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1. Introduction

This manuscript is about the study of numerical methods for large sparse nonlinear equations
described by

F(u) = 0, (1.1)

where F : D ⊂ Cn → Cn is a continuously differentiable function. We assume that the Jacobian matrix
F′(u) of the function F can be split as follows:

F′(u) = W(u) + iT (u), (1.2)

where W(u) and T (u) are both real symmetric matrices, and i =
√
−1 stands for the imaginary unit.

These nonlinear systems can be seen in the applications of physics, scientific computing and
engineering [1–3].
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To solve systems that can be described by (1.1), one of the most commonly used methods is
Newton’s method, i.e.,

F′(uk)sk = −F(uk), k = 0, 1, 2, · · · , with uk+1 := uk + sk. (1.3)

However, when the problem size becomes large, the cost of each step of the traditional Newton
method is expensive. It is well known that the idea of the inexact Newton method [4] overcomes
this difficulty and improves the iteration efficiency. In each step of the inexact Newton method, only
the inexact solution of Newton’s equation (1.3) needs to be obtained. In this sense, we trade a bit of
precision for better efficiency. Inexact Newton method have been widely used in recent decades.

Algorithm 1.1. Inexact Newton method
1. Set an initial guess u0.
2. Set some ηk ∈ [0, 1). For k = 0, 1, · · · we solve

F′(uk)sk = −F(uk), k = 0, 1, · · · ,

to find some sk which satisfies

∥F(uk) + F′(uk)sk∥ ≤ ηk∥F(uk)∥. (1.4)

3. Set uk+1 = uk + sk.

Inexact Newton methods can be viewed as inner-outer iterative methods. The outer part is Newton’s
method, which is employed to generate the sequence {xk}. And, the inner iterations are linear iterative
methods used inside Newton’s method to approximately solve Newton’s equations. This kind of inner-
outer iteration scheme has greatly improved the computational efficiency of the traditional Newton
method. In the past few decades, a number of linear iterations, such as the classical splitting methods
[5–8] and the modern Krylov subspace methods [9], have been utilized inside the inexact Newton
methods [10–12]. For some other recent research papers in the area, see [13–15].

In [16], Darvishi and Barati construct a modified Newton method, which requires only one more
evaluation of F per step than the Newton method, while it has three R-orders of convergence at least.
Compared with Newton’s method, the modified Newton method improves the convergence speed and
convergence order. It has also been used as the mainstream outer iteration of the previously mentioned
iterative scheme in recent years; for examples, see [17–23]. The modified Newton method is as follows:{

vk = uk − F′(uk)−1F(uk),
uk+1 = vk − F′(uk)−1F(vk), k = 0, 1, 2, · · · .

(1.5)

In this manuscript, we shall use the Euler-extrapolated Hermitian and skew-Hermitian splitting
(EHS) method as the inner solver of the modified Newton method to establish our new method. The
rest of this manuscript is roughly structured as follows. In Section 2, we will review the EHS method
and build the modified Newton-EHS (MN-EHS) method. In Sections 3 and 4 we analyze the local and
semilocal convergence properties of the MN-EHS method under the Hölder condition, respectively. In
Section 5, there are two numerical examples comparing our method with some other methods in the
earlier literature to reveal the computational efficiencies of our new iteration scheme. Finally, a short
summary is given in Section 6.
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2. The MN-EHS method

In [24], Li and Ma proposed the EHS method. This method was constructed to appropriately solve
complex symmetric linear problems described by Au = b. They proposed the Euler-extrapolated
technique in that paper, and it is used as an efficient solver in large sparse linear systems. In this part,
the EHS method [24] will be reviewed.

Let us consider the complex symmetric linear problems described by

Au = (W + iT )u = b, W,T ∈ Rn×n,

where W,T are both symmetric, positive semi-definite matrices, b ∈ Cn is a known vector and i =
√
−1

is the imaginary unit.
The EHS iterative method can be simply represented by the following formula:

(cos(θ)W + sin(θ)T )uk+1 = i(sin(θ)W − cos(θ)T )uk + e−iθb, k = 0, 1, 2, · · · ,

where θ ∈ [0, π2 ].
Notice that e−iθ = cos(θ) − i sin(θ) according to Euler’s formula, and u0 ∈ C is the initial guess.

Remark 2.1. There are some restrictions on the selection of the parameter θ. See the convergence
theorems Theorem 3.1 and Theorem 3.2 in [24]. For more studies about Euler-extrapolated techniques,
see [25–27].

Now, we intend to establish the MN-EHS method. Suppose that

F′(u) = W(u) + iT (u),

where W(u),T (u) ∈ Rn×n , which can be calculated by using

W(u) =
1
2

(F′(u) + F′(u)∗) and T (u) = −i ·
1
2

(F′(u) − F′(u)∗),

where F′(u)∗ denotes the conjugate transpose matrix of F′(u).

Algorithm 2.1. MN-EHS method
1. Let the initial guess u0 be given. Set a nonnegative parameter θ ∈ [0, π2 ], a positive constant tol

and two positive integer sequences {lk}
∞
k=0, {mk}

∞
k=0.

2. For k = 0, 1, · · · , until ∥F(uk)∥ ≤ tol∥F(u0)∥, do the following:
2.1. Set dk,0 = hk,0 := 0.
2.2. For l = 0, 1, · · · , lk − 1, apply the EHS method to the linear system described by (1.5):

(cos(θ)W(uk) + sin(θ)T (uk))dk,l+1 = i(sin(θ)W(uk) − cos(θ)T (uk))dk,l − e−iθF(uk);

obtain dk,lk such that

∥F(uk) + F′(uk)dk,lk∥ ≤ ηk∥F(uk)∥, for some ηk ∈ [0, 1). (2.1)

2.3. Set vk = uk + dk,lk .
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2.4. Compute F(vk).
2.5. For m = 0, 1, 2, · · · ,mk − 1, apply the EHS method to the linear system described by (1.5):

(cos(θ)W(uk) + sin(θ)T (uk))hk,l+1 = i(sin(θ)W(uk) − cos(θ)T (uk))hk,l − e−iθF(vk);

obtain hk,mk such that

∥F(vk) + F′(uk)hk,mk∥ ≤ η̃k∥F(vk)∥, for some η̃k ∈ [0, 1). (2.2)

2.6. Set uk+1 = vk + hk,mk .

3. End.

Remark 2.2. For the needs of subsequent study and derivation, we give the expressions of dk,lk and
hk,mk :

dk,lk = −

lk−1∑
j=0

M(θ; uk) jN(θ; uk)e−iθF(uk),

hk,mk = −

mk−1∑
j=0

M(θ; uk) jN(θ; uk)e−iθF(vk),

where

M(θ; u) = i(cos(θ)W(u) + sin(θ)T (u))−1(sin(θ)W(u) − cos(θ)T (u)),
N(θ; u) = (cos(θ)W(u) + sin(θ)T (u))−1.

After straightforward derivation, we have

vk = uk −

lk−1∑
j=0

M(θ; uk) jN(θ; uk)e−iθF(uk),

uk+1 = vk −

mk−1∑
j=0

M(θ; uk) jN(θ; uk)e−iθF(vk).

(2.3)

Define

B(θ; u) := eiθ(cos(θ)W(u) + sin(θ)T (u)),
C(θ; u) := ieiθ(sin(θ)W(u) − cos(θ)T (u)).

(2.4)

Then, the Jacobian matrix F′(u) = B(θ; u) −C(θ; u), and

M(θ; u) = B(θ; u)−1C(θ; u),
N(θ; u) = e−iθB(θ; u)−1.

(2.5)

Therefore, we equivalently represent the MN-EHS method as follows:

vk = uk − (I − M(θ; uk)lk)F′(uk)−1F(uk),
uk+1 = vk − (I − M(θ; uk)mk)F′(uk)−1F(vk).

(2.6)
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3. Local convergence property of MN-EHS method

In this part, our main task is to give the derivations of the convergence properties. Let us begin with
the local convergence. In this section we will analyze the local convergence property under the Hölder
continuous condition, similar to that in [28]. First of all, we give, without proof, the following Banach
lemma.

Lemma 3.1. (Banach Lemma) Let A, B in Cn×n satisfy ∥I − BA∥ < 1; then, the matrices A, B are
nonsingular. Moreover,

∥A−1∥ ≤
∥B∥

1 − ∥I − BA∥
, ∥B−1∥ ≤

∥A∥
1 − ∥I − BA∥

,

and

∥A−1 − B∥ ≤
∥B∥∥I − BA∥
1 − ∥I − BA∥

, ∥A − B−1∥ ≤
∥A∥∥I − BA∥
1 − ∥I − BA∥

.

Suppose that F : D ⊂ Cn → Cn is a G-differentiable function on N0 ⊂ D, where N0 is the convex
neighborhood of the point u∗ which satisfies F(u∗) = 0. Its Jacobian matrix F′(u) is continuous,
positive definite and complex symmetric. For any x ∈ D, suppose that F′(u) = W(u) + iT (u) is the
splitting of the Jacobian matrix F′(u). N(u∗, r) denotes an open ball centered at u∗ with radius r > 0.

Assumption 3.1. For arbitrary u ∈ N(u∗, r) ⊂ N0, assume that the following conditions hold.
(1) (The Bounded Condition) There are positive constants β and γ such that

max
{
∥W(u∗)∥, ∥T (u∗)∥

}
≤ β and ∥F′(u∗)−1∥ ≤ γ.

(2) (The Hölder Condition) For some p ∈ (0, 1], there exist nonnegative constants Hw and Ht such
that

∥W(u) −W(u∗)∥ ≤ Hw∥u − u∗∥p,

∥T (u) − T (u∗)∥ ≤ Ht∥u − u∗∥p.

Lemma 3.2. Under Assumption 3.1, for any u, v ∈ N(u∗, r), if r ∈
(
0, 1

(γH)
1
p

)
, then F′(u)−1 exists. And,

the following inequalities hold:

∥F′(u) − F′(u∗)∥ ≤ H∥u − u∗∥p,

∥F′(u)−1∥ ≤ S (u),

∥F(v)∥ ≤
H

p + 1
∥v − u∗∥p+1 + 2β∥v − u∗∥,

∥v − u∗ − F′(u)−1F(v)∥ ≤ S (u)
( H

p + 1
∥v − u∗∥p + H∥u − u∗∥p

)
∥v − u∗∥,

where S (u) :=
γ

1 − γH∥u − u∗∥p
, H := Hw + Ht.
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Proof. According to the Hölder condition,

∥F′(u) − F′(u∗)∥ = ∥W(u) + iT (u) −W(u∗) − iT (u∗)∥
≤ ∥W(u) −W(u∗)∥ + ∥i(T (u) − T (u∗))∥
≤ (Hw + Ht)∥u − u∗∥p = H∥u − u∗∥p.

Since r ∈
(
0, 1

(γH)
1
p

)
, we have

∥F′(u∗)−1(F′(u∗) − F′(u))∥ ≤ ∥F′(u∗)−1∥∥F′(u∗) − F′(u)∥ ≤ γH∥u − u∗∥p ≤ 1.

Then, according to ∥F′(u∗)−1∥ ≤ γ and Lemma 3.1, F′(u)−1 exists and

∥F′(u)−1∥ ≤
∥F′(u∗)−1∥

1 − ∥F′(u∗)−1(F′(u∗) − F′(u))∥
≤

γ

1 − γH∥u − u∗∥p
= S (u).

By
∥F′(u∗)∥ = ∥W(u∗) + iT (u∗)∥ ≤ ∥W(u∗)∥ + ∥iT (u∗)∥ ≤ 2β,

F(v) = F(v) − F(u∗) − F′(u∗)(v − u∗) + F′(u∗)(v − u∗)

=

∫ 1

0

(
F′(u∗ + t(v − u∗)) − F′(u∗)

)
dt(v − u∗) + F′(u∗)(v − u∗),

we get

∥F(v)∥ ≤ ∥v − u∗∥
∫ 1

0
∥(F′(u∗ + x(v − u∗)) − F′(u∗))∥dx + ∥F′(u∗)(v − u∗)∥

≤ ∥v − u∗∥
∫ 1

0
H∥x(v − u∗)∥pdx + ∥F′(u∗)(v − u∗)∥

≤
H

p + 1
∥v − u∗∥p+1 + 2β∥v − u∗∥.

As for the last inequality, since

v − u∗ − F′(u)−1F(v)
= −F′(u)−1(F(v) − F(u∗) − F′(u)(v − u∗))
= −F′(u)−1(F(v) − F(u∗) − F′(u∗)(v − u∗)) + F′(u)−1(F′(u) − F′(u∗))(v − u∗)

= −F′(u)−1
∫ 1

0

(
F′(u∗ + x(v − u∗)) − F′(u∗)

)
dx(v − u∗) + F′(u)−1 (

F′(u) − F′(u∗)
)

(v − u∗),

it follows that

∥v − u∗ − F′(u)−1F(v)∥

≤ ∥F′(u)−1∥ ·

( ∫ 1

0
∥F′(u∗ + x(v − u∗)) − F′(u∗)∥dx + ∥F′(u) − F′(u∗)∥

)
· ∥v − u∗∥

≤ S (u)
( H

p + 1
∥v − u∗∥p + H∥u − u∗∥p

)
∥v − u∗∥.

□
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In the remainder of this article, we use the symbol ⌊⌋ to represent the smallest integer that is no less
than the corresponding real number.

Theorem 3.1. Under the conditions of Assumption 3.1 and Lemma 3.2, let r ∈ (0, r0), where r0 =

min{r1, r2, r3}, and

r1 =

(
1

2γH

) 1
p

, r2 =

(
τχ

2τH(2 + τχ)

) 1
p

, r3 =

(
(1 + p)(1 − 2βγ[(τ + 1)χ]ν)

2(2 + p)γH

) 1
p

.

The constant ν = min{l∗,m∗}, and ν satisfies ν > ⌊−
ln(2βγ)

ln((τ+1)θ)⌋, where
l∗ = lim infk→∞ lk,m∗ = lim infk→∞mk, τ ∈ (0, 1−χ

χ
) is a prescribed positive constant and

χ ≡ χ(θ; u0) = ∥M(θ; u0)∥ < 1.
Then, for any initial guess u0 ∈ N(u∗, r) and any positive integer sequences {lk}

∞
k=0 and {mk}

∞
k=0, the

solution sequence {uk}
∞
k=0 of the MN-EHS method represents convergence to the exact solution u∗. In

addition, we have
lim sup

k→∞
∥uk − u∗∥

1
k ≤ g(r0; ν)2,

where

g(tp; ν) :=
γ

1 − γHtp

(
3 + p
1 + p

Htp + 2β[(τ + 1)χ]ν
)
.

Proof. Since ∥M(θ; u∗)∥ ≤ δ(θ; u∗) < 1,

∥B(θ; u∗)−1∥ = ∥ (I − M(θ; u∗)) F′(u∗)−1∥ ≤ (1 + ∥M(θ; u∗)∥) ∥F′(u∗)−1∥ ≤ 2γ.

Then

B(θ; u) − B(θ; u∗) = eiθ( cos(θ)(W(u) −W(u∗)) + sin(θ)(T (u) − T (u∗))
)
,

C(θ; u) −C(θ; u∗) = ieiθ( sin(θ)(W(u) −W(u∗)) − cos(θ)(T (u) − T (u∗))
)
.

According to the Hölder condition, we have

∥B(θ; u) − B(θ; u∗)∥ ≤ H∥u − u∗∥p,

∥C(θ; u) −C(θ; u∗)∥ ≤ H∥u − u∗∥p.

Based on Lemma 3.1,

∥B(θ; u)−1∥ ≤
∥B(θ; u∗)−1∥

1 − ∥I − B(θ; u∗)−1B(θ; u)∥
≤

∥B(θ; u∗)−1∥

1 − ∥B(θ; u∗)−1∥∥B(θ; u∗) − B(θ; u)∥
≤

2γ
1 − 2γH∥u − u∗∥p

.

Since

M(θ; u) − M(θ; u∗) = B(θ; u)−1C(θ; u) − B(θ; u∗)−1C(θ; u∗)

= B(θ; u)−1
((

C(θ; u) −C(θ; u∗)
)
−

(
B(θ; u) − B(θ; u∗)

)
M(θ; u∗)

)
,

then

∥M(θ; u) − M(θ; u∗)∥ ≤ ∥B(θ; u)−1∥ ·

[
∥C(θ; u) −C(θ; u∗)∥ + ∥B(θ; u) − B(θ; u∗)∥ · ∥M(θ; u∗)∥

]
AIMS Mathematics Volume 8, Issue 10, 24233–24253.
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≤
2γ

1 − 2γH∥u − u∗∥p
2H∥u − u∗∥p

=
4γH∥u − u∗∥p

1 − 2γH∥u − u∗∥p
.

Here, r < r1 implies that
4γH∥u − u∗∥p

1 − 2γH∥u − u∗∥p
< τχ.

Hence,

∥M(θ; u)∥ ≤ ∥M(θ; u) − M(θ; u∗)∥ + ∥M(θ; u∗)∥ ≤
4γH∥u − u∗∥p

1 − 2γH∥u − u∗∥p
+ χ ≤ (τ + 1)χ.

Furthermore, we have

∥vk − u∗∥ = ∥uk − u∗ − (I − M(θ; u)lk)F′(uk)−1F(uk)∥
≤ ∥uk − u∗ − F′(uk)−1F(uk)∥ + ∥M(θ; u)lk∥ · ∥F′(uk)−1F(uk)∥

≤ S (uk)
(

H
p + 1

∥uk − u∗∥p + H∥uk − u∗∥p
)
∥uk − u∗∥

+ [(τ + 1)χ]lkS (uk)
(

H
p + 1

∥uk − u∗∥p+1 + 2β∥uk − u∗∥
)

≤ S (uk)
(
3 + p
1 + p

H∥uk − u∗∥p + 2β[(τ + 1)χ]lk

)
∥uk − u∗∥

= g(∥uk − u∗∥p; lk)∥uk − u∗∥

< g(rp
0 ; ν)∥uk − u∗∥ < ∥uk − u∗∥,

and, similarly, we get

∥uk+1 − u∗∥ = ∥vk − u∗ − (I − M(θ; u)mk)F′(uk)−1F(uk)∥
≤ ∥vk − u∗ − F′(uk)−1F(vk)∥ + ∥M(θ; u)mk∥ · ∥F′(uk)−1F(uk)∥

≤ S (uk)
(

H
p + 1

∥vk − u∗∥p + H∥uk − u∗∥p
)
∥uk − u∗∥

+ [(τ + 1)χ]mkS (uk)
(

H
p + 1

∥vk − u∗∥p+1 + 2β∥vk − u∗∥
)

≤ S (uk)
(
3 + p
1 + p

H∥uk − u∗∥p + 2β[(τ + 1)χ]mk

)
∥vk − u∗∥

≤ g(∥uk − u∗∥p; mk)∥vk − u∗∥

≤ g(rp
0 ; ν)2∥uk − u∗∥ < ∥uk − u∗∥.

Then, by induction, we can prove that {uk}
∞
k=0 ⊂ N(u∗, r). First, when k = 0, ∥u0 − u∗∥ < r < r0 and

∥u1 − u∗∥ < g(∥u0 − u∗∥p; ν)2∥u0 − u∗∥ < ∥u0 − u∗∥ < r;

then, u1 ∈ N(u∗, r) since u0 ∈ N(u∗, r).
Now, by induction, when k = 0, suppose that un ∈ N(u∗, r); then, we have

∥un+1 − u∗∥ < g(rp
0 ; ν)2∥un − u∗∥ < g(rp

0 ; ν)2(n+1)∥un − u∗∥ < r,

which implies that un+1 ∈ N(u∗, r) for k = n + 1. Moreover, un+1 → u∗ as n→ ∞. □
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4. Semilocal convergence property of MN-EHS method

The convergence property discussed in the previous section is the local convergence property. The
iteration is convergent on the premise that the initial guess of the iteration is located in an open ball of
the exact solution. In practical calculation, it is hoped that the existence of the solution of the nonlinear
system (1.1), as well as the convergence of iteration, can be ascertained directly from some conditions
of the initial guess. Here, we put forward the semilocal convergence theorem of the MN-EHS method.

Assumption 4.1. For any x0 ∈ N0, assume that the following conditions hold.
(1) (The Bounded Condition) There are two positive constants β and γ such that

max
{
∥W(u0)∥, ∥T (u0)∥

}
≤ β , ∥F′(u0)−1∥ ≤ γ and ∥F(u0)∥ ≤ δ. (4.1)

(2) (The Hölder Condition) There are two nonnegative constants Hw and Ht such that, for any
u, v ∈ N(u0, r) ⊂ N0, the following inequalities are satisfied:

∥W(u) −W(v)∥ ≤ Hw∥u − v∥p, (4.2)
∥T (u) − T (v)∥ ≤ Ht∥u − v∥p. (4.3)

Lemma 4.1. For any u, v ∈ N(u0, r), if r ∈
(
0, ( 1

γH )
1
p
)
, then F′(u)−1 exists. And, the following

inequalities hold:

∥F′(u) − F′(v)∥ ≤ H∥u − v∥p,

∥F′(u)∥ ≤ H∥u − u0∥
p + 2β,

∥F(u) − F(v) − F′(v)(u − v)∥ ≤
H

p + 1
∥u − v∥p+1,

∥F′(u)−1∥ ≤
γ

1 − γH∥u − u0∥
p ,

where H := Hw + Ht.

Proof. It will be omitted because the proof of Lemma 4.1 is similar to that of Lemma 3.2. □

Before giving the semilocal convergence theorem, we need some preparations; we construct two
sequences and give some lemmas.

First, we give two important functions:

λ(t) =
a

p + 1
tp+1 − bt + c, (4.4)

ω(t) = dtp − 1, t ∈ [0, d−
1
p ], (4.5)

where a, b, c and d are positive constants which satisfy

a > bd, 0 < b ≤ 1, d > 0,
p + 1

p
c
b
<

(
b
a

) 1
p

.

Define the sequences {tk} and {sk} by
t0 = 0, s0 = c,
sk = tk −

λ(tk)
ω(tk) ,

tk+1 = sk −
λ(sk)
ω(tk) .

(4.6)
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Lemma 4.2. λ(t) is decreasing in
[
0,

(
a
b

) 1
p
)

but increasing in
[(

a
b

) 1
p
,+∞

)
. Moreover, if

p + 1
p

c
b
<

(
b
a

) 1
p

,

then λ(t) = 0 has two solutions t∗ and t∗∗ in (0,+∞), which satisfy

0 < t∗ <
p + 1

p
c
b
< t∗∗.

Proof. See Lemma 2.1 in [18]. □

Lemma 4.3. Suppose that the sequences {tk}, {sk} are generated by the formula (4.6). And, t∗ is the
smaller nonnegative solution of φ(t) = 0. Then, the sequences {tk} and {sk} increase, converge to t∗ and
satisfy the following inequalities:

0 ≤ tk ≤ sk ≤ tk+1 < t∗.

Proof. See Lemma 2.2 in [18]. □

The following theorem is the semilocal convergence theorem. Take a = (1 + η)Hγ, b = (1 − η), c =
(1 + η)γδ and d = Hγ in (4.4).

Theorem 4.1. Set r = min(r1, r2) with

r1 =

(
(1 + p)(1 − 2βγ[(τ + 1)χ]ν)

2(2 + p)γH

) 1
p

, r2 =
1 + p

p
c
b
,

where the constant ν = min{l∗,m∗} satisfies ν > ⌊− ln(2βγ)
ln((τ+1)θ)⌋; also, l∗ = lim infk→∞ lk and

m∗ = lim infk→∞mk. τ ∈ (0, 1−χ
χ

) is a prescribed positive constant and χ ≡ χ(θ; u0) = ∥M(θ; u0)∥ < 1.
Under the assumptions of Lemma 4.1, if(

(1 + η)γ
1 − η

) 1+p
p

H
1
p δ <

p
1 + p

,

then the iteration sequence {uk}
∞
k=0 generated by the MN-EHS method is well defined and converges to

u∗, which satisfies that F(u∗) = 0.

Proof. The following formulas are true and can be proved by induction:

∥uk − u0∥ ≤ tk − t0,

∥F(uk)∥ ≤ 1
(1+η)γλ(tk),

∥vk − uk∥ ≤ sk − tk,

∥F(vk)∥ ≤ 1
(1+η)γλ(sk),

∥uk+1 − vk∥ ≤ tk+1 − sk.

(4.7)

We have

∥u0 − u0∥ = 0 ≤ t0 − t0,
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∥F(u0)∥ ≤ δ =
c

γ(1 + η)
=
λ(t0)
γ(1 + η)

,

∥v0 − u0∥ = ∥I − M(θ; u0)l0∥∥F′(u0)−1F(u0)∥ ≤ (1 + χl0)γδ ≤ (1 + η)γδ = s0 − t0,

∥F(v0)∥ ≤ ∥F(v0) − F(u0) − F′(u0)(v0 − u0)∥ + ∥F(u0) + F′(u0)(v0 − u0)∥

≤
H

p + 1
∥v0 − u0∥

1+p + η∥F(u0)∥

≤
H

p + 1
s1+p

0 + ηδ

≤
1

(1 + η)γ
(

a
p + 1

sp+1
0 + η(η + 1)γδ)

=
1

(η + 1)γ
(

a
p + 1

sp+1
0 + (1 − b)s0)

=
1

(η + 1)γ
(

a
p + 1

sp+1
0 − bs0 + c)

=
λ(s0)

(η + 1)γ
,

∥u1 − v0∥ ≤ ∥I − M(θ; u0)m0∥∥F′(u0)−1F(v0)∥ ≤ (1 + χl0)γ
1

(η + 1)γ
λ(s0) ≤ −

λ(s0)
ω(t0)

= t1 − s0.

Here, we use an inequality introduced by Shen and Li in [29]. For any k > 1, we have

H
p + 1

(tk − tk−1)p+1 = Htp+1
k−1

 1
p + 1

(
tk − tk−1

tk−1

p+1
)p+1

+
tk − tk−1

tk−1

 − Htp
k−1(tk − tk−1)

≤
H

p + 1
tp+1
k −

H
p + 1

tp+1
k−1 − Htp

k−1(tk − tk−1)

since
t1+p + (1 + p)t ≤ (1 + t)1+p − 1.

Now, by induction, for any k,

∥uk − u0∥ ≤ ∥uk − vk−1∥ + ∥vk−1 − uk−1∥ + ∥uk−1 − u0∥

≤ (tk − sk−1) + (sk−1 − tk−1) + (tk−1 − t0)
= tk − t0 < t∗ < r.

Since uk−1, vk−1 ∈ N(u0, r), we have

∥F(uk)∥ ≤ ∥F(uk) − F(vk−1) − F′(vk−1)(uk − vk−1)∥ + ∥F(vk−1) + F′(vk−1)(uk − vk−1)∥

≤
H

1 + p
∥uk − vk−1∥

1+p + η∥F(vk−1)∥

≤
H

1 + p
(tk − sk−1)1+p +

η

(1 + η)γ
λ(sk−1)
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≤
H

1 + p
t1+p
k −

H
1 + p

s1+p
k−1 − Hsp

k−1(tk − sk−1) +
η

(1 + η)γ
λ(sk−1)

≤
H

1 + p
t1+p
k −

H
1 + p

s1+p
k−1 − Htp

k−1(tk − sk−1) +
η

(1 + η)γ
λ(sk−1)

=
1

(1 + η)γ

[
a

1 + p
t1+p
k −

a
1 + p

s1+p
k−1 − H(1 + η)γtp

k−1(tk − sk−1) + ηλ(sk−1)
]

=
1

(1 + η)γ

[
λ(tk) − λ(sk−1) + b(tk − sk−1) − Hγ(1 + η)tp

k−1(tk − sk−1) + ηλ(sk−1)
]

=
1

(1 + η)γ
λ(tk) +

1
(1 + η)γ

[
−

bλ(sk−1)
ω(tk−1)

+ Hγ(1 + η)tp
k−1
λ(sk−1)
ω(tk−1)

+ (η − 1)λ(sk−1)
]

=
1

(1 + η)γ
λ(tk) −

1
(1 + η)γ

2ηHγtp
k−1

1 − Hγtp
k−1

λ(sk−1)

≤
1

(1 + η)γ
λ(tk).

Hence,

∥vk − uk∥ ≤ ∥I − M(θ; uk)lk∥∥F′(uk)F(uk)∥
≤ (1 + ((1 + τ)χ)lk)∥F′(uk)∥∥F(uk)∥

≤ (1 + η)
γ

1 − γHtp
k

λ(tk)
(1 + η)γ

= −
λ(tk)
ω(tk)

= sk − tk.

Similarly, we have

∥F(uk)∥ ≤ ∥F(vk) − F(uk) − F′(uk)(vk − uk)∥ + ∥F(uk) + F′(uk)(vk − uk)∥

≤
H

1 + p
∥vk − uk∥

1+p + η∥F(uk)∥

≤
H

1 + p
(sk − tk)1+p +

η

(1 + η)γ
λ(tk)

≤
H

1 + p
s1+p

k −
H

1 + p
t1+p
k − Htp

k (sk − tk) +
η

(1 + η)γ
λ(tk)

≤
1

(1 + η)γ

[
λ(sk) − λ(tk) + b(sk − tk) − Hγ(1 + η)tp

k (sk − tk) + ηλ(tk)
]

=
λ(sk)

(1 + η)γ
+

1
(1 + η)γ

[
−

bλ(tk)
ω(tk)

+ Hγ(1 + η)tp
k

λ(tk)
ω(tk)

+ (η − 1)λ(tk)
]

=
λ(sk)

(1 + η)γ
−

1
(1 + η)γ

2ηHγtp
k

1 − Hγtp
k

λ(tk)

≤
λ(sk)

(1 + η)γ
.

Consequently,

∥uk+1 − vk∥ ≤ ∥I − M(θ; uk)mk∥∥F′(uk)−1∥∥F(vk)∥
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≤ (1 + η)
γ

1 − γHtp
k

1
(1 + η)γ

λ(sk)

= −
λ(sk)
ω(tk)

= tk+1 − sk.

Now, the formulas given by (4.7) have been proved by induction. For the reason that the sequences
{tk}, {sk} converge to t∗ and

∥uk+1 − u0∥ ≤ ∥uk+1 − vk∥ + ∥vk − uk∥ + ∥uk − u0∥

≤ (tk + 1 − sk) + (sk − tk) + (tk − t0) = tk+1 − t0 < t∗ < r,

the sequence {uk} also converges to u∗. Since ∥M(θ; u∗)∥ < 1, we have that F(u∗) = 0.
□

5. Numerical examples

Next, we shall represent the validity of our new method via numerical examples. We chose some
methods given in previous paper, i.e., the modified Newton-PMHSS method [19] (MN-PMHSS) and
modified Newton-GSOR method [23] (MN-GSOR), for comparison with the MN-EHS method. In our
computation, the CPU running time, which is denoted by “CPU time” was recorded by implementing
the command “tic-toc”.

Regarding the computer programming, all of the numerical results in the following numerical
examples were performed on a laptop, and the software was MATLAB version R2017b. This laptop
had an AMD Ryzen7-4800H 2.90 GHz and 16.00 GB RAM. The number of outer iteration steps is
denoted by “Outer IT”, and that for the inner iteration steps is denoted by “Inner IT”. A thorny
problem is the selection of parameters in the iterations; we used the experimental optimal parameters
in this study. That is, when the parameter minimizes the corresponding iteration steps and errors, it
was chosen. All of the important data are listed in tables.

Example 5.1 What follows is a group of partial differential equations which can be converted to a
nonlinear system:

ut − (α1 + iβ1)(uxx + uyy) + κu = −(α2 + iβ2)u
4
3 , in (0, 1] ×Ω,

u(0, x, y) = u0(x, y), in Ω,
u(t, x, y) = 0, on (0, 1] ∈ ∂Ω,

where Ω = (0, 1) × (0, 1) and the boundary of Ω is ∂Ω. As for the constant κ, it was used to measure
the magnitudes of the reaction term; also, κ was set as positive. We set the values of the parameters
α1 = α2 = 1 and β1 = β2 = 2.

This problem can be converted to a nonlinear system, as discussed in this manuscript, by using
the central finite-difference scheme. The grid was set as equidistant, and the step width was set as
∆t = h = 1/(N + 1).

Here is the form of this nonlinear system:

F(u) = Mu + (α2 + iβ2)h∆tΨ(u) = 0, (5.1)
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where

M = h(1 + κ∆t)In + (α1 + iβ1)
∆t
h

(AN ⊗ IN + IN ⊗ AN),

Ψ(u) = (u
4
3
1 , u

4
3
2 , · · · , u

4
3
n )T , n = N × N.

Notice that AN = tridiag(−1, 2,−1) is a tridiagonal matrix; ⊗ is the Kronecker product symbol.

It is obvious that u∗ = 0 is a solution of (5.1). And, the Jacobian matrix of F(u) can be easily worked
out

F′(u) = M +
4
3

(α2 + iβ2)h∆tdiag(u
1
3
1 , u

1
3
2 , · · · , u

1
3
n ).

In our experiment, the initial guess was chosen to be u0 = 1. The stopping term for the outer
iteration was taken as

∥F(uk)∥2
∥F(u0)∥2

≤ 10−10.

And, ηk = η̃k = η = 0.1 is the tolerance of the inner iterations. Table 1 gives the optimal values α or θ
for the three methods.

Table 1. The optimal values of α or θ for the three methods.

N
MN-PMHSS MN-GSOR MN-EHS

κ = 1 κ = 10 κ = 100 κ = 1 κ = 10 κ = 100 κ = 1 κ = 10 κ = 100

30 1.35 1.29 0.84 0.60 0.62 0.59 0.91 0.89 0.68
60 1.23 1.18 0.84 0.59 0.60 0.58 0.80 0.78 0.67
90 1.12 1.08 0.79 0.60 0.60 0.57 0.75 0.76 0.66

See Tables 2, 3 and 4; the experimental data when N = 30, 60, 90 are shown to compare our
MN-EHS method with the MN-PMHSS method and MN-GSOR method. In order to show how the
parameter is chosen, we represent Figure 1, which shows how the inner iteration steps of the MN-EHS
method changes when the parameter varies. We employed the parameters that minimize the inner
iteration steps as the optimal parameters. When the number of inner iteration steps are the same for
different parameters, the one with a smaller error will be chosen.
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Figure 1. Inner steps according to parameter value (MN-EHS method).

Table 2. Experimental results for Example 5.1 when η = 0.1,N = 30.

κ Method Residual CPU time (s) Outer IT Inner IT

1 MN-PMHSS 2.8097 × 10−12 0.1051 5 40
MN-GSOR 8.9701 × 10−11 0.0720 4 26
MN-EHS 7.5151 × 10−12 0.0505 4 16

10 MN-PMHSS 3.0000 × 10−12 0.1041 5 40
MN-GSOR 5.8729 × 10−11 0.0739 4 26
MN-EHS 4.0716 × 10−11 0.0574 4 18

100 MN-PMHSS 2.4047 × 10−11 0.1040 5 40
MN-GSOR 4.0082 × 10−12 0.0897 5 30
MN-EHS 1.0118 × 10−11 0.0709 5 30

According to the results in Tables 2, 3 and 4, the CPU time and the number of iterations in the
MN-EHS method are typically shorter and smaller, respectively, than the MN-PMHSS method and
the MN-GSOR method when the constant κ and the problem size vary. This simply indicates that the
MN-EHS method is more effective than the other two in this example.
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Table 3. Experimental results for Example 5.1 when η = 0.1,N = 60.

κ Method Residual CPU time (s) Outer IT Inner IT

1 MN-PMHSS 3.6010 × 10−12 0.8060 5 40
MN-GSOR 1.4244 × 10−11 0.6079 4 29
MN-EHS 2.6932 × 10−11 0.5807 5 21

10 MN-PMHSS 4.1899 × 10−12 0.7873 5 40
MN-GSOR 1.2750 × 10−11 0.5923 4 28
MN-EHS 4.4046 × 10−12 0.5631 4 24

100 MN-PMHSS 3.0525 × 10−11 0.7938 5 40
MN-GSOR 9.0779 × 10−12 0.7393 5 30
MN-EHS 6.5092 × 10−11 0.6728 5 30

Table 4. Experimental results for Example 5.1 when η = 0.1,N = 90.

κ Method Residual CPU time (s) Outer IT Inner IT

1 MN-PMHSS 5.3181 × 10−12 4.2446 5 40
MN-GSOR 4.7277 × 10−11 3.1208 4 27
MN-EHS 5.2068 × 10−11 2.7840 4 24

10 MN-PMHSS 6.1901 × 10−12 4.2938 5 40
MN-GSOR 4.5188 × 10−11 3.1155 4 27
MN-EHS 6.8388 × 10−11 2.7904 4 26

100 MN-PMHSS 4.4007 × 10−11 4.4003 5 40
MN-GSOR 1.2694 × 10−11 3.8304 5 30
MN-EHS 4.5328 × 10−11 2.9485 4 32

30 40 50 60 70 80 90

Degree of dispersion N

0

5

10

15

20

25

30

The steps of inner iteration changes with the problem size N
The steps of outer iteration changes with the problem size N

Figure 2. Steps of iterations versus N when κ = 1 (MN-EHS method).

AIMS Mathematics Volume 8, Issue 10, 24233–24253.



24249

30 40 50 60 70 80 90

Degree of dispersion N

0

5

10

15

20

25

30

The steps of inner iteration changes with the problem size N
The steps of outer iteration changes with the problem size N

Figure 3. Steps of iterations versus N when κ = 10 (MN-EHS method).
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Figure 4. Steps of iterations versus N when κ = 100 (MN-EHS method).

Finally, the steps of iteration of the MN-EHS method when the problem size varies are shown in
Figures 2, 3 and 4. Broadly, the steps of the outer iterations exhibited almost no change, and the steps
of the inner iterations increased when the problem size varied, but the changes were not very intense.

Example 5.2 Consider the nonlinear Helmholtz equation

−∆u + σ1u + iσ2u = −eu, (5.2)

where σ1 and σ2 are real coefficients. Notice that the solution of this equation should satisfy the
Dirichlet boundary value condition on D = [0, 1] × [0, 1]. After discretization on the mesh size h =
1/(N + 1), the nonlinear system has the form

F(x) = Mx + Φ(x) = 0,

where

M = (K + σ1I) + iσ2I,
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Φ(x) = (ex1 , ex2 , · · · , exn)T ,

with
K = I ⊗ BN + BN ⊗ I,

and BN =
1
h2 tridiag(−1, 2,−1) ∈ RN×N is a tridiagonal matrix.

In this numerical experiment, we applied σ1 = 103 and σ2 = 104. The initial guess was taken as
x0 = 0; here, 0 is a zero vector. The tolerance of the inner iterations was set as ηk = η̃k = η = 0.1, i.e.,
the same as the first example. While a little different from the first example, the stopping criteria for
the outer iterations was set as

∥F(xk)∥
∥F(x0)∥

≤ 10−6.

Table 5 lists the experimental parameters we applied.

Table 5. The optimal values of α or θ for the three methods on Example 5.2.

N MN-PMHSS MN-GSOR MN-EHS

30 1.86 0.18 1.26

60 1.87 0.18 0.97

90 1.85 0.18 0.87

Table 6. Experimental results for Example 5.2.

N Method Residual CPU time(s) Outer IT Inner IT

30 MN-PMHSS 9.2568 × 10−7 0.0584 3 30
MN-GSOR 9.2682 × 10−8 0.1321 3 82
MN-EHS 9.6867 × 10−9 0.0316 3 12

60 MN-PMHSS 9.1223 × 10−7 0.3841 3 30
MN-GSOR 1.0197 × 10−7 0.8784 3 82
MN-EHS 4.3828 × 10−7 0.2859 3 24

90 MN-PMHSS 9.0837 × 10−7 2.2419 3 30
MN-GSOR 1.0356 × 10−7 4.8795 3 82
MN-EHS 4.3284 × 10−7 1.8615 3 41

From Table 6, which displays the numerical results for N = 30, 60, 90, the MN-EHS method still
outperformed the other two methods in this example.

6. Conclusions

The main aim of this article was to present an iterative method for solving large-scale sparse
nonlinear equations, which typically have complex symmetric Jacobian matrices. Finding solutions
for this type of nonlinear equation system is very important in practical applications of a large number
of scientific calculations. This paper presents the construction of a new MN-EHS method and gives
derivations of the convergence properties. Two academic test examples which arise from differential
equations are given. In the form of tables and data, we have compared the MN-EHS method with
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some methods in existing literature; the results indicate that our proposed method performs better
than existing methods on these types of problems.
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