This manuscript is devoted to the study of numerical methods for a class of nonlinear problems. Instead of the standard Newton method, an efficient nonlinear solver is suggested to be used, and it is referred to as the Newton-EHS method, where "EHS" stands for Euler-extrapolated Hermitian-skew-Hermitian splitting. We construct this modified Newton-EHS method by utilizing a modified Newton method as the outer iteration and the EHS method as the inner iteration. Furthermore, we give the derivations of the local and semilocal convergence properties of the proposed method under the Hölder condition. Finally, in order to show the feasibility and validity of our new method, we compare it with some other iterative methods in two numerical examples.
Citation: Lv Zhang, Qingbiao Wu. Modified Newton-EHS method for solving nonlinear problems with complex symmetric Jacobian matrices[J]. AIMS Mathematics, 2023, 8(10): 24233-24253. doi: 10.3934/math.20231236
This manuscript is devoted to the study of numerical methods for a class of nonlinear problems. Instead of the standard Newton method, an efficient nonlinear solver is suggested to be used, and it is referred to as the Newton-EHS method, where "EHS" stands for Euler-extrapolated Hermitian-skew-Hermitian splitting. We construct this modified Newton-EHS method by utilizing a modified Newton method as the outer iteration and the EHS method as the inner iteration. Furthermore, we give the derivations of the local and semilocal convergence properties of the proposed method under the Hölder condition. Finally, in order to show the feasibility and validity of our new method, we compare it with some other iterative methods in two numerical examples.
[1] | C. Sulen, P. L. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Springer, New York, 1999. |
[2] | L. S. Aranson, L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 74 (2002), 99–143. |
[3] | W. C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, SIAM, Philadephia, 1998. |
[4] | R. S. Dembo, S. C. Eisenstat, T. Steihaug, Inexact Newton mehtods, SIAM J. Numer. Anal., 19 (1982), 400–408. https://doi.org/10.1137/0719025 doi: 10.1137/0719025 |
[5] | Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603–626. https://doi.org/10.1137/S0895479801395458 doi: 10.1137/S0895479801395458 |
[6] | Z. Z. Bai, M. Benzi, F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algor., 56 (2011), 297–317. https://doi.org/10.1007/s11075-010-9441-6 doi: 10.1007/s11075-010-9441-6 |
[7] | X. L. Cui, S. L. Wu, A single step HSS method for non-Hermitian positive definite linear systems, J. Comput. Math., 44 (2015), 26–29. https://doi.org/10.1016/j.aml.2014.12.013 doi: 10.1016/j.aml.2014.12.013 |
[8] | Z. G. Huang, L. G. Wang, Z. Xu, J. J. Cui, An efficient two-step iterative method for solving a class of complex symmetric linear systems, Comput. Math. Appl., 75 (2018), 2473–2498. https://doi.org/10.1016/j.camwa.2017.12.026 doi: 10.1016/j.camwa.2017.12.026 |
[9] | H. A. van der Vorst, Krylov subspace iteration, Comput. Sci. Eng., 2 (2000), 32–37. https://doi.org/10.1109/5992.814655 doi: 10.1109/5992.814655 |
[10] | S. Bellavia, M. Macconi, B. Morini, A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM J. Sci. Comput., 23 (2001), 940–960. https://doi.org/10.1137/S1064827599363976 doi: 10.1137/S1064827599363976 |
[11] | Z. Z. Bai, X.-P. Guo, On Newton-HSS methods for systems of nonlinear equations with positive-definite Jacobian matrices, J. Comput. Math., 28 (2010), 235–260. https://doi.org/10.4208/jcm.2009.10-m2836 doi: 10.4208/jcm.2009.10-m2836 |
[12] | A. L. Yang, Y. J. Wu, Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices, Numer. Alg. Con. Opt., 2 (2012), 839–853. https://doi.org/10.3934/naco.2012.2.839 doi: 10.3934/naco.2012.2.839 |
[13] | M. Aristizabal, J. L. Hernández-Estrada, M. Garcia, H. Millwater, Solution and sensitivity analysis of nonlinear equations using a hypercomplex-variable Newton-Raphson method, Appl. Math. Comput., 451 (2023), 127981. https://doi.org/10.1016/j.amc.2023.127981 doi: 10.1016/j.amc.2023.127981 |
[14] | A. M. Awwal, P. Kumam, A. B. Abubakar, A modified conjugate gradient method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 145 (2019), 507–520. https://doi.org/10.1016/j.apnum.2019.05.012 doi: 10.1016/j.apnum.2019.05.012 |
[15] | A. B. Abubakar, P. Kumam, A. H. Ibrahim, J. Rilwan, Derivative-free HS-DY-type method for solving nonlinear equations and image restoration, Heliyon, 6 (2020), e05400. https://10.1016/j.heliyon.2020.e05400 doi: 10.1016/j.heliyon.2020.e05400 |
[16] | M. T. Darvishi, A. Barati, A third-order Newton-type method to solve systems of nonlinear equations, Appl. Math. Comput., 187 (2007), 630–635. https://doi.org/10.1016/j.amc.2006.08.080 doi: 10.1016/j.amc.2006.08.080 |
[17] | Q. B. Wu, M. H. Chen, Convergence analysis of modified Newton-HSS method for solving systems of nonlinear equations, Numer. Algor., 64 (2013), 659–683. https://doi.org/10.1007/s11075-012-9684-5 doi: 10.1007/s11075-012-9684-5 |
[18] | M. H. Chen, Q. B. Wu, R. F. Lin. Semilocal convergence analysis for the modified Newton-HSS method under the Hölder condition, Numer. Algor., 72 (2016), 667–685. https://doi.org/10.1007/s11075-015-0061-z doi: 10.1007/s11075-015-0061-z |
[19] | H. X. Zhong, G. L. Chen, X. P. Guo, On preconditioned modified Newton-MHSS method for systems of nonlinear equations with complex symmetric Jacobian matrices, Numer. Algor., 69 (2015), 553–567. https://doi.org/10.1007/s11075-014-9912-2 doi: 10.1007/s11075-014-9912-2 |
[20] | M. H. Chen, Q. B. Wu, On modified Newton–DGPMHSS method for solving nonlinear systems with complex symmetric Jacobian matrices, Comput. Math. Appl., 76 (2018), 45–57. https://doi.org/10.1016/j.camwa.2018.04.003 doi: 10.1016/j.camwa.2018.04.003 |
[21] | F. Xie, Q. B. Wu, P. F. Dai, Modified Newton-SHSS method for a class of systems of nonlinear equations, Comput. Appl. Math., 38 (2019), 19–37. https://doi.org/10.1007/s40314-019-0793-9 doi: 10.1007/s40314-019-0793-9 |
[22] | F. Xie, R. F. Lin, Q. B. Wu, Modified Newton-DSS method for solving a class of systems of nonlinear equations with complex symmetric Jacobian matrices, Numer. Algor., 85 (2020), 951–975. https://doi.org/10.1007/s11075-019-00847-y doi: 10.1007/s11075-019-00847-y |
[23] | X. Qi, H. T. Qu, X. Y. Xiao, Modified Newton-GSOR method for solving complex nonlinear systems with symmetric Jacobian matrices, Comput. Appl. Math., 39 (2020), 165–182. https://doi.org/10.1007/s40314-020-01204-9 doi: 10.1007/s40314-020-01204-9 |
[24] | C. L. Li, C. F. Ma, On Euler-extrapolated Hermitian/skew-Hermitian splitting method for complex symmetric linear systems, Appl. Math. Lett., 86 (2018), 42–48. https://doi.org/10.1016/j.aml.2018.06.016 doi: 10.1016/j.aml.2018.06.016 |
[25] | X. Xie, H. B. Li, On preconditioned Euler-extrapolated single-step Hermitian and skew-Hermitian splitting method for complex symmetric linear systems, Jpn. J. Ind. Appl. Math., 38 (2021), 503–518. https://doi.org/10.1007/s13160-020-00447-7 doi: 10.1007/s13160-020-00447-7 |
[26] | C. L. Li, C. F. Ma, The inexact Euler-extrapolated block preconditioners for a class of complex linear systems, Appl. Math. Lett., 104 (2020), 106229. https://doi.org/10.1016/j.aml.2020.106229 doi: 10.1016/j.aml.2020.106229 |
[27] | C. L. Li, C. F. Ma, On Euler Preconditioned SHSS iterative method for a class of complex symmetric linear systems, ESAIM-Math. Model. Num., 53 (2019), 1607–1627. https://doi.org/10.1051/m2an/2019029 doi: 10.1051/m2an/2019029 |
[28] | M. H. Chen, R. F. Lin, Q. B. Wu, Convergence analysis of the modified Newton-HSS method under the Hölder continuous condition, J. Comput. Appl. Math., 264 (2014), 115–130. https://doi.org/10.1016/j.cam.2013.12.047 doi: 10.1016/j.cam.2013.12.047 |
[29] | W. P. Shen, C. Li, Convergence criterion of inexact methods for operators with Hölder continuous derivatives, Taiwanese J. Math., 12 (2008), 1865–1882. http://doi.org/10.11650/twjm/1500405093 doi: 10.11650/twjm/1500405093 |