t

∑
υ∈{π( j,k,l,s,t)}

|aiυ| +
∑

j,k,l,s

∑
υ∈{π( j, j,k,l,s)}

|aiυ|.

Corollary 2.2. LetA = (ai1i2···i6) ∈ R
[6,n] and α = (α1, . . . , αn)> ∈ Rn. Then (1.4) holds, where

ri(A, αi) =|aiiiiii − αi| +
∑
j,i

 ∑
υ∈{π(i,i,i, j, j)}

|aiυ −
1
5
αi| +

∑
υ∈{π(i, j, j, j, j)}

|aiυ −
1
5
αi|


+

∑
j,k,i

∑
υ∈{π(i, j, j,k,k)}

|aiυ −
1

15
αi| + ηi(A), (2.2)

where

ηi(A) =



∑
(i2,...,i6)∈Λi

|aii2···i6 |, 2 ≤ n ≤ 3; (2.3)

∑
(i2,...,i6)∈Λi

|aii2···i6 | −
15
16

∑
(i2,...,i6)∈∆

|aii2···i6 |, n ≥ 4. (2.4)

Moreover, when 2 ≤ n ≤ 3, then Υ(A, α) = G(A, α); when n ≥ 4, then Υ(A, α) ⊆ G(A, α).

Proof. Let

N = {(i2, . . . , i6) : i2, . . . , i6 ∈ [n]}.

The proof is divided into two parts depending on the difference of dimension.
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(i) When 2 ≤ n ≤ 3, then ∆ = ∅ and ∆ = N, consequently, ∆ ∩ Λi = ∆ ∩ Λi = ∅, ∆ ∩ Λi = Λi and
∆ ∩ Λi = Λi. Hence,

r∆∩Λi
i (A, αi) = r∆∩Λi

i (A) = 0, r∆∩Λi
i (A) =

∑
(i2,...,i6)∈Λi

|aii2···i6 |,

r∆∩Λi
i (A, αi) =

∑
(i2,...,i6)∈Λi

|aii2···i6 − αieii2···i6 |, (2.5)

and consequently,

ri(A, αi) =r∆∩Λi
i (A, αi) + r∆∩Λi

i (A, αi) + r∆∩Λi
i (A) + r∆∩Λi

i (A)

=
∑

(i2,...,i6)∈Λi

|aii2···i6 − αieii2···i6 | +
∑

(i2,...,i6)∈Λi

|aii2···i6 | = Ri(A, αi).

By (2.1) and (2.3), (2.2) follows, which implies Υ(A, α) = G(A, α).
(ii) If n ≥ 4, then ∆ , ∅, but ∆ ∩ Λi = ∅, consequently, ∆ ∩ Λi = Λi and ∆ ∩ Λi = ∆, which implies

that (2.5) holds, r∆∩Λi
i (A, αi) = 0 and

r∆∩Λi
i (A) =

1
16

∑
(i2,...,i6)∈∆

|aii2···i6 |.

By Λi = N ∩Λi = (∆∪∆)∩Λi = (∆∩Λi)∪ (∆∩Λi) = ∆∪ (∆∩Λi), we have ∆∩Λi = Λi −∆. Hence,

r∆∩Λi
i (A) =

∑
(i2,...,i6)∈Λi

|aii2···i6 | −
∑

(i2,...,i6)∈∆

|aii2···i6 |.

Consequently,

ri(A, αi) =r∆∩Λi
i (A, αi) + r∆∩Λi

i (A, αi) + r∆∩Λi
i (A) + r∆∩Λi

i (A)

=
∑

(i2,...,i6)∈Λi

|aii2···i6 − αieii2···i6 | +
1

16

∑
(i2,...,i6)∈∆

|aii2···i6 | +
∑

(i2,...,i6)∈Λi

|aii2···i6 | −
∑

(i2,...,i6)∈∆

|aii2···i6 |

=
∑

(i2,...,i6)∈Λi

|aii2···i6 − αieii2···i6 | +
∑

(i2,...,i6)∈Λi

|aii2···i6 | −
15
16

∑
(i2,...,i6)∈∆

|aii2···i6 |

=Ri(A, αi) −
15
16

∑
(i2,...,i6)∈∆

|aii2···i6 |.

By (2.1) and (2.4), (2.2) follows, which implies Υ(A, α) ⊆ G(A, α) by
∑

(i2,...,i6)∈∆
|aii2···i6 | ≥ 0 for i ∈ [n].

�
It is showed in Theorem 1.3 that Υ(A, α) ⊆ G(A, α). When m = 6, it is easy to see the relationship

Υ(A, α) ⊆ G(A, α) from Corollaries 2.1 and 2.2. Next, we considered this problem: How to choose
a parameter vector α to optimize the inclusion interval Υ(A, α) in Corollary 2.2. Before that, two
lemmas are listed.
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Lemma 2.1. [22, Lemma 4.2] Let

f (x) = x −
1
a

∑
i∈[n]

|x − bi| − c

be a real valued function about x, where a is a positive integer, bi ∈ R and b1 ≤ b2 ≤ · · · ≤ bn with
n ≥ a, and c ∈ R. Assume that a is odd.

(i) If n is odd, then

max
x∈R

f (x) =
1
a

( n+a
2∑

i=1

bi −

n∑
i= n+a

2 +1

bi

)
− c,

and this takes place for every x ∈ [b n+a
2
, b n+a

2 +1] if b n+a
2
, b n+a

2 +1, and only for x = b n+a
2

if b n+a
2

= b n+a
2 +1.

Note that let [b n+a
2
, b n+a

2 +1] be [b n+a
2
,+∞) if b n+a

2 +1 does not exist.
(ii) If n is even, then

max
x∈R

f (x) =
1
a

( n+a−1
2∑

i=1

bi −

n∑
i= n+a+3

2

bi

)
− c,

and this maximum is reached when x = b n+a+1
2

.

Lemma 2.2. [22, Lemma 4.1] Let

g(x) = x +
1
a

∑
i∈[n]

|x − bi| + c

be a real valued function about x, where a is a positive integer, bi ∈ R and b1 ≤ b2 ≤ · · · ≤ bn with
n ≥ a + 1, and c ∈ R. Assume that a is odd.

(i) If n is odd, then

min
x∈R

g(x) =
1
a

( n∑
i= n−a

2 +1

bi −

n−a
2∑

i=1

bi

)
+ c

and this takes place for every x ∈ [b n−a
2
, b n−a

2 +1] if b n−a
2
, b n−a

2 +1, and only for x = b n−a
2

if b n−a
2

= b n−a
2 +1.

(ii) If n is even, then

min
x∈R

g(x) =
1
a

( n∑
i= n−a+3

2

bi −

n−a−1
2∑

i=1

bi

)
+ c

and this minimum is reached when x = b n−a+1
2

.

Now, the optimal inclusion interval of the interval Υ(A, α) for sixth-order tensors is presented.
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Theorem 2.3. LetA = (ai1i2···i6) ∈ R
[6,n]. Then

σ(A) ⊆ Υ(A) :=
⋃
i∈[n]

[li, ui],

where li and ui are taken by the following methods:
(i) If n is odd, then

li =
1

15

( 15n2+15
2∑

k=1

bi,k −

15n2∑
k= 15n2+17

2

bi,k

)
− ηi(A) and ui =

1
15

( 15n2∑
k= 15n2−13

2

bi,k −

15n2−15
2∑

k=1

bi,k

)
+ ηi(A);

(ii) If n is even, then

li =
1
15

( 15n2+14
2∑

k=1

bi,k −

15n2∑
k= 15n2+18

2

bi,k

)
− ηi(A) and ui =

1
15

( 15n2∑
k= 15n2−12

2

bi,k −

15n2−16
2∑

k=1

bi,k

)
+ ηi(A).

Here, for each i ∈ [n], bi,1 ≤ bi,2 ≤ · · · ≤ bi,15n2 is an arrangement in non-decreasing order of aiiiiii

with its number 15, 5aiυ with its number 3 for υ ∈ {π(i, i, i, j, j)} and j , i, 5aiυ with its number 3 for
υ ∈ {π(i, j, j, j, j)} and j , i, 15aiυ with its number 1 for υ ∈ {π(i, j, j, k, k)} and j , k , i, for j, k ∈ [n].

Proof. Let λ ∈ σ(A). By Corollary 2.2, there exists i ∈ [n] such that

|λ − αi| ≤ ri(A, αi), i.e., λ ∈ [ f (αi), g(αi)] (2.6)

for any real number αi, where

f (αi) =αi − ri(A, αi)

=αi − |aiiiiii − αi| −
∑
j,i

 ∑
υ∈{π(i,i,i, j, j)}

|aiυ −
1
5
αi| +

∑
υ∈{π(i, j, j, j, j)}

|aiυ −
1
5
αi|


−

∑
j,k,i

∑
υ∈{π(i, j, j,k,k)}

|aiυ −
1

15
αi| − ηi(A)

=αi −
1

15

{
15|aiiiiii − αi| + 3

∑
j,i

( ∑
υ∈{π(i,i,i, j, j)}

|5aiυ − αi| +
∑

υ∈{π(i, j, j, j, j)}

|5aiυ − αi|

)
+

∑
j,k,i

∑
υ∈{π(i, j, j,k,k)}

|15aiυ − αi|

}
− ηi(A)

