Research article Special Issues

Exploring optical soliton solutions of the time fractional q-deformed Sinh-Gordon equation using a semi-analytic method

  • Received: 22 August 2023 Revised: 18 September 2023 Accepted: 25 September 2023 Published: 10 October 2023
  • MSC : 26Axx, 78Axx

  • The $ \mathsf{q} $-deformed Sinh-Gordon equation extends the classical Sinh-Gordon equation by incorporating a deformation parameter $ \mathsf{q} $. It provides a framework for studying nonlinear phenomena and soliton dynamics in the presence of quantum deformations, leading to intriguing mathematical structures and potential applications in diverse areas of physics. In this work, we imply the homotopy analysis method, to obtain approximate solutions for the proposed equation, the error estimated from the obtained solutions reflects the efficiency of the solving method. The solutions were presented in the form of 2D and 3D graphics. The graphics clarify the impact of a set of parameters on the solution, including the deformation parameter $ \mathsf{q} $, as well as the effect of time and the fractional order derivative.

    Citation: Khalid K. Ali, Mohamed S. Mohamed, M. Maneea. Exploring optical soliton solutions of the time fractional q-deformed Sinh-Gordon equation using a semi-analytic method[J]. AIMS Mathematics, 2023, 8(11): 27947-27968. doi: 10.3934/math.20231429

    Related Papers:

  • The $ \mathsf{q} $-deformed Sinh-Gordon equation extends the classical Sinh-Gordon equation by incorporating a deformation parameter $ \mathsf{q} $. It provides a framework for studying nonlinear phenomena and soliton dynamics in the presence of quantum deformations, leading to intriguing mathematical structures and potential applications in diverse areas of physics. In this work, we imply the homotopy analysis method, to obtain approximate solutions for the proposed equation, the error estimated from the obtained solutions reflects the efficiency of the solving method. The solutions were presented in the form of 2D and 3D graphics. The graphics clarify the impact of a set of parameters on the solution, including the deformation parameter $ \mathsf{q} $, as well as the effect of time and the fractional order derivative.



