Citation: Hu Li. The modified quadrature method for Laplace equation with nonlinear boundary conditions[J]. AIMS Mathematics, 2020, 5(6): 6211-6220. doi: 10.3934/math.2020399
[1] | S. Dohr, C. Kahle, S. Rogovs, et al. A FEM for an optimal control problem subject to the fractional Laplace equation, Calcolo, 56 (2019), 1-21. doi: 10.1007/s10092-018-0296-x |
[2] | C. Kuo, W. Yeih, C. Ku, et al. The method of two-point angular basis function for solving Laplace equation, Eng. Anal. Bound. Elem., 106 (2019), 264-274. doi: 10.1016/j.enganabound.2019.05.018 |
[3] | P. Dehghan, M. Dehghan, On the Numerical Solution of Logarithmic Boundary Integral Equations Arising in Laplace's Equations Based on the Meshless Local Discrete Collocation Method, Adv. Appl. Math. Mech., 11 (2019), 807-837. doi: 10.4208/aamm.OA-2018-0050 |
[4] | M. A. Jankowska, Interval Nine-Point Finite Difference Method for Solving the Laplace Equation with the Dirichlet Boundary Conditions, In: Parallel Processing and Applied Mathematics, Springer, Cham, 2016, 474-484. |
[5] | X. Li, J. Oh, Y. Wang, et al. The method of transformed angular basis function for solving the Laplace equation, Eng. Anal. Bound. Elem., 93 (2018), 72-82. doi: 10.1016/j.enganabound.2018.04.001 |
[6] | K. Ruotsalainen, W. Wendland, On the boundary element method for some nonlinear boundary value problems, Numer. Math., 53 (1988), 299-314. doi: 10.1007/BF01404466 |
[7] | K. Maleknejad, H. Mesgaran, Numerical method for a nonlinear boundary integral equation, Appl. Math. Comput., 182 (2006), 1006-1009. |
[8] | P. Assari, M. Dehghan, Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace's equations with nonlinear boundary conditions, Int. J. comput. Math., 96 (2019), 170-198. doi: 10.1080/00207160.2017.1420786 |
[9] | X. Chen, R. Wang, Y. Xu, Fast Fourier-Galerkin Methods for Nonlinear Boundary Integral Equations, J. Sci. Comput., 56 (2013), 494-514. doi: 10.1007/s10915-013-9687-y |
[10] | I. H. Sloan, A. Spence, The Galerkin method for integral equations of the first kind with logarithmic kernel: theory, IMA J. Numer. Anal., 8 (1988), 105-122. doi: 10.1093/imanum/8.1.105 |
[11] | Y. Yan, The collocation method for first-kind boundary integral equations on polygonal regions, Math. Comput., 54 (1990), 139-154. doi: 10.1090/S0025-5718-1990-0995213-6 |
[12] | H. Li, J. Huang, High-accuracy quadrature methods for solving nonlinear boundary integral equations of axisymmetric Laplace's equation, Comput. Appl. Math., 37 (2018), 6838-6847. doi: 10.1007/s40314-018-0714-3 |
[13] | S. Christiansen, Numerical solution of an integral equation with a logarithmic kernel, BIT., 11 (1971), 276-287. doi: 10.1007/BF01931809 |
[14] | M. S. Abou El-Seoud, Numerische behandlung von schwach singulären Integralgleichungen 1. Art. Dissertation, Technische Hochschule Darmstadt, Federal Republic of Germany, Darmstadt, 1979. |
[15] | J. Saranen, The modified quadrature method for logarithmic-kernel integral equations on closed curves, J. Integral Equ. Appl., 3 (1991), 575-600. doi: 10.1216/jiea/1181075650 |
[16] | P. M. Anselone, J. Davis, Collectively Compact Operator Approximation Theory and applications to integral equations, Prentice Hall, 1971. |
[17] | H. Li, J. Huang, A novel approach to solve nonlinear Fredholm integral equations of the second kind, SpringerPlus, 5 (2016), 1-9. doi: 10.1186/s40064-015-1659-2 |