=αi −
1
15

∑
k∈[15n2]

|bi,k − αi| − ηi(A)

and

g(αi) =αi + ri(A, αi)
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=αi + |aiiiiii − αi| +
∑
j,i

 ∑
υ∈{π(i,i,i, j, j)}

|aiυ −
1
5
αi| +

∑
υ∈{π(i, j, j, j, j)}

|aiυ −
1
5
αi|


+

∑
j,k,i

∑
υ∈{π(i, j, j,k,k)}

|aiυ −
1

15
αi| + ηi(A)

=αi +
1

15

{
15|aiiiiii − αi| + 3

∑
j,i

( ∑
υ∈{π(i,i,i, j, j)}

|5aiυ − αi| +
∑

υ∈{π(i, j, j, j, j)}

|5aiυ − αi|

)
+

∑
j,k,i

∑
υ∈{π(i, j, j,k,k)}

|15aiυ − αi|

}
+ ηi(A)

=αi +
1
15

∑
k∈[15n2]

|bi,k − αi| + ηi(A).

Note here that bi,1 ≤ bi,2 ≤ · · · ≤ bi,15n2 is an arrangement in non-decreasing order of

aiiiiii, . . . , aiiiiii︸          ︷︷          ︸
the number is 15

, 5aiυ, 5aiυ, 5aiυ︸           ︷︷           ︸
υ∈{π(i,i,i, j, j)}, j,i

, 5aiυ, 5aiυ, 5aiυ︸           ︷︷           ︸
υ∈{π(i, j, j, j, j)}, j,i

, 15aiυ︸︷︷︸
υ∈{π(i, j, j,k,k)}, j,k,i

(2.7)

for j, k ∈ [n]. By the fact that there are n − 1 ways to pick j ∈ [n] with j , i and

{π(i, i, i, j, j)} ={(i, i, i, j, j), (i, i, j, i, j), (i, i, j, j, i), (i, j, i, i, j), (i, j, i, j, i),
(i, j, j, i, i), ( j, i, i, i, j), ( j, i, i, j, i), ( j, i, j, i, i), ( j, j, i, i, i)},

{π(i, j, j, j, j)} ={(i, j, j, j, j), ( j, i, j, j, j), ( j, j, i, j, j), ( j, j, j, i, j), ( j, j, j, j, i)},

it can be seen that the number of elements in 5aiυ, 5aiυ, 5aiυ︸           ︷︷           ︸
υ∈{π(i,i,i, j, j)}, j,i

is 3 × 10 × (n − 1) and the number of

elements in 5aiυ, 5aiυ, 5aiυ︸           ︷︷           ︸
υ∈{π(i, j, j, j, j)}, j,i

is 3 × 5 × (n − 1). By the fact that there are (n−1)(n−2)
2 ways to pick j, k ∈ [n]

with j , k , i and

{π(i, j, j, k, k)} ={(i, j, j, k, k), ( j, i, j, k, k), ( j, j, i, k, k), ( j, j, k, i, k), ( j, j, k, k, i), (i, j, k, j, k),
( j, i, k, j, k), ( j, k, i, j, k), ( j, k, j, i, k), ( j, k, j, k, i), (i, j, k, k, j), ( j, i, k, k, j),
( j, k, i, k, j), ( j, k, k, i, j), ( j, k, k, j, i), (i, k, j, k, j), (k, i, j, k, j), (k, j, i, k, j),
(k, j, k, i, j), (k, j, k, j, i), (i, k, j, j, k), (k, i, j, j, k), (k, j, i, j, k), (k, j, j, i, k),
(k, j, j, k, i), (i, k, k, j, j), (k, i, k, j, j), (k, k, i, j, j), (k, k, j, i, j), (k, k, j, j, i)},

it can be seen that the number of elements in 15aiυ︸︷︷︸
υ∈{π(i, j, j,k,k)}, j,k,i

is 1× 30× (n−1)(n−2)
2 . Hence, the number of

elements in (2.7) is

15 + 3 × 10 × (n − 1) + 3 × 5 × (n − 1) + 1 × 30 ×
(n − 1)(n − 2)

2
= 15n2.

Next, the maximum of f (αi) and the minimum of g(αi) for αi ∈ R are considered for two cases: n
is odd or even.
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(i) Let n be odd. Then 15n2 is odd. By Lemma 2.1 (taking a = 15), we have

max
αi∈R

f (αi) = f (bi, 15n2+15
2

) =
1

15

( 15n2+15
2∑

k=1

bi,k −

15n2∑
k= 15n2+17

2

bi,k

)
− ηi(A) ≥ f (bi, 15n2−13

2
). (2.8)

By Lemma 2.2 (taking a = 15), we have

min
αi∈R

g(αi) = g(bi, 15n2−13
2

) =
1

15

( 15n2∑
k= 15n2−13

2

bi,k −

15n2−15
2∑

k=1

bi,k

)
+ ηi(A) ≤ g(bi, 15n2+15

2
). (2.9)

Taking αi = bi, 15n2−13
2

and αi = bi, 15n2+15
2

in (2.6), respectively, we have λ ∈
[
f (bi, 15n2−13

2
), g(bi, 15n2−13

2
)
]

and

λ ∈
[
f (bi, 15n2+15

2
), g(bi, 15n2+15

2
)
]
. By (2.8), (2.9) and the existence of λ, we have

λ ∈
[
f (bi, 15n2+15

2
), g(bi, 15n2−13

2
)
]
,

which implies that λ ∈ [li, ui] ⊆
⋃

i∈[n]
[li, ui].

(ii) Let n be even. Then 15n2 is even. By Lemma 2.1 (taking a = 15), we have

max
αi∈R

f (αi) = f (bi, 15n2+16
2

) =
1

15

( 15n2+14
2∑

k=1

bi,k −

15n2∑
k= 15n2+18

2

bi,k

)
− ηi(A) ≥ f (bi, 15n2−14

2
). (2.10)

By Lemma 2.2 (taking a = 15), we have

min
αi∈R

g(αi) = g(bi, 15n2−14
2

) =
1

15

( 15n2∑
k= 15n2−12

2

bi,k −

15n2−16
2∑

k=1

bi,k

)
+ ηi(A) ≤ g(bi, 15n2+16

2
). (2.11)

Taking αi = bi, 15n2−14
2

and αi = bi, 15n2+16
2

in (2.6), respectively, we have λ ∈
[
f (bi, 15n2−14

2
), g(bi, 15n2−14

2
)
]

and

λ ∈
[
f (bi, 15n2+16

2
), g(bi, 15n2+16

2
)
]
. Furthermore, by (2.10), (2.11) and the existence of λ, we have

λ ∈
[
f (bi, 15n2+16

2
), g(bi, 15n2−14

2
)
]
,

i.e., λ ∈ [li, ui], and consequently, λ ∈
⋃

i∈[n]
[li, ui]. �

By Corollary 2.2 and the proof of Theorem 2.3, the following comparison theorem among Corollary
2.1, Corollary 2.2 and Theorem 2.3 is given easily.

Theorem 2.4. LetA = (ai1i2···i6) ∈ R
[6,n]. Then, for any vector α = (α1, . . . , αn)> ∈ Rn,

Υ(A) ⊆ Υ(A, α) ⊆ G(A, α).
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3. An application of the optimal Z-eigenvalue inclusion interval for sixth-order tensors

In this section, we give the application of the optimal Z-eigenvalue inclusion interval Υ(A) in
Theorem 2.3 for a sixth-order tensorA in determining the positive definiteness of a sixth-order tensor
and the asymptotically stability of time-invariant polynomial systems.

3.1. The positive definiteness of homogeneous polynomial forms

As shown in [11,20–22,30], a Z-eigenvalue inclusion interval can provide a sufficient condition for
the positive definiteness of tensors. Based on the inclusion interval Υ(A) in Theorem 2.3, a sufficient
condition for the positive definiteness of a sixth-order real symmetric tensor is given.

Corollary 3.1. LetA = (ai1···i6) ∈ R
[6,n] and λ be a Z-eigenvalue ofA.

(i) If li > 0 for each i ∈ [n], then λ > 0, where

li =



1
15

( 15n2+15
2∑

k=1

bi,k −

15n2∑
k= 15n2+17

2

bi,k

)
− ηi(A), n is odd,

1
15

( 15n2+14
2∑

k=1

bi,k −

15n2∑
k= 15n2+18

2

bi,k

)
− ηi(A), n is even,

bi,1 ≤ bi,2 ≤ · · · ≤ bi,15n2 is an arrangement in non-decreasing order of aiiiiii with its number 15, 5aiυ

with its number 3 for υ ∈ {π(i, i, i, j, j)} and j , i, 5aiυ with its number 3 for υ ∈ {π(i, j, j, j, j)} and
j , i, 15aiυ with its number 1 for υ ∈ {π(i, j, j, k, k)} and j , k , i, for j, k ∈ [n], and ηi(A) is defined
in (2.3) and (2.4).

(ii) Furthermore, if A is symmetric, then A is positive definite, consequently, f (x) defined by (1.1)
is positive definite.

In order to judge the positive definiteness of an order 6 dimension 2 or 3 real symmetric tensor for
convenience, the conditions of Corollary 3.1 and the interval Υ(A) in Theorem 2.3 are listed.

