Research article Special Issues

Partial domination of network modelling

  • Received: 28 March 2023 Revised: 18 July 2023 Accepted: 20 July 2023 Published: 11 August 2023
  • MSC : 05C07, 05C69

  • Partial domination was proposed in 2017 on the basis of domination theory, which has good practical application background in communication network. Let $ G = (V, E) $ be a graph and $ \mathcal{F} $ be a family of graphs, a subset $ S\subseteq V $ is called an $ \mathcal{F} $-isolating set of $ G $ if $ G[V\backslash N_G[S]] $ does not contain $ F $ as a subgraph for all $ F\in\mathcal{F} $. The subset $ S $ is called an isolating set of $ G $ if $ \mathcal{F} = \{K_2\} $ and $ G[V\backslash N_G[S]] $ does not contain $ K_2 $ as a subgraph. The isolation number of $ G $ is the minimum cardinality of an isolating set of $ G $, denoted by $ \iota(G) $. The hypercube network and $ n $-star network are the basic models for network systems, and many more complex network structures can be built from them. In this study, we obtain the sharp bounds of the isolation numbers of the hypercube network and $ n $-star network.

    Citation: Shumin Zhang, Tianxia Jia, Minhui Li. Partial domination of network modelling[J]. AIMS Mathematics, 2023, 8(10): 24225-24232. doi: 10.3934/math.20231235

    Related Papers:

  • Partial domination was proposed in 2017 on the basis of domination theory, which has good practical application background in communication network. Let $ G = (V, E) $ be a graph and $ \mathcal{F} $ be a family of graphs, a subset $ S\subseteq V $ is called an $ \mathcal{F} $-isolating set of $ G $ if $ G[V\backslash N_G[S]] $ does not contain $ F $ as a subgraph for all $ F\in\mathcal{F} $. The subset $ S $ is called an isolating set of $ G $ if $ \mathcal{F} = \{K_2\} $ and $ G[V\backslash N_G[S]] $ does not contain $ K_2 $ as a subgraph. The isolation number of $ G $ is the minimum cardinality of an isolating set of $ G $, denoted by $ \iota(G) $. The hypercube network and $ n $-star network are the basic models for network systems, and many more complex network structures can be built from them. In this study, we obtain the sharp bounds of the isolation numbers of the hypercube network and $ n $-star network.



    加载中


    [1] D. B. West, Introduction to graph theory, 2 Eds., Upper Saddle River, NJ: Prentice Hall, 2001.
    [2] C. Berge, The theory of graphs and its applications, Paris: Dunod, 1958.
    [3] Y. Caroa, A. Hansbergb, Partial domination-the isolation number of a graph, Filomath, 31 (2017), 3925–3944. https://doi.org/10.2298/FIL1712925C doi: 10.2298/FIL1712925C
    [4] P. Borg, K. Fenech, P. Kaemawichanurat, Isolation of $k$-cliques, Discrete Math., 343 (2020), 1–7. https://doi.org/10.1016/j.disc.2020.111879 doi: 10.1016/j.disc.2020.111879
    [5] S. Tokunaga, T. Jiarasuksakun, P. Kaemawichanurat, Isolation number of maximal outerplanar graphs, Discrete Appl. Math., 267 (2019), 215–218. https://doi.org/10.1016/j.dam.2019.06.011 doi: 10.1016/j.dam.2019.06.011
    [6] P. Borg, P. Kaemawichanurat, Partial domination of maximal outerplanar graphs, Discrete Appl. Math., 283 (2020), 306–314. https://doi.org/10.1016/j.dam.2020.01.005 doi: 10.1016/j.dam.2020.01.005
    [7] P. Borg, P. Kaemawichanurat, A generalization of the Art Gallery Theorem, arXiv Press, 2020. https://doi.org/10.48550/arXiv.2002.06014
    [8] M. Lemańska, M. J. Souto-Salorio, A. Dapena, F. J. Vazquez-Araujo, Isolation number versus domination number of trees, Mathematics, 9 (2021), 1–10. https://doi.org/10.3390/math9121325 doi: 10.3390/math9121325
    [9] O. Favaron, P. Kaemawichanurat, Inequalities between the $K_k$-isolation number and the independent $K_k$-isolation number of a graph, Discrete Appl. Math., 289 (2021), 93–97. https://doi.org/10.1016/j.dam.2020.09.011 doi: 10.1016/j.dam.2020.09.011
    [10] Y. Saad, M. H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput., 37 (1988), 867–872. https://doi.org/10.1109/12.2234 doi: 10.1109/12.2234
    [11] A. K. Somani, O. Peleg, On diagnosability of large fault sets in regular topology-based computer systems, IEEE Trans. Comput., 45 (1996), 892–903. https://doi.org/10.1109/12.536232 doi: 10.1109/12.536232
    [12] S. B. Akers, D. Horel, B. Krishnamurthy, The star graph: an attractive alternative to the $n$-cube, Proceedings of International Conference on Parallel Processing, 1987,393–400.
    [13] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, New York, NY: Marcel Dekker, 1998.
    [14] O. Ore, Theory of graphs, Americal Mathematial Society, Providence, 1962.
    [15] N. Alon, J. H. Spencer, The probabilistic method, 3 Eds., Hoboken, NJ, USA: Wiley, 2008.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(955) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog