The present investigation focus on applying the theories of differential subordination, differential superordination and related sandwich-type results for the study of some subclasses of symmetric functions connected through a linear extended multiplier operator, which was previously defined by involving the $ q $-Choi-Saigo-Srivastava operator. The aim of the paper is to define a new class of analytic functions using the aforementioned linear extended multiplier operator and to obtain sharp differential subordinations and superordinations using functions from the new class. Certain subclasses are highlighted by specializing the parameters involved in the class definition, and corollaries are obtained as implementations of those new results using particular values for the parameters of the new subclasses. In order to show how the results apply to the functions from the recently introduced subclasses, numerical examples are also provided.
Citation: Ekram E. Ali, Georgia Irina Oros, Abeer M. Albalahi. Differential subordination and superordination studies involving symmetric functions using a $ q $-analogue multiplier operator[J]. AIMS Mathematics, 2023, 8(11): 27924-27946. doi: 10.3934/math.20231428
The present investigation focus on applying the theories of differential subordination, differential superordination and related sandwich-type results for the study of some subclasses of symmetric functions connected through a linear extended multiplier operator, which was previously defined by involving the $ q $-Choi-Saigo-Srivastava operator. The aim of the paper is to define a new class of analytic functions using the aforementioned linear extended multiplier operator and to obtain sharp differential subordinations and superordinations using functions from the new class. Certain subclasses are highlighted by specializing the parameters involved in the class definition, and corollaries are obtained as implementations of those new results using particular values for the parameters of the new subclasses. In order to show how the results apply to the functions from the recently introduced subclasses, numerical examples are also provided.
[1] | T. Bulboacă, Differential Subordinations and Superordinations, Recent Results, Cluj-Napoca: House of Scientific Book Publication, 2005. |
[2] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–171. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507 |
[3] | S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, New York, Basel: Marcel Dekker, 2000. |
[4] | F. H. Jackson, On $q$-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[5] | F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math, 41 (1910), 193–203. |
[6] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[7] | S. Kanas, D. Raducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9 |
[8] | H. Aldweby, M. Darus, Some subordination results on $q$-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. |
[9] | S. Mahmood, J. Sokol, New subclass of analytic functions in conical domain associated with Ruscheweyh $q$-differential operator, Results Math., 71 (2017), 1345–1357. https://doi.org/10.1007/s00025-016-0592-1 doi: 10.1007/s00025-016-0592-1 |
[10] | E. E. Ali, T. Bulboaca, Subclasses of multivalent analytic functions associated with a $q$-difference operator, Mathematics, 8 (2020), 2184. https://doi.org/10.3390/math8122184 doi: 10.3390/math8122184 |
[11] | E. E. Ali, A. Y. Lashin, A. M. Albalahi, Coefficient estimates for some classes of bi-univalent function associated with Jackson $q$ -difference Operator, J. Funct. Spaces, 2022 (2022), 2365918. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918 |
[12] | M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving $q$-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5 |
[13] | W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional $q$-calculus operator, Math. Bohem., 148 (2023), 131–148. http://doi.org/10.21136/MB.2022.0047-21 doi: 10.21136/MB.2022.0047-21 |
[14] | A. Alb Lupaş, G. I. Oros, Differential sandwich theorems involving Riemann-Liouville fractional integral of $q$-hypergeometric function, AIMS Mathematics, 8 (2023), 4930–4943. https://doi.org/10.3934/math.2023246 doi: 10.3934/math.2023246 |
[15] | A. Alb Lupaş, G. I. Oros, Sandwich-type results regarding Riemann-Liouville fractional integral of $q$-hypergeometric function, Demonstr. Math., 56 (2023), 20220186. https://doi.org/10.1515/dema-2022-0186 doi: 10.1515/dema-2022-0186 |
[16] | H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 419–436. https://doi.org/10.24193/subbmath.2018.4.01 doi: 10.24193/subbmath.2018.4.01 |
[17] | S. Kazımoglu, E. Deniz, L.-I. Cotirla, Certain subclasses of analytic and bi-univalent functions governed by the gegenbauer polynomials linked with $q$-derivative, Symmetry, 15 (2023), 1192. https://doi.org/10.3390/sym15061192 doi: 10.3390/sym15061192 |
[18] | D. Breaz, A. A. Alahmari, L.-I. Cotirla, S. A. Shah, On generalizations of the close-to-convex functions associated with $q$ -Srivastava–Attiya Operator, Mathematics, 11 (2023), 2022. https://doi.org/10.3390/math11092022 doi: 10.3390/math11092022 |
[19] | A. A. Lupa, F. Ghanim, Strong Differential Subordination and Superordination Results for Extended $q$-Analogue of Multiplier Transformation, Symmetry, 15 (2023), 713. https://doi.org/10.3390/sym15030713 doi: 10.3390/sym15030713 |
[20] | Z. G. Wang, S. Hussain, M. Naeem, T. Mahmood, S. A. Khan, A subclass of univalent functions associated with $q-$analogue of Choi-Saigo-Srivastava operator, Hacet. J. Math. Stat., 49 (2019), 1471–1479. https://dergipark.org.tr/en/download/article-file/970404 |
[21] | B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Mathematics, 6 (2020), 1024–1039. https://doi.org/10.3934/math.2021061 doi: 10.3934/math.2021061 |
[22] | L. Shi, B. Ahmad, N. Khan, M. G. Khan, S. Araci, W. K. Mashwani, B. Khan, Coefficient estimates for a subclass of meromorphic multivalent $q$-close-to-convex functions, Symmetry, 13 (2021), 1840. https://doi.org/10.3390/sym13101840 doi: 10.3390/sym13101840 |
[23] | C. Zhang, B. Khan, T. G. Shaba, J. S. Ro, S. Araci, M. G. Khan, Applications of $q$-Hermite polynomials to subclasses of analytic and bi-univalent Functions, Fractal Fract., 6 (2022), 420. https://doi.org/10.3390/fractalfract6080420 doi: 10.3390/fractalfract6080420 |
[24] | E. E. Ali, G. I. Oros, S. A. Shah, A. M. Albalahi, Applications of $q$-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705 |
[25] | S. S. Miller, P. T. Mocanu, Subordinations of differential superordinations, Complex Var. Elliptic, 48 (2003), 815–826. https://doi.org/10.1080/02781070310001599322 doi: 10.1080/02781070310001599322 |
[26] | T. Bulboacă, Classes of first-order differential subordinations, Demonstr. Math., 35 (2002), 287–392. |
[27] | T. Bulboacă, A class of superordination preserving integral operators, Indagat. Math., 13 (2002), 301–311. https://doi.org/10.1016/S0019-3577(02)80013-1 doi: 10.1016/S0019-3577(02)80013-1 |
[28] | R. M. Ali, V. Ravichandran, M. H. Khan, K. G. Subramaniam, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15 (2004), 87–94. |
[29] | K. Sakaguchi, On certain univalent mapping, JMSJ, 11 (1959), 72–75. https://doi.org/10.2969/jmsj/01110072 doi: 10.2969/jmsj/01110072 |
[30] | A. Muhammad, Some differential subordination and superordination properties of symmetric functions, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 247–259. |
[31] | M. K. Aouf, R. M. El-Ashwah, S. M. El-Deeb, Certain classes of univalent functions with negative coefficients and $n$-starlike with respect to certain points, Mat. Vestn., 62 (2010), 215–226. |
[32] | G. S. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finish Seminar: Part 1 Proceedings of the Seminar held in Bucharest, 1981,362–372. |
[33] | A. Muhammad, M. Marwan, Some properties of generalized two-fold symmetric non-Bazilevic analytic functions, Le Matematiche, 69 (2014), 223–235. https://doi.org/10.4418/2014.69.2.19 doi: 10.4418/2014.69.2.19 |
[34] | T. N. Shanmugam, V. Ravichandran, S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3 (2006), 8. |
[35] | M. S. Liu, On certain subclass of analytic functions, J. South China Norm. Univ. Natur. Sci. Ed., 4 (2002), 15–20. |
[36] | G. M. Shah, On the univalence of some analytic functions, Pac. J. Math., 43 (1972), 239–250. |
[37] | T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Am. Math. Soc., 14 (1963), 514–520. |
[38] | I. Al-Shbeil, A. Catas, H. M. Srivastava, N. Aloraini, Coefficient estimates of new families of analytic functions associated with $ q$-Hermite Polynomials, Axioms, 12 (2023), 52. https://doi.org/10.3390/axioms12010052 doi: 10.3390/axioms12010052 |
[39] | H. M. Srivastava, I. Al-Shbeil, Q. Xin, F. Tchier, S. Khan, S. N. Malik, Faber polynomial coefficient estimates for bi-close-to-convex functions defined by the $q$-fractional derivative, Axioms, 12 (2023), 585. https://doi.org/10.3390/axioms12060585 doi: 10.3390/axioms12060585 |
[40] | A. Alb Lupa, G. I. Oros, Fuzzy differential subordination and superordination results involving the $q$-hypergeometric function and fractional calculus aspects, Mathematics, 10 (2022), 4121. https://doi.org/10.3390/math10214121 doi: 10.3390/math10214121 |
[41] | H. M. Srivastava, A. K. Wanas, R. Srivastava, Applications of the $q$-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam Polynomials, Symmetry, 13 (2021), 1230. https://doi.org/10.3390/sym13071230 doi: 10.3390/sym13071230 |
[42] | H. M. Srivastava, M. Arif, M. Raza, Convolution properties of meromorphically harmonic functions defined by a generalized convolution $q $ -derivative operator, AIMS Mathematics, 6 (2021), 5869–5885. https://doi.org/10.3934/math.2021347 doi: 10.3934/math.2021347 |
[43] | E. E. Ali, H. M. Srivastava, A. M. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the $q$-derivatives of the $q$-binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.3390/math11112496 doi: 10.3390/math11112496 |