LetA = (ai1···i6) ∈ R
[6,2] be a symmetric tensor with elements defined as follows:

a111111 = d1, a111112 = d2, a111122 = d3, a111222 = d4, a112222 = d5, a122222 = d6, a222222 = d7.

By Theorem 2.3, we have

l1 =
1
15

(b1,1 + · · · + b1,37 − b1,39 − · · · − b1,60) − (5|d2| + 10|d4| + |d6|),

u1 =
1

15
(−b1,1 − · · · − b1,22 + b1,24 + · · · + b1,60) + (5|d2| + 10|d4| + |d6|),

l2 =
1

15
(b2,1 + · · · + b2,37 − b2,39 − · · · − b2,60) − (|d2| + 10|d4| + 5|d6|),

u2 =
1

15
(−b2,1 − · · · − b2,22 + b2,24 + · · · + b2,60) + (|d2| + 10|d4| + 5|d6|),
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where b1,1 ≤ b1,2 ≤ · · · ≤ b1,60 is an arrangement in non-decreasing order of d1 with its number
15, 5d3 with its number 30, 5d5 with its number 15; b2,1 ≤ b2,2 ≤ · · · ≤ b2,60 is an arrangement in
non-decreasing order of d7 with its number 15, 5d5 with its number 30, 5d3 with its number 15.

LetA = (ai1···i6) ∈ R
[6,3] be a symmetric tensor with elements defined as follows:

a111111 = d1, a111112 = d2, a111122 = d3, a111222 = d4, a112222 = d5, a122222 = d6, a222222 = d7,

a111113 = d8, a111123 = d9, a111133 = d10, a111223 = d11, a111233 = d12, a111333 = d13, a112223 = d14,

a112233 = d15, a112333 = d16, a113333 = d17, a122223 = d18, a122233 = d19, a122333 = d20, a123333 = d21,

a133333 = d22, a222223 = d23, a222233 = d24, a222333 = d25, a223333 = d26, a233333 = d27, a333333 = d28.

By Theorem 2.3, we have

l1 =
1

15
(b1,1 + · · · + b1,75 − b1,76 − · · · − b1,135) − η1(A),

u1 =
1

15
(−b1,1 − · · · − b1,60 + b1,61 + · · · + b1,135) + η1(A),

l2 =
1

15
(b2,1 + · · · + b2,75 − b2,76 − · · · − b2,135) − η2(A),

u2 =
1

15
(−b2,1 − · · · − b2,60 + b2,61 + · · · + b2,135) + η2(A),

l3 =
1

15
(b3,1 + · · · + b3,75 − b3,76 − · · · − b3,135) − η3(A),

u3 =
1

15
(−b3,1 − · · · − b3,60 + b3,61 + · · · + b3,135) + η3(A),

where

η1(A) =5|d2| + 10|d4| + |d6| + 5|d8| + 20|d9| + 30|d11| + 30|d12| + 10|d13|

+ 20|d14| + 20|d16| + 5|d18| + 10|d19| + 10|d20| + 5|d21| + |d22|,

η2(A) =|d2| + 10|d4| + 5|d6| + 5|d9| + 20|d11| + 10|d12| + 30|d14| + 10|d16|

+ 20|d18| + 30|d19| + 20|d20| + 5|d21| + 5|d23| + 10|d25| + |d27|,

η3(A) =|d8| + 5|d9| + 10|d11| + 20|d12| + 10|d13| + 10|d14| + 30|d16| + 5|d18|

+ 20|d19| + 30|d20| + 20|d21| + 5|d22| + |d23| + 10|d25| + 5|d27|,

and b1,1 ≤ b1,2 ≤ · · · ≤ b1,135 is an arrangement in non-decreasing order of d1 with its number 15, 5d3

with its number 30, 5d10 with its number 30, 5d5 with its number 15, 5d17 with its number 15, 15d15

with its number 30; b2,1 ≤ b2,2 ≤ · · · ≤ b2,135 is an arrangement in non-decreasing order of d7 with
its number 15, 5d5 with its number 30, 5d24 with its number 30, 5d3 with its number 15, 5d26 with its
number 15, 15d15 with its number 30; b3,1 ≤ b3,2 ≤ · · · ≤ b3,135 is an arrangement in non-decreasing
order of d28 with its number 15, 5d17 with its number 30, 5d26 with its number 30, 5d10 with its number
15, 5d24 with its number 15, 15d15 with its number 30.

Example 3.1. LetA = (ai1i2···i6) ∈ R
[6,3] be a symmetric tensor with elements defined as follows:

a111111 = a222222 = a333333 = 20, a112233 = 1.3,
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a111112 = a111222 = a122222 = a111113 = a111123 = a111223 = a111233 = a111333 = a112223 = a112333

= a122223 = a122233 = a122333 = a123333 = a133333 = a222223 = a222333 = a233333 = −0.1
a111122 = a111133 = a112222 = a113333 = a222233 = a223333 = 3.9.

Our goal is to judge the positive definiteness of A. Firstly, the method in Corollary 2 of [21] is
considered. By computations, we have

a111111 = 20 < 22.2 =
∑

(i2,...,i6)∈Λ1

|a1i2···i6 | + rΛ1,a111111
1 (A),

where

rΛ1,a111111
1 (A) =|5a112222 − a111111| + |10a111122 − 2a111111| + |5a113333 − a111111|

+ |10a111133 − 2a111111| + |30a112233 − 2a111111|,

which shows that the conditions of Corollary 2 of [21] are not satisfied. Hence, we do not use
Corollary 2 of [21] to judge the the positive definiteness ofA. Moreover, by

a111111 = 20 , 19.5 = 5a111122 = 5a112222 = 15a112233,

it can be seen that Proposition 1 of [21] is also not used to judge the the positive definiteness ofA.
Next, we use Corollaries 2.1 and 2.2 to judge the positive definiteness of A. Corollary 2.2 shows

that Υ(A, α) = G(A, α) when n = 3 and hence only G(A, α) is showed. By computations, we have

d1 = d7 = d28 = 20, d3 = d5 = d10 = d17 = d24 = d26 = 3.9, d15 = 1.3,
d2 = d4 = d6 = d8 = d9 = d11 = d12 = d13 = d14 = d16 = d18 = d19 = d20

= d21 = d22 = d23 = d25 = d27 = −0.1,

and hence

ηi(A) =
∑

(i2,...,i6)∈Λi

|aii2···i6 | = 18.2, i = 1, 2, 3.

Let α = (α1, α2, α3)> ∈ R3. By Corollary 2.1, we have

R1(A, α1) =|d1 − α1| + |10d3 − 2α1| + |5d5 − α1| + |10d10 − 2α1| + |5d17 − α1|

+ |30d15 − 2α1| + η1(A),
R2(A, α2) =|d7 − α2| + |10d5 − 2α2| + |5d3 − α2| + |10d24 − 2α2| + |5d26 − α2|

+ |30d15 − 2α2| + η2(A),
R3(A, α3) =|d28 − α3| + |10d17 − 2α3| + |5d10 − α3| + |10d26 − 2α3| + |5d24 − α3|

+ |30d15 − 2α3| + η3(A),

and

G(A, α) :=
⋃
i∈[3]

[αi − Ri(A, αi), αi + Ri(A, αi)].
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In order to judge the positive definiteness of A by Corollary 2.1, we need to take a specific α to
obtain the Z-eigenvalue inclusion interval G(A, α) and observe the position of G(A, α) in the complex
plane. If G(A, α) is just in the right-half complex plane, then we can conclude that A is positive
definite. However, taking α = (10, 10, 10)> ∈ R3, we have

G(A, α) = [−94.2, 114.2] ∪ [−94.2, 114.2] ∪ [−94.2, 114.2] = [−94.2, 114.2];

and taking α = (20, 20, 20)> ∈ R3, we have

G(A, α) = [−2.2, 42.2] ∪ [−2.2, 42.2] ∪ [−2.2, 42.2] = [−2.2, 42.2].

From −94.2 < 0 and −2.2 < 0, it can be seen that G(A, α) is not used to judge the positive definiteness
ofA when α is taken as such two vectors and that it is not easy to choose the optimal parameter vector
α∗ to minimize the interval G(A, α).

By (2.8) and (2.9) in Theorem 2.3, we can calculate that bi, 15n2+15
2

= bi,75 = 19.5 = bi,61 = bi, 15n2−13
2

for
i ∈ [n] and n = 3, and hence the optimal parameter vector is

α∗ = (19.5, 19.5, 19.5)> ∈ R3,

and the minimize interval of G(A, α) for any α ∈ R3 is

Υ(A) = G(A, α∗) = [0.8, 38.2] ∪ [0.8, 38.2] ∪ [0.8, 38.2] = [0.8, 38.2].

Because the interval Υ(A) is in the right-half complex plane, which implies that all Z-eigenvalues
ofA lie in the interval [0.8,38.2], we can conclude thatA is positive definite.

Finally, we use Corollary 3.1 to judge the positive definiteness ofA. By computations, we have

li =
1

15
(bi,1 + · · · + bi,75 − bi,76 − · · · − bi,135) − ηi(A) = 0.8 > 0,

where bi,1 ≤ bi,2 ≤ · · · ≤ bi,135 is an arrangement in non-decreasing order of 19.5 with its number 120
and 20 with its number 15 for i ∈ [3]. Hence, by Corollary 3.1, A is positive definite. In fact, all
different Z-eigenvalues ofA are 17.5333, 20.0250, 20.0618, 20.2302. �

3.2. The asymptotically stability of the time-invariant polynomial system

As shown in Section 3.2 of [4] that any time-invariant polynomial system can be written as

Σ : ẋ1 =
∑
i2∈[n]

a1i2 xi2 +
∑

i2,i3∈[n]

a1i2i3 xi2 xi3 + · · · +
∑

i2,...,im∈[n]

a1i2···im xi2 · · · xim ,

...

ẋn =
∑
i2∈[n]

ani2 xi2 +
∑

i2,i3∈[n]

ani2i3 xi2 xi3 + · · · +
∑

i2,...,im∈[n]

ani2···im xi2 · · · xim ,

(3.1)

where ai1i2···im ∈ R are invariant under any permutation of indices i2, . . . , im. Particularly, when m = 3,
the system Σ can be regarded as the epidemic model; for details, see [5]. The stability is a basic
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property of a system. Deng, Li and Bu in [4] represented the time-invariant polynomial system (3.1)
by tensors as follows

Σ : ẋ = A2x +A3x2 + · · · +Amxm−1,

where At = (ai1i2···it) ∈ R
[t,n] (t = 2, . . . ,m) and x = (x1, . . . , xn)>, and gave the analysis of stability of

the following nonlinear system

Σ : ẋ = A2x +A4x3 + · · · +A2kx2k−1 (3.2)

by Lyapunov stability theorem [9] and the positive definiteness of tensors as follows.

Theorem 3.1. [4, Theorem 3.3] For the nonlinear system Σ in (3.2), if −At, t = 2, 4, . . . , 2k, is positive
definite, then the equilibrium point of Σ is asymptotically stable.

Next, we give a nonlinear polynomial system and write it in the form of (3.2). By the positive
definiteness of tensors, we analyse the stability of the system.

Example 3.2. Let

Σ : ẋ1 = − 3x1 + x2 + x3 − 4.5x3
1 − 0.3x2

1x2 − 0.3x1x2
3 − 1.5x1x2

2 − 0.3x2x2
3

− 20x5
1 + 0.5x4

1x2 + 0.5x4
1x3 − 39x3

1x2
2 − 39x3

1x2
3 + 2x3

1x2x3 + x2
1x3

2 + x2
1x3

3

+ 3x2
1x2

2x3 + 3x2
1x2x2

3 − 19.5x1x4
2 − 19.5x1x4

3 + 2x1x3
2x3 − 39x1x2

2x2
3 + 2x1x2x3

3

+ 0.1x5
2 + 0.5x4

2x3 + x3
2x2

3 + x2
2x3

3 + 0.5x2x4
3 + 0.1x5

3,

ẋ2 =x1 − 3x2 + x3 − 0.1x3
1 − 1.5x2

1x2 − 0.3x1x2
3 − 3.2x3

2 − 0.3x2
2x3 − 1.5x2x2

3

+ 0.1x5
1 − 19.5x4

1x2 + 0.5x4
1x3 + x3

1x2
2 + x3

1x2
3 + 2x3

1x2x3 − 39x2
1x3

2 + x2
1x3

3

+ 3x2
1x2

2x3 − 39x2
1x2x2

3 + 0.5x1x4
2 + 2x1x3

2x3 + 3x1x2
2x2

3 + 2x1x2x3
3 + 0.5x1x4

3

− 20x5
2 + 0.5x4

2x3 − 39x3
2x2

3 + x2
2x3

3 − 19.5x2x4
3 + 0.1x5

3,

ẋ3 =x1 + x2 − 3x3 − 0.3x2
1x3 − 0.6x1x2x3 − 0.1x3

2 − 1.5x2
2x3 − 4.4x3

3

+ 0.1x5
1 + 0.5x4

1x2 − 19.5x4
1x3 + x3

1x2
2 + x3

1x2
3 + 2x3

1x2x3 + x2
1x3

2 − 39x2
1x3

3

− 39x2
1x2

2x3 + 3x2
1x2x2

3 + 0.5x1x4
2 + 2x1x3

2x3 + 3x1x2
2x2

3 + 2x1x2x3
3 + 0.5x1x4

3

+ 0.1x5
2 − 19.5x4

2x3 + x3
2x2

3 − 39x2
2x3

3 + 0.5x2x4
3 − 20x5

3.

Then Σ can be written as ẋ = A2x +A4x3 +A6x5, where x = (x1, x2, x3)>,

A2 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


−3 1 1
1 −3 1
1 1 −3

 ,

A4 =



a1111 a1112 a1113 a1211 a1212 a1213 a1311 a1312 a1313

a1121 a1122 a1123 a1221 a1222 a1223 a1321 a1322 a1323

a1131 a1132 a1133 a1231 a1232 a1233 a1331 a1332 a1333

a2111 a2112 a2113 a2211 a2212 a2213 a2311 a2312 a2313

a2121 a2122 a2123 a2221 a2222 a2223 a2321 a2322 a2323

a2131 a2132 a2133 a2231 a2232 a2233 a2331 a2332 a2333

a3111 a3112 a3113 a3211 a3212 a3213 a3311 a3312 a3313

a3121 a3122 a3123 a3221 a3222 a3223 a3321 a3322 a3323

a3131 a3132 a3133 a3231 a3232 a3233 a3331 a3332 a3333
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= −



4.5 0.1 0 0.1 0.5 0 0 0 0.1
0.1 0.5 0 0.5 0 0 0 0 0.1
0 0 0.1 0 0 0.1 0.1 0.1 0

0.1 0.5 0 0.5 0 0 0 0 0.1
0.5 0 0 0 3.2 0.1 0 0.1 0.5
0 0 0.1 0 0.1 0.5 0.1 0.5 0
0 0 0.1 0 0 0.1 0.1 0.1 0
0 0 0.1 0 0.1 0.5 0.1 0.5 0

0.1 0.1 0 0.1 0.5 0 0 0 4.4


,

andA6 = (ai1i2···i6) ∈ R
[6,3] is a symmetric tensor with elements defined as follows:

a111111 = a222222 = a333333 = −20, a112233 = −1.3,
a111112 = a111222 = a122222 = a111113 = a111123 = a111223 = a111233 = a111333 = a112223 = a112333

= a122223 = a122233 = a122333 = a123333 = a133333 = a222223 = a222333 = a233333 = 0.1
a111122 = a111133 = a112222 = a113333 = a222233 = a223333 = −3.9.

It is proved in Example 3 of [4] that both −A2 and −A4 are positive definite. Example 3.1 shows
that −A6 is positive definite. Furthermore, by Theorem 3.1, it can be seen that the polynomial system
Σ is asymptotically stable. �

4. Conclusions

In this paper, we in Corollaries 2.1 and 2.2 gave the specific forms of two Geršgorin-type
Z-eigenvalue inclusion intervals G(A, α) in Theorem 1.2 (i.e., Theorem 2.2 in [11]) and Υ(A, α) in
Theorem 1.3 (i.e., Theorem 3.1 in [22]) with a parameter vector α for a sixth-order tensor A.
Subsequently, we chose an appropriate parameter vector α to minimize the interval Υ(A, α) and hence
derived an optimal interval Υ(A). As an application, we used the interval Υ(A) to obtain a sufficient
condition for the positive definiteness of a sixth-order real symmetric tensor (also a homogeneous
polynomial form), which is used to judge the asymptotically stability of time-invariant polynomial
systems.

Now, we answer Question 2: What is the specific form of the Z-identity tensor I2 for the order
m ≥ 8 and m is even? This question is answered only for m = 8. By calculation, the specific form of
the Z-identity tensor I2 = (ei1i2···i8) ∈ R

[8,n] is as follows:
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ei1i2···i8 =



1, if i1 = i2 = · · · = i8,

1/7, if (i1, i2, . . . , i8) ∈
⋃
i, j,

i, j∈[n]

{π(i, i, j, j, j, j, j, j)},

3/35, if (i1, i2, . . . , i8) ∈
⋃
i, j,

i, j∈[n]

{π(i, i, i, i, j, j, j, j)},

1/35, if (i1, i2, . . . , i8) ∈
⋃

i, j,k,
i, j,k∈[n]

{π(i, i, j, j, k, k, k, k)},

1/105, if (i1, i2, . . . , i8) ∈
⋃

i, j,k,l,
i, j,k∈[n]

{π(i, i, j, j, k, k, l, l)},

0, otherwise,

where {π(i1, i2, . . . , i8)} is the set of all combinations of i1, i2, . . . , i8.
Let m = 8. Using the Z-identity tensor I2 and the same method as Corollaries 2.1 and 2.2, the

specific forms of the Z-eigenvalue inclusion intervals G(A, α) in Theorem 1.2 and Υ(A, α) in Theorem
1.3 can be derived. And by using the similar methods as in Theorem 2.3, we can also choose an
appropriate parameter vector α to optimize the interval Υ(A, α) and present a sufficient condition for
the positive definiteness of eighth-order real symmetric tensors. This can be taken as a further question.
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