    加载中


    [1] S. Klein, A spectral theory for simply periodic solutions of the Sinh-Gordon equation, Springer Cham, 2018. https://doi.org/10.1007/978-3-030-01276-2
    [2] H. Eleuch, Some analytical solitary wave solutions for the generalized q-deformed Sinh-Gordon equation:$\frac{\partial^2 u }{\partial z \partial \zeta} = e^{\alpha u} [sinh_q(u^\gamma)]^p -\delta$, Adv. Math. Phys., 2018 (2018), 5242757. https://doi.org/10.1155/2018/5242757 doi: 10.1155/2018/5242757
    [3] H. I. Alrebdi, N. Raza, S. Arshed, A. R. Butt, A. Abdel-Aty, C. Cesarano, et al., A variety of new explicit analytical soliton solutions of q-deformed Sinh-Gordon in (2+1) dimensions, Symmetry, 14 (2022), 2425. https://doi.org/10.3390/sym14112425 doi: 10.3390/sym14112425
    [4] N. Raza, F. Salman, A. R. Butt, M. L. Gandarias, Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation, Commun. Nonlinear Sci. Numer. Simu., 116 (2023), 106824. https://doi.org/10.1016/j.cnsns.2022.106824 doi: 10.1016/j.cnsns.2022.106824
    [5] N. Raza, S. Arshed, H. I. Alrebdi, A. Abdel-Aty, H. Eleuch, Abundant new optical soliton solutions related to q-deformed Sinh-Gordon model using two innovative integration architectures, Results Phys., 35 (2022), 105358. https://doi.org/10.1016/j.rinp.2022.105358 doi: 10.1016/j.rinp.2022.105358
    [6] K. K. Ali, H. I. Alrebdi, N. A. M. Alsaif, A. Abdel-Aty, H. Eleuch, Analytical solutions for a new form of the generalized q-deformed Sinh-Gordon equation: $\frac{\partial^2 u }{\partial z \partial \zeta} = e^{\alpha u} [sinh_q(u^\gamma)]^p -\delta$, Symmetry, 15 (2023), 470. https://doi.org/10.3390/sym15020470 doi: 10.3390/sym15020470
    [7] S. S. Kazmi, A. Jhangeer, N. Raza, H. I. Alrebdi, A. Abdel-Aty, H. Eleuch, The analysis of bifurcation, quasi-periodic and solitons patterns to the new Form of the generalized q-deformed Sinh-Gordon equation, Symmetry, 15 (2023), 1324. https://doi.org/10.3390/sym15071324 doi: 10.3390/sym15071324
    [8] K. K. Ali, M. Maneea, Optical solitons using optimal homotopy analysis method for time-fractional (1+1)-dimensional coupled nonlinear Schrodinger equations, Optik, 283 (2023), 170907. https://doi.org/10.1016/j.ijleo.2023.170907 doi: 10.1016/j.ijleo.2023.170907
    [9] Z. Fan, K. K. Ali, M. Maneea, M. Inc, S. Yao, Solution of time fractional Fitzhugh-Nagumo equation using semi analytical techniques, Results Phys., 51 (2023), 106679. https://doi.org/10.1016/j.rinp.2023.106679 doi: 10.1016/j.rinp.2023.106679
    [10] N. Ullah, M. I. Asjad, H. Ur Rehman, A. Akgül, Construction of optical solitons of Radhakrishnan-Kundu-Lakshmanan equation in birefringent fibers, Nonlinear Eng., 11 (2022), 80–91. https://doi.org/10.1515/nleng-2022-0010 doi: 10.1515/nleng-2022-0010
    [11] K. Geng, B. Zhu, Q. Cao, C. Dai, Y. Wang, Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation, Nonlinear Dyn., 111 (2023), 16483–16496. https://doi.org/10.1007/s11071-023-08719-w doi: 10.1007/s11071-023-08719-w
    [12] M. Rahman, M. Arfan, W. Deebani, P. Kumam, Z. Shah, Analysis of time-fractional Kawahara equation under mittag-leffler power law, Fractals, 30 (2022), 2240021. https://doi.org/10.1142/S0218348X22400217 doi: 10.1142/S0218348X22400217
    [13] B. Li, T. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative, Fractals, 31 (2023), 2350050. https://doi.org/10.1142/S0218348X23500500 doi: 10.1142/S0218348X23500500
    [14] I. Podlubny, Fractional differential equations, Academic Press, 1998.
    [15] M. Lazarevic, Advanced topics on applications of fractional calculus on control problems, system stability and modeling, WSEAS Press, 2014.
    [16] N. T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., 131 (2002), 517–529. https://doi.org/10.1016/S0096-3003(01)00167-9 doi: 10.1016/S0096-3003(01)00167-9
    [17] S. S. Ray, Nonlinear differential equations in physics, Singapore: Springer Singapore, 2020. https://doi.org/10.1007/978-981-15-1656-6
    [18] S. J. Liao, Homotopy analysis method: A new analytical technique for nonlinear problems, Commun. Nonlinear Sci. Nonlinear Simul., 2 (1997), 95–100. https://doi.org/10.1016/S1007-5704(97)90047-2 doi: 10.1016/S1007-5704(97)90047-2
    [19] S. J. Liao, Homotopy analysis method in nonlinear differential equations, Heidelberg: Springer Berlin, 2012. https://doi.org/10.1007/978-3-642-25132-0
    [20] M. Zurigat, S. Momani, Z. Odibat, A. Alawneh, The homotopy analysis method for handling systems of fractional differential equations, Appl. Math. Model., 34 (2010), 24–35. https://doi.org/10.1016/j.apm.2009.03.024 doi: 10.1016/j.apm.2009.03.024
    [21] S. T. Mohyud-Din, A. Yildirim, M. Usman, Homotopy analysis method for fractional partial differential equations, Int. J. Phys. Sci., 6 (2011), 136–145.
    [22] S. R. Saratha, M. Bagyalakshmi, G. S. S. Krishnan, Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations, Comput. Appl. Math., 39 (2020), 112. https://doi.org/10.1007/s40314-020-1133-9 doi: 10.1007/s40314-020-1133-9
    [23] S. G. Samko, A. A. Kilbas, O. L. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
    [24] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [25] V. E. Tarasov, No violation of the Leibniz rule. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2945–2948. https://doi.org/10.1016/j.cnsns.2013.04.001 doi: 10.1016/j.cnsns.2013.04.001
    [26] K. K. Ali, M. Maneea, New approximation solution for time-fractional Kudryashov-Sinelshchikov equation using novel technique, Alex. Eng. J., 72 (2023), 559–572. https://doi.org/10.1016/j.aej.2023.04.027 doi: 10.1016/j.aej.2023.04.027
    [27] G. Adomian, R. Rach, Modified Adomian polynomials, Math. Comput. Model., 24 (1996), 39–46. https://doi.org/10.1016/S0895-7177(96)00171-9 doi: 10.1016/S0895-7177(96)00171-9
    [28] H. Fatoorehchi, H. Abolghasemi, Improving the differential transform method: A novel technique to obtain the differential transforms of nonlinearities by the Adomian polynomials, Appl. Math. Model., 37 (2013), 6008–6017. https://doi.org/10.1016/j.apm.2012.12.007 doi: 10.1016/j.apm.2012.12.007
    [29] G. C. Wua, D. Baleanu, W. H. Luo, Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials, Therm. Sci., 21 (2017), 813–817. https://doi.org/10.2298/TSCI160416301W doi: 10.2298/TSCI160416301W
    [30] Z. M. Odibat, A study on the convergence of homotopy analysis method, Appl. Math. Comput., 217 (2010), 782–789. https://doi.org/10.1016/j.amc.2010.06.017 doi: 10.1016/j.amc.2010.06.017
    [31] H. Qu, Z. She, X. Liu, Homotopy analysis method for three types of fractional partial differential equations, Complexity, 2020 (2020), 7232907. https://doi.org/10.1155/2020/7232907 doi: 10.1155/2020/7232907
    [32] P. Verma, M. Kumar, An analytical solution of linear/nonlinear fractional-order partial differential equations and with new existence and uniqueness conditions, Proc. Nat. Acad. Sci. India Sect. A, 92 (2020), 47–55. https://doi.org/10.1007/s40010-020-00723-8 doi: 10.1007/s40010-020-00723-8
    [33] R. S. Palais, A simple proof of the Banach contraction principle, J. Fixed Point Theory Appl., 2 (2007), 221–223. https://doi.org/10.1007/s11784-007-0041-6 doi: 10.1007/s11784-007-0041-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1098) PDF downloads(42) Cited by(7)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog