Research article

Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation

  • Received: 03 February 2025 Revised: 14 March 2025 Accepted: 21 March 2025 Published: 27 March 2025
  • MSC : 34A08, 35A15, 35A23

  • In this paper, we investigate the fractional damped Burgers' equation using two efficient analytical approaches: the Laplace least squares residual power series method and the Laplace least squares variational iteration method. These techniques integrate the Laplace transform with the least squares residual power series and least squares variational iteration methods, providing highly accurate solutions for nonlinear fractional differential equations. The fractional derivatives are considered in the sense of the Caputo operator, allowing for a more realistic description of physical phenomena with memory effects. Comparative studies with exact and numerical solutions demonstrate the reliability and accuracy of the results. The proposed methodologies provide a powerful framework for solving nonlinear fractional models in fluid dynamics, shock wave theory, and applied sciences.

    Citation: M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy. Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation[J]. AIMS Mathematics, 2025, 10(3): 7099-7126. doi: 10.3934/math.2025324

    Related Papers:

    [1] Meher Langote, Saniya Saratkar, Praveen Kumar, Prateek Verma, Chetan Puri, Swapnil Gundewar, Palash Gourshettiwar . Human–computer interaction in healthcare: Comprehensive review. AIMS Bioengineering, 2024, 11(3): 343-390. doi: 10.3934/bioeng.2024018
    [2] Kuna Dhananjay Rao, Mudunuru Satya Dev Kumar, Paidi Pavani, Darapureddy Akshitha, Kagitha Nagamaleswara Rao, Hafiz Tayyab Rauf, Mohamed Sharaf . Cardiovascular disease prediction using hyperparameters-tuned LSTM considering COVID-19 with experimental validation. AIMS Bioengineering, 2023, 10(3): 265-282. doi: 10.3934/bioeng.2023017
    [3] Praveen Kumar, Sakshi V. Izankar, Induni N. Weerarathna, David Raymond, Prateek Verma . The evolving landscape: Role of artificial intelligence in cancer detection. AIMS Bioengineering, 2024, 11(2): 147-172. doi: 10.3934/bioeng.2024009
    [4] Shital Hajare, Rajendra Rewatkar, K.T.V. Reddy . Design of an iterative method for enhanced early prediction of acute coronary syndrome using XAI analysis. AIMS Bioengineering, 2024, 11(3): 301-322. doi: 10.3934/bioeng.2024016
    [5] Artur Luczak . How artificial intelligence reduces human bias in diagnostics?. AIMS Bioengineering, 2025, 12(1): 69-89. doi: 10.3934/bioeng.2025004
    [6] Eduardo Federighi Baisi Chagas, Piero Biteli, Bruno Moreira Candeloro, Miguel Angelo Rodrigues, Pedro Henrique Rodrigues . Physical exercise and COVID-19: a summary of the recommendations. AIMS Bioengineering, 2020, 7(4): 236-241. doi: 10.3934/bioeng.2020020
    [7] Norliyana Nor Hisham Shah, Rashid Jan, Hassan Ahmad, Normy Norfiza Abdul Razak, Imtiaz Ahmad, Hijaz Ahmad . Enhancing public health strategies for tungiasis: A mathematical approach with fractional derivative. AIMS Bioengineering, 2023, 10(4): 384-405. doi: 10.3934/bioeng.2023023
    [8] Maria Waqas, Urooj Ainuddin, Umar Iftikhar . An analog electronic circuit model for cAMP-dependent pathway—towards creation of Silicon life. AIMS Bioengineering, 2022, 9(2): 145-162. doi: 10.3934/bioeng.2022011
    [9] Daria Wehlage, Hannah Blattner, Al Mamun, Ines Kutzli, Elise Diestelhorst, Anke Rattenholl, Frank Gudermann, Dirk Lütkemeyer, Andrea Ehrmann . Cell growth on electrospun nanofiber mats from polyacrylonitrile (PAN) blends. AIMS Bioengineering, 2020, 7(1): 43-54. doi: 10.3934/bioeng.2020004
    [10] Leelakrishna Reddy, Segun Akinola . Transforming healthcare with the synergy of biotechnology and information technology. AIMS Bioengineering, 2023, 10(4): 421-439. doi: 10.3934/bioeng.2023025
  • In this paper, we investigate the fractional damped Burgers' equation using two efficient analytical approaches: the Laplace least squares residual power series method and the Laplace least squares variational iteration method. These techniques integrate the Laplace transform with the least squares residual power series and least squares variational iteration methods, providing highly accurate solutions for nonlinear fractional differential equations. The fractional derivatives are considered in the sense of the Caputo operator, allowing for a more realistic description of physical phenomena with memory effects. Comparative studies with exact and numerical solutions demonstrate the reliability and accuracy of the results. The proposed methodologies provide a powerful framework for solving nonlinear fractional models in fluid dynamics, shock wave theory, and applied sciences.



    The classical convexity and concavity of functions are two fundamental notions in mathematics, they have widely applications in many branches of mathematics and physics [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]. The origin theory of convex functions is generally attributed to Jensen [31]. The well-known book [32] played an indispensable role in the the theory of convex functions.

    The significance of inequalities is increasing day by day in the real world because of their fertile applications in our life and used to solve many complex problems in all areas of science and technology [33,34,35,36,37,38,39,40]. Integral inequalities have numerous applications in number theory, combinatorics, orthogonal polynomials, hypergeometric functions, quantum theory, linear programming, optimization theory, mechanics and in the theory of relativity [41,42,43,44,45,46,47,48]. This subject has received considerable attention from researchers [49,50,51,52,53,54] and hence it is assumed as an incorporative subject between mathematics, statistics, economics, and physics [55,56,57,58,59,60].

    One of the most well known and considerably used inequalities for convex function is the Hermite-Hadamard inequality, which can be stated as follows.

    Let IR be an interval, Y:IR be a convex function. Then the double inequality

    Y(ρ1+ρ22)1ρ2ρ1ρ2ρ1Y(ϱ)dϱY(ρ1)+Y(ρ2)2 (1.1)

    holds for all ρ1,ρ2I with ρ1ρ2. If Y is concave on the interval I, then the reversed inequality (1.1) holds.

    The Hermite-Hadamard inequality (1.1) has wide applications in the study of functional analysis (geometry of Banach spaces) and in the field of non-linear analysis [61]. Interestingly, both sides of the above integral inequality (1.1) can characterize the convex functions.

    Closely related to the convex (concave) functions, we have the concept of exponentially convex (concave) functions. The exponentially convex (concave) functions can be considered as a noteworthy extension of the convex functions and have potential applications in information theory, big data analysis, machine learning, and statistics [62,63]. Bernstein [64] and Antczak [65] introduced these exponentially convex functions implicitly and discuss their role in mathematical programming. Dragomir and Gomm [66] and Rashid et al. [67] established novel outcomes for these exponentially convex functions.

    Now we recall the concept of exponentially convex functions, which is mainly due to Awan et al. [68].

    Definition 1.1. ([68]) Let θR. Then a real-valued function Y:[0,)R is said to be θ-exponentially convex if

    Y(τρ1+(1τ)ρ2)τeθρ1Y(ρ1)+(1τ)eθρ2Y(ρ2) (1.2)

    for all ρ1,ρ2[0,) and τ[0,1]. Inequality (1.2) will hold in the reverse direction if Y is concave.

    For example, the mapping Y:RR, defined by Y(υ)=υ2 is a concave function, thus this mapping is an exponentially convex for all θ>0. Exponentially convex functions are employed for statistical analysis, recurrent neural networks, and experimental designs. The exponentially convex functions are highly useful due to their dominant features.

    Recall the concept of exponentially quasi-convex function, introduced by Nie et al. [69].

    Definition 1.2. ([69]) Let θR. Then a mapping Y:[0,)RR is said to be θ-exponentially quasi-convex if

    Y(τρ1+(1τ)ρ2)max{eθρ1Y(ρ1),eθρ2Y(ρ2)}

    for all ρ1,ρ2[0,) and τ[0,1].

    Kirmaci [70], and Pearce and Pečarič [71] established the new inequalities involving the convex functions as follows.

    Theorem 1.3. ([70]) Let IR be an interval, ρ1,ρ1I with ρ1<ρ2, and Y:IR be a differentiable mapping on I (where and in what follows I denotes the interior of I) such that YL([ρ1,ρ2]) and |Y| is convex on [ρ1,ρ2]. Then

    |Y(ρ1+ρ22)1ρ2ρ1ρ2ρ1Y(ϱ)dϱ|(ρ2ρ1)(|Y(ρ1)|+|Y(ρ2)|)8. (1.3)

    Theorem 1.4. ([71]) Let λR with λ0, IR be an interval, ρ1,ρ1I with ρ1<ρ2, and Y:IR be a differentiable mapping on I such that YL([ρ1,ρ2]) and |Y|λ is convex on [ρ1,ρ2]. Then

    |Y(ρ1+ρ22)1ρ2ρ1ρ2ρ1Y(ϱ)dϱ|(ρ2ρ1)4[|Y(ρ1)|λ+|Y(ρ2)|2]1λ. (1.4)

    The principal objective of this work is to determine the novel generalizations for weighted variants of (1.3) and (1.4) associated with the class of functions whose derivatives in absolute value at certain powers are exponentially convex with the aid of the auxiliary result. Moreover, an analogous improvement is developed for exponentially quasi-convex functions. Utilizing the obtained consequences, some new bounds for the weighted mean formula, rth moments of a continuous random variable and special bivariate means are established. The repercussions of the Hermite-Hadamard inequalities have depicted the presentations for various existing outcomes. Results obtained by the application of the technique disclose that the suggested scheme is very accurate, flexible, effective and simple to use.

    In what follows we use the notations

    L(ρ1,ρ2,τ)=n+τn+1ρ1+1τn+1ρ2

    and

    M(ρ1,ρ2,τ)=1τn+1ρ1+n+τn+1ρ2

    for τ[0,1] and all nN.

    From now onwards, let ρ1,ρ2R with ρ1<ρ2 and I=[ρ1,ρ2], unless otherwise specified. The following lemma presented as an auxiliary result which will be helpful for deriving several new results.

    Lemma 2.1. Let nN, Y:IR be a differentiable mapping on I such that YL1([ρ1,ρ2]), and U:[ρ1,ρ2][0,) be differentiable mapping. Then one has

    12[U(ρ1)[Y(ρ1)+Y(ρ2)]{U(nρ1+ρ2n+1)U(ρ1+nρ2n+1)+U(ρ2)}Y(nρ1+ρ2n+1)
    {U(nρ1+ρ2n+1)U(ρ1+nρ2n+1)+U(ρ2)}Y(nρ1+ρ2n+1)]+ρ2ρ12(n+1)10{[Y(n+τn+1ρ1
    1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)][U(n+τn+1ρ1+1τn+1ρ2)+U(1τn+1ρ1+n+τn+1ρ2)]}dτ
    =ρ2ρ12(n+1){10[U(n+τn+1ρ1+1τn+1ρ2)U(1τn+1ρ1+n+τn+1ρ2)+U(ρ2)]
    ×[Y(n+τn+1ρ1+1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)]dτ}. (2.1)

    Proof. It follows from integration by parts that

    I1=10[U(n+τn+1ρ1+1τn+1ρ2)U(1τn+1ρ1+n+τn+1ρ2)+U(ρ2)]Y(n+τn+1ρ1+1τn+1ρ2)dτ
    =n+1ρ2ρ1{U(n+τn+1ρ1+1τn+1ρ2)U(1τn+1ρ1+n+τn+1ρ2)+U(ρ2)}Y(n+τn+1ρ1+1τn+1ρ2)|10
    ρ1ρ2n+110Y(n+τn+1ρ1+1τn+1ρ2)[U(n+τn+1ρ1+1τn+1ρ2)+U(1τn+1ρ1+n+τn+1ρ2)]dτ
    =n+1ρ2ρ1[U(ρ1)Y(ρ1)[U(nρ1+ρ2n+1)U(ρ1+nρ2n+1)+U(ρ2)]]Y(nρ1+ρ2n+1)
    +10Y(n+τn+1ρ1+1τn+1ρ2)[U(n+τn+1ρ1+1τn+1ρ2)+U(1τn+1ρ1+n+τn+1ρ2)]dτ.

    Similarly, we have

    I2=10[U(n+τn+1ρ1+1τn+1ρ2)U(1τn+1ρ1+n+τn+1ρ2)+U(ρ2)]Y(1τn+1ρ1+n+τn+1ρ2)dτ
    =n+1ρ2ρ1[U(ρ1)Y(ρ1)[U(nρ1+ρ2n+1)U(ρ1+nρ2n+1)+U(ρ2)]]Y(nρ1+ρ2n+1)
    +10Y(1τn+1ρ1+n+τn+1ρ2)[U(n+τn+1ρ1+1τn+1ρ2)+U(1τn+1ρ1+n+τn+1ρ2)]dτ.

    Adding I1 and I2, then multiplying by ρ2ρ12(n+1) we get the desired identity (2.1).

    Theorem 2.2. Let nN, θR, Y:IR be a differentiable mapping on I such that |Y| is θ-exponentially convex on I, and V:I[0,) be a continuous and positive mapping such it is symmetric with respect to nρ1+ρ2n+1. Then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ1n+1[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ. (2.2)

    Proof. Let τ[ρ1,ρ2] and Y(τ)=τρ1V(ϱ)dϱ. Then it follows from Lemma 2.1 that

    ρ2ρ12(n+1)10[Y(n+τn+1ρ1+1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)][V(n+τn+1ρ1+1τn+1ρ2)
    +V(1τn+1ρ1+n+τn+1ρ2)]dτY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ
    =ρ2ρ12(n+1)10{L(ρ1,ρ2,τ)ρ1V(ϱ)dϱ+ρ2M(ρ1,ρ2,τ)V(ϱ)dϱ}
    ×[Y(n+τn+1ρ1+1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)]dτ. (2.3)

    Since V(ϱ) is symmetric with respect to ϱ=nρ1+ρ2n+1, we have

    ρ2ρ12(n+1)10[Y(n+τn+1ρ1+1τn+1ρ2)+Y(1τn+1ρ1+n+τn+1ρ2)][V(n+τn+1ρ1+1τn+1ρ2)
    +V(1τn+1ρ1+n+τn+1ρ2)]dτ
    =ρ2ρ1(n+1)10Y(n+τn+1ρ1+1τn+1ρ2)V(n+τn+1ρ1+1τn+1ρ2)dτ
    +ρ2ρ1(n+1)10Y(1τn+1ρ1+n+τn+1ρ2)V(1τn+1ρ1+n+τn+1ρ2)dτ
    =nρ1+ρ2n+1ρ1Y(ϱ)V(ϱ)dϱ+ρ2ρ1+nρ2n+1Y(ϱ)V(ϱ)dϱ=ρ2ρ1Y(ϱ)V(ϱ)dϱ (2.4)

    and

    L(ρ1,ρ2,τ)ρ1V(ϱ)dϱ=ρ2M(ρ1,ρ2,τ)V(ϱ)dϱτ[0,1]. (2.5)

    From (2.3)–(2.5) we clearly see that

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ1n+1{10L(ρ1,ρ2,τ)ρ1|Y(n+τn+1ρ1+1τn+1ρ2)|dτ+10L(ρ1,ρ2,τ)ρ1|Y(1τn+1ρ1+n+τn+1ρ2)|dτ}. (2.6)

    Making use of the exponentially convexity of |Y| we get

    10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(n+τn+1ρ1+1τn+1ρ2)|dϱdτ+10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(1τn+1ρ1+n+τn+1ρ2)|dϱdτ
    10L(ρ1,ρ2,τ)ρ1V(ϱ)[n+τn+1|eθρ1Y(ρ1)|+1τn+1|eθρ2Y(ρ2)|+1τn+1|eθρ1Y(ρ1)+n+τn+1|eθρ2Y(ρ2)||]dϱdτ
    =[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ. (2.7)

    Therefore, inequality (2.2) follows from (2.6) and (2.7).

    Corollary 2.1. Let θ=0. Then Theorem 2.2 leads to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ1n+1[|Y(ρ1)|+|Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.2. Let n=1. Then Theorem 2.2 reduces to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(ρ1+ρ22)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ12[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.3. Let V(ϱ)=1. Then then Theorem 2.3 becomes

    |Y(nρ1+ρ2n+1)1ρ2ρ1ρ2ρ1Y(ϱ)dϱ|
    ρ2ρ12(n+1)2[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|].

    Remark 2.1. Theorem 2.2 leads to the conclusion that

    (1) If n=1 and θ=0, then we get Theorem 2.2 of [72].

    (2) If n=V(ϱ)=1 and θ=0, then we obtain inequality (1.2) of [70]

    Theorem 2.3. Taking into consideration the hypothesis of Theorem 2.2 and λ1. If θR and |Y|λ is θ-exponentially convex on I, then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    2(ρ2ρ1)n+1[|eθρ1Y(ρ1)|λ+|eθρ2Y(ρ2)|λ2]1λ10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ (2.8)

    for all nN.

    Proof. Continuing inequality (2.6) in the proofs of Theorem 2.2 and using the well-known Hölder integral inequality, one has

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    ρ2ρ1n+1{(10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ)11λ(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(n+τn+1ρ1+1τn+1ρ2)|λdϱdτ)1λ
    +(10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ)11λ(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(1τn+1ρ1+n+τn+1ρ2)|λdϱdτ)1λ}
    ρ2ρ1n+1(10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ)11λ{(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(n+τn+1ρ1+1τn+1ρ2)|λdϱdτ)1λ
    +(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(1τn+1ρ1+n+τn+1ρ2)|λdϱdτ)1λ}. (2.9)

    It follows from the power-mean inequality

    μa+νa<21a(μ+ν)a

    for μ,ν>0 and a<1 that

    (10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(n+τn+1ρ1+1τn+1ρ2)|λdϱdτ)1λ (2.10)
    +(10L(ρ1,ρ2,τ)ρ1V(ϱ)|Y(1τn+1ρ1+n+τn+1ρ2)|λdϱdτ)1λ
    211λ{10L(ρ1,ρ2,τ)ρ1V(ϱ)(|Y(n+τn+1ρ1+1τn+1ρ2)|λ+|Y(1τn+1ρ1+n+τn+1ρ2)|λ)dϱdτ}1λ.

    Since |Y|λ is an θ-exponentially convex on I, we have

    |Y(n+τn+1ρ1+1τn+1ρ2)|λ+|Y(1τn+1ρ1+n+τn+1ρ2)|
    n+τn+1|eθρ1Y(ρ1)|q+1τn+1|eθρ2Y(ρ2)|q+1τn+1|eθρ1Y(ρ1)|q+n+τn+1|eθρ2Y(ρ2)|q
    =|eθρ1Y(ρ1)|q+|eθρ2Y(ρ2)|q. (2.11)

    Combining (2.9)–(2.11) gives the required inequality (2.8).

    Corollary 2.4. Let n=1. Then Theorem 2.3 reduces to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(ρ1+ρ22)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)[|eθρ1Y(ρ1)|λ+|eθρ2Y(ρ2)|λ2]1λ10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.5. Let θ=0. Then Theorem 2.3 leads to

    |ρ2ρ1Y(x)V(x)dxY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    2(ρ2ρ1)n+1[|Y(ρ1)|λ+|Y(ρ2)|λ2]1λ10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.6. Let V(ϱ)=1. Then Theorem 2.3 becomes

    |Y(nρ1+ρ2n+1)1ρ2ρ1ρ2ρ1Y(ϱ)dϱ|(ρ2ρ1)2(n+1)[|Y(ρ1)|λ+|Y(ρ2)|λ2]1λ.

    Remark 2.2. From Theorem 2.3 we clearly see that

    (1) If n=1 and θ=0, then we get Theorem 2.4 in [72].

    (2) If V(ϱ)=n=1 and θ=0, then we get inequality (1.3) in [71].

    In the following result, the exponentially convex functions in Theorem 2.3 can be extended to exponentially quasi-convex functions.

    Theorem 2.4. Using the hypothesis of Theorem 2.2. If |Y| is θ-exponentially quasi-convex on I, then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ| (2.12)
    (ρ2ρ1)n+1[max{|eθρ1Y(ρ1)|,|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|}
    +max{|eθρ2Y(ρ2)|,|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|}]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ

    for all nN.

    Proof. Using the exponentially quasi-convexity of |Y| for (2.6) in the proofs of Theorem 2.2, we get

    |Y(n+τn+1ρ1+1τn+1ρ2)|=max{|eθρ1Y(ρ1)|,|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|} (2.13)

    and

    |Y(1τn+1ρ1+n+τn+1ρ2)|=max{|eθρ2Y(ρ2)|,|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|}. (2.14)

    Combining (2.6), (2.13) and (2.14), we get the desired inequality (2.12).

    Next, we discuss some special cases of Theorem 2.4 as follows.

    Corollary 2.7. Let n=1. Then Theorem 2.4 reduces to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(ρ1+ρ22)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)2[max{|eθρ1Y(ρ1)|,|eθ(ρ1+ρ22)Y(ρ1+ρ22)|}
    +max{|eθρ2Y(ρ2)|,|eθ(ρ1+ρ22)Y(ρ1+ρ22)|}]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.8. Let θ=0. Then Theorem 2.4 leads to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)n+1[max{|Y(ρ1)|,|Y(nρ1+ρ2n+1)|}
    +max{|Y(ρ2)|,|Y(ρ1+nρ2n+1)|}]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.9. Let V(x)=1. Then Theorem 2.4 becomes

    |Y(nρ1+ρ2n+1)1ρ2ρ1ρ2ρ1Y(x)dx|
    (ρ2ρ1)2(n+1)[max{|Y(ρ1)|,|Y(nρ1+ρ2(n+1))|}
    +max{|Y(ρ2)|,|Y(ρ1+nρ2n+1)|}].

    Remark 2.3. If |Y| is increasing in Theorem 2.4, then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ| (2.15)
    (ρ2ρ1)n+1[|eθρ2Y(ρ2)|+|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|]10L.(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ

    If |Y| is decreasing in Theorem 2.4, then

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ| (2.16)
    (ρ2ρ1)n+1[|eθρ1Y(ρ1)|+|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Remark 2.4. From Theorem 2.4 we clearly see that

    (1) Let n=1 and θ=0. Then Theorem 2.4 and Remark 2.3 lead to Theorem 2.8 and Remark 2.9 of [72], respectively.

    (2). Let n=V(ϱ)=1 and θ=0. Then we get Corollary 2.10 and Remark 2.11 of [72].

    Theorem 2.5. Suppose that all the hypothesis of Theorem 2.2 are satisfied, θR and λ1. If |Y|λ is θ-exponentially quasi-convex on I, then we have

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ| (2.17)
    (ρ2ρ1)n+1[(max{|eθρ1Y(ρ1)|λ,|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|λ})1λ
    +(max{|eθρ2Y(ρ2)|λ,|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|λ})1λ]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ

    for all nN.

    Proof. It follows from the exponentially quasi-convexity of |Y|λ and (2.6) that

    |Y(n+τn+1ρ1+1τn+1ρ2)|λmax{|eθρ1Y(ρ1)|λ,|eθ(nρ1+ρ2n+1)Y(nρ1+ρ2n+1)|λ} (2.18)

    and

    |Y(1τn+1ρ1+n+τn+1ρ2)|λmax{|eθρ2Y(ρ2)|λ,|eθ(ρ1+nρ2n+1)Y(ρ1+nρ2n+1)|λ}. (2.19)

    A combination of (2.6), (2.18) and (2.19) lead to the required inequality (2.17).

    Corollary 2.10. Let n=1. Then Theorem 2.5 reduces to

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(ρ1+ρ22)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)2[(max{|eθρ1Y(ρ1)|λ,|eθ(ρ1+ρ22)Y(ρ1+ρ22)|λ})1λ
    +(max{|eθρ2Y(ρ2)|λ,|eθ(ρ1+1ρ22)Y(ρ1+ρ22)|λ})1λ]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    Corollary 2.11. If θ=0, then Theorem 2.5 leads to the conclusion that

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    (ρ2ρ1)n+1[max{|Y(ρ1)|,|Y(nρ1+ρ2n+1)|}
    +max{|Y(ρ2)|,|Y(ρ1+nρ2n+1)|}]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ.

    In this section, we support our main results by presenting two examples.

    Example 3.1. Let ρ1=0, ρ2=π, θ=2, n=1, Y(ϱ)=sinϱ and V(ϱ)=cosϱ. Then all the assumptions in Theorem 2.2 are satisfied. Note that

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    =|π0sinϱcosϱdϱsinπ2π0cosϱdϱ|=1 (3.1)

    and

    ρ2ρ1n+1[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ
    =π2[|e0cos0)|+|e2πcosπ|]10L(0,π,τ)0cosϱdϱdτ
    =536.50π210(1τ)π20cosϱdϱdτ536.5. (3.2)

    From (3.1) and (3.2) we clearly Example 3.1 supports the conclusion of Theorem 2.2.

    Example 3.2. Let ρ1=0, ρ2=2, θ=0.5, n=2, Y(ϱ)=ϱ+2 and V(ϱ)=ϱ. Then all the assumptions in Theorem 2.2 are satisfied. Note that

    |ρ2ρ1Y(ϱ)V(ϱ)dϱY(nρ1+ρ2n+1)ρ2ρ1V(ϱ)dϱ|
    =|20ϱϱ+2dϱ8320ϱdϱ|0.3758 (3.3)

    and

    ρ2ρ1n+1[|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ
    =23[|e0.5(0)122)|+|e0.5(2)14|]10L(0,2,τ)0ϱdϱdτ
    =0.6887102(1τ)30ϱdϱdτ1.0332. (3.4)

    From (3.3) and (3.4) we clearly see that Example 3.2 supports the conclusion of Theorem 2.2.

    Let Δ be a partition: ρ1=ϱ0<ϱ2<<ϱn1<ϱn=ρ2 of the interval [ρ1,ρ2] and consider the quadrature formula

    ρ2ρ1Y(ϱ)V(ϱ)dϱ=T(Y,V,p)+E(Y,V,p), (4.1)

    where

    T(Y,V,p)=κ1j=0Y(nϱj+ϱj+1n+1)ϱj+1ϱjV(ϱ)dϱ

    is weighted mean and E(Y,V,p) is the related approximation error.

    The aim of this subsection is to provide several new bounds for E(Y,V,p).

    Theorem 4.1. Let λ1, θR, and |Y|λ be θ-exponentially convex on I. Then the inequality

    |E(Y,V,p)|κ1j=0(ϱj+1ϱj)(|eθϱjY(ϱj)|λ+|eθϱj+1Y(ϱj+1)|λ2)1λ10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ

    holds for any pI if all the conditions of Theorem 2.2 are satisfied.

    Proof. Applying Theorem 2.3 to the interval [ϱj,ϱj+1] (j=0,1,...,κ1) of the partition Δ, we get

    |Y(nϱj+ϱj+1n+1)ϱj+1ϱjV(ϱ)dϱϱj+1ϱjY(ϱ)V(ϱ)dϱ|
    (ϱj+1ϱj)(|eθϱjY(ϱj)|λ+|eθϱj+1Y(ϱj+1)|λ2)1λ10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ.

    Summing the above inequality on j from 0 to κ1 and making use of the triangle inequality together with the exponential convexity of |Y|λ lead to

    |T(Y,V,p)ρ2ρ1Y(ϱ)V(ϱ)dϱ|
    κ1j=0(ϱj+1ϱj)(|eθϱjY(ϱj)|λ+|eθϱj+1Y(ϱj+1)|λ2)1λ10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ,

    this completes the proof of Theorem 4.1.

    Theorem 4.2. Let λ1, θR, and |Y|λ be θ-exponentially convex on I. Then the inequality

    |E(Y,V,p)|
    1n+1κ1j=0(ϱj+1ϱj)[[max{|eθϱjY(ϱj)|λ,|eθ(nϱj+ϱj+1n+1)Y(nϱj+ϱj+1n+1)|λ}]1λ
    +[max{|eθϱj+1Y(ϱj+1)|λ,|eθ(ϱj+nϱj+1n+1)τY(ϱj+nϱj+1n+1)|λ}]1λ]10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ

    holds for every partition Δ of I if all the hypothesis of Theorem 2.2 are satisfied.

    Proof. Making use of Theorem 2.5 on the interval [ϱj,ϱj+1] (j=0,1,,κ1) of the partition , we get

    |Y(nϱj+ϱj+1n+1)ϱj+1ϱjV(ϱ)dϱϱj+1ϱjY(ϱ)V(ϱ)dϱ|
    (ϱj+1ϱj)n+1[[max{|eθϱjY(ϱj)|λ,|eθ(nϱj+ϱj+1n+1)Y(nϱj+ϱj+1n+1)|λ}]1λ
    +[max{|eθϱj+1Y(ϱj+1)|λ,|eθ(ϱj+nϱj+1n+1)Y(ϱj+nϱj+1n+1)|λ}]1λ]10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ.

    Summing the above inequality on j from 0 to κ1 and making use the triangle inequality together with the exponential convexity of |Y|λ lead to the conclusion that

    |T(Y,V,p)ρ2ρ1Y(ϱ)V(ϱ)dϱ|
    1n+1κ1j=0(ϱj+1ϱj)[[max{|eθϱjY(ϱj)|λ,|eθ(nϱj+ϱj+1n+1)Y(nϱj+ϱj+1n+1)|λ}]1λ
    +[max{|eθϱj+1Y(ϱj+1)|λ,|eθ(ϱj+nϱj+1n+1)Y(ϱj+nϱj+1n+1)|λ}]1λ]10L(ϱj,ϱj+1,τ)ϱjV(ϱ)dϱdτ,

    this completes the proof of Theorem 4.2.

    Let 0<ρ1<ρ2, rR, V:[ρ1,ρ2][0,] be continuous on [ρ1,ρ2] and symmetric with respect to nρ1+ρ2n+1 and X be a continuous random variable having probability density function V. Then the rth-moment Er(X) of X is given by

    Er(X)=ρ2ρ1τrV(τ)dτ

    if it is finite.

    Theorem 4.3. The inequality

    |Er(X)(nρ1+ρ2n+1)r|r(ρ2ρ1)(n+1)2[|eθρ1ρr11|+|eθρ2ρr12|]

    holds for 0<ρ1<ρ2 and r2.

    Proof. Let Y(τ)=τr. Then |Y(τ)|=rτr1 is exponentially convex function. Note that

    ρ2ρ1Y(ϱ)V(ϱ)dϱ=Er(X),L(ρ1,ρ2,τ)ρ1V(ϱ)dϱnρ1+ρ2n+1ρ1V(ϱ)dϱ=1n+1(τ[0,1]),
    Y(nρ1+ρ2n+1)=(nρ1+ρ2n+1)r,|eθρ1Y(ρ1)|+|eθρ2Y(ρ2)|=r(eθρ1ρr11+eθρ2ρr12).

    Therefore, the desired result follows from inequality (2.2) immediately.

    Theorem 4.4. The inequality

    |Er(X)(nρ1+ρ2n+1)r|r(ρ2ρ1)(n+1)2[|eθρ2ρr12|+|eθ(nρ1+ρ2n+1)(nρ1+ρ2n+1)r1|]

    holds for 0<ρ1<ρ2 and r1.

    Proof. Let Y(τ)=τr. Then |Y(τ)|=rτr1 is increasing and exponentially quasi-convex, and the desired result can be obtained by use of inequality (2.15) and the similar arguments of Theorem 4.3.

    A real-valued function Ω:(0,)×(0,)(0,) is said to be a bivariate mean if min{ρ1,ρ2}Ω(ρ1,ρ2)max{ρ1,ρ2} for all ρ1,ρ2(0,). Recently, the properties and applications for the bivariate means and their related special functions have attracted the attention of many researchers [73,74,75,76,77,78,79,80,81,82,83,84,85,86]. In particular, many remarkable inequalities for the bivariate means can be found in the literature [87,88,89,90,91,92,93,94,95,96].

    In this subsection, we use the results obtained in Section 2 to give some applications to the special bivariate means.

    Let ρ1,ρ2>0 with ρ1ρ2. Then the arithmetic mean A(ρ1,ρ2), weighted arithmetic mean A(ρ1,ρ2;w1,w2) and n-th generalized logarithmic mean Ln(ρ1,ρ2) are defined by

    A(ρ1,ρ2)=ρ1+ρ12,A(ρ1,ρ2;w1,w2)=w1ρ1+w2ρ2w1+w2

    and

    Ln(ρ1,ρ2)=[ρn+12ρn+11(n+1)(ρ2ρ1)]1/n.

    Let ϱ>0, rN, Y(ϱ)=ϱr and V:[ρ1,ρ2]R+ be a differentiable mapping such that it is symmetric with respect to nρ1+ρ2n+1. Then Theorem 2.2 implies that

    |(nρ1+ρ2n+1)rρ2ρ1V(ϱ)dϱρ2ρ1ϱrV(ϱ)dϱ|r(ρ2ρ1)n+1[|eθρ1ρn11|+|eθρ2ρn12|]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ,

    which can be rewritten as

    |(A(ρ1,ρ2;n,1))rρ2ρ1V(ϱ)dϱρ2ρ1ϱrV(ϱ)dϱ|
    2r(ρ2ρ1)n+1[A(|eθρ1ρn11|,|eθρ2ρn12|)]10L(ρ1,ρ2,τ)ρ1V(ϱ)dϱdτ. (4.2)

    Let V=1. Then inequality (4.2) leads to Corollary 4.1 immediately.

    Corollary 4.1. Let ρ2>ρ1>0, rN and r2. Then one has

    |(A(ρ1,ρ2;n,1))rLrr(ρ1,ρ2)|r(ρ2ρ1)2(n+1)2[A(|eθρ1ρn11|,|eθρ2ρn12|)].

    We conducted a preliminary attempt to develop a novel formulation presumably for new Hermite-Hadamard type for proposing two new classes of exponentially convex and exponentially quasi-convex functions and presented their analogues. An auxiliary result was chosen because of its success in leading to the well-known Hermite-Hadamard type inequalities. An intriguing feature of an auxiliary is that this simple formulation has significant importance while studying the error bounds of different numerical quadrature rules. Such a potential the connection needs further investigation. We conclude that the results derived in this paper are general in character and give some contributions to inequality theory and fractional calculus as an application for establishing the uniqueness of solutions in boundary value problems, fractional differential equations, and special relativity theory. This interesting aspect of time is worth further investigation. Finally, the innovative concept of exponentially convex functions has potential application in rth-moments and special bivariate mean to show the reported result. Our findings are the refinements and generalizations of the existing results that stimulate futuristic research.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    The research is supported by the Natural Science Foundation of China (Grant Nos. Grant Nos. 11701176, 61673169, 11301127, 11626101, 11601485).

    The authors declare that they have no competing interests.



    [1] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
    [2] M. Sinan, K. Shah, P. Kumam, I. Mahariq, K. J. Ansari, Z. Ahmad, et al., Fractional order mathematical modeling of typhoid fever disease, Results Phys., 32 (2022), 105044. https://doi.org/10.1016/j.rinp.2021.105044 doi: 10.1016/j.rinp.2021.105044
    [3] S. L. Wu, M. Al-Khaleel, Convergence analysis of the Neumann-Neumann waveform relaxation method for time-fractional RC circuits, Simul. Model. Pract. Theory, 64 (2016), 43–56. https://doi.org/10.1016/j.simpat.2016.01.002 doi: 10.1016/j.simpat.2016.01.002
    [4] Y. Sun, J. Lu, M. Zhu, A. A. Alsolami, Numerical analysis of fractional nonlinear vibrations of a restrained cantilever beam with an intermediate lumped mass, J. Low Freq. Noise, Vibrat. Active Control, 44 (2024), 178–189. https://doi.org/10.1177/14613484241285502 doi: 10.1177/14613484241285502
    [5] S. L. Wu, M. Al-Khaleel, Parameter optimization in waveform relaxation for fractional-order RC circuits, IEEE Trans. Circuits Syst. I: Regular Papers, 64 (2017), 1781–1790. https://doi.org/10.1109/TCSI.2017.2682119 doi: 10.1109/TCSI.2017.2682119
    [6] J. Wang, X. Jiang, X. Yang, H. Zhang, A compact difference scheme for mixed-type time-fractional black-Scholes equation in European option pricing, Math. Meth. Appl. Sci., 48 (2025), 6818–6829. https://doi.org/10.1002/mma.10717 doi: 10.1002/mma.10717
    [7] T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., 2025. https://doi.org/10.1007/s12190-025-02386-3
    [8] K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comp. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
    [9] Z. Chen, H. Zhang, H. Chen, ADI compact difference scheme for the two-dimensional integro-differential equation with two fractional Riemann-Liouville integral kernels, Fractal Fract., 8 (2024), 707. https://doi.org/10.3390/fractalfract8120707 doi: 10.3390/fractalfract8120707
    [10] X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwanese J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
    [11] D. Baleanu, Z. B. Guvenc, J. T. Machado, New trends in nanotechnology and fractional calculus applications, New York: Springer, 2010.
    [12] N. H. Sweilam, M. M. Abou Hasan, D. Baleanu, New studies for general fractional financial models of awareness and trial advertising decisions, Chaos Solit. Fract., 104 (2017), 772–784. https://doi.org/10.1016/j.chaos.2017.09.013 doi: 10.1016/j.chaos.2017.09.013
    [13] D. Baleanu, G. C. Wu, S. D. Zeng, Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Solit. Fract., 102 (2017), 99–105. https://doi.org/10.1016/j.chaos.2017.02.007 doi: 10.1016/j.chaos.2017.02.007
    [14] P. Veeresha, D. G. Prakasha, H. Mehmet Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos: Interdiscipl. J. Nonlinear Sci., 29 (2019), 013119. https://doi.org/10.1063/1.5074099 doi: 10.1063/1.5074099
    [15] S. Noor, H. A. Alyousef, A. Shafee, R. Shah, S. A. El-Tantawy, A novel analytical technique for analyzing the (3+ 1)-dimensional fractional calogero-bogoyavlenskii-schiff equation: investigating solitary/shock waves and many others physical phenomena, Phys, Scr., 99 (2024), 065257. https://doi.org/10.1088/1402-4896/ad49d9 doi: 10.1088/1402-4896/ad49d9
    [16] E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers's equation, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607
    [17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [18] X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
    [19] X. Shen, X. Yang, H. Zhang, The high-order ADI difference method and extrapolation method for solving the two-dimensional nonlinear parabolic evolution equations, Mathematics, 12 (2024), 3469. https://doi.org/10.3390/math12223469 doi: 10.3390/math12223469
    [20] Y. Shi, X. Yang, Z. Zhang, Construction of a new time-space two-grid method and its solution for the generalized Burgers' equation, Appl. Math. Lett., 158 (2024), 109244. https://doi.org/10.1016/j.aml.2024.109244 doi: 10.1016/j.aml.2024.109244
    [21] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [22] X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [23] Q. Wang, Homotopy perturbation method for fractional KdV-Burgers's equation, Chaos Solit. Fract., 35 (2008), 843850. https://doi.org/10.1016/j.chaos.2006.05.074 doi: 10.1016/j.chaos.2006.05.074
    [24] S. Anil Sezer, A. Yildırım, S. Tauseef Mohyud-Din, He's homotopy perturbation method for solving the fractional KdV-Burgers's-Kuramoto equation, Int. J. Numer. Meth. Heat Fluid Flow, 21 (2011), 448–458.
    [25] G. C. Wu, D. Baleanu, Variational iteration method for the Burgers's' flow with fractional derivatives-new Lagrange multipliers, Appl. Math. Model., 37 (2013), 6183–6190. https://doi.org/10.1016/j.apm.2012.12.018 doi: 10.1016/j.apm.2012.12.018
    [26] M. Inc, The approximate and exact solutions of the space-and time-fractional Burgers's equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. https://doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007
    [27] A. Esen, N. M. Yagmurlu, O. Tasbozan, Approximate analytical solution to time-fractional damped Burgers' and Cahn-Allen equations, Appl. Math. Inf. Sci., 7 (2013), 1951–1956. http://doi.org/10.12785/amis/070533 doi: 10.12785/amis/070533
    [28] H. Jafari, V. Daftardar-Gejji, Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Appl. Math. Comput., 180 (2006), 488–497. https://doi.org/10.1016/j.amc.2005.12.031 doi: 10.1016/j.amc.2005.12.031
    [29] J. Lu, Y. Sun, Numerical approaches to time fractional boussinesq-burgers equations, Fractals, 29 (2021), 2150244. https://doi.org/10.1142/S0218348X21502443 doi: 10.1142/S0218348X21502443
    [30] J. Singh, D. Kumar, M. A. Qurashi, Baleanu, Analysis of a new fractional model for damped Bergers' equation, Open Phys., 15 (2017), 35–41. https://doi.org/10.1515/phys-2017-0005 doi: 10.1515/phys-2017-0005
    [31] B. M. Vaganan, M. S. Kumaran, Kummer function solutions of damped Burgers's equations with time-dependent viscosity by exact linearization, Nonlinear Anal.: Real World Appl., 9 (2008), 2222–2233. https://doi.org/10.1016/j.nonrwa.2007.08.001 doi: 10.1016/j.nonrwa.2007.08.001
    [32] W. Malfliet, Approximate solution of the damped Burgers's equation, J. Phys. A: Math. Gen., 26 (1993), L723. https://doi.org/10.1088/0305-4470/26/16/003 doi: 10.1088/0305-4470/26/16/003
    [33] F. Yilmaz, B. Karasozen, Solving optimal control problems for the unsteady Burgers's equation in COMSOL Multiphysics, J. Comput. Appl. Math., 235 (2011), 4839–4850. https://doi.org/10.1016/j.cam.2011.01.002 doi: 10.1016/j.cam.2011.01.002
    [34] P. Rosenau, J. M. Hyman, Compactons: solitons with finite wavelength, Phys. Rev. Lett., 70 (1993), 564. https://doi.org/10.1103/PhysRevLett.70.564 doi: 10.1103/PhysRevLett.70.564
    [35] B. Mihaila, A. Cardenas, F. Cooper, A. Saxena, Stability and dynamical properties of Rosenau-Hyman compactons using Pade approximants, Phys. Rev. E-Stat. Nonlinear Soft Matter Phys., 81 (2010), 056708. https://doi.org/10.1103/PhysRevE.81.056708 doi: 10.1103/PhysRevE.81.056708
    [36] F. Rus, F. R. Villatoro, Self-similar radiation from numerical Rosenau-Hyman compactons, J. Comput. Phys., 227 (2007), 440–454. https://doi.org/10.1016/j.jcp.2007.07.024 doi: 10.1016/j.jcp.2007.07.024
    [37] F. Rus, F. R. Villatoro, Numerical methods based on modified equations for nonlinear evolution equations with compactons, Appl. Math. Comput., 204 (2008), 416–422. https://doi.org/10.1016/j.amc.2008.06.056 doi: 10.1016/j.amc.2008.06.056
    [38] O. S. Iyiola, G. O. Ojo, O. Mmaduabuchi, The fractional Rosenau-Hyman model and its approximate solution, Alex. Eng. J., 55 (2016), 1655–1659. https://doi.org/10.1016/j.aej.2016.02.014 doi: 10.1016/j.aej.2016.02.014
    [39] J. Singh, D. Kumar, R. Swroop, S. Kumar, An efficient computational approach for time-fractional Rosenau-Hyman equation, Neural Comput. Applic., 30 (2018), 3063–3070. https://doi.org/10.1007/s00521-017-2909-8 doi: 10.1007/s00521-017-2909-8
    [40] R. Yulita Molliq, M. S. M. Noorani, Solving the fractional Rosenau-Hyman equation via variational iteration method and homotopy perturbation method, Int. J. Differ. Equ., 2012 (2012), 472030. https://doi.org/10.1155/2012/472030 doi: 10.1155/2012/472030
    [41] M. Senol, O. Tasbozan, A. Kurt, Comparison of two reliable methods to solve fractional Rosenau-Hyman equation, Math. Meth. Appl. Sci., 44 (2021), 7904–7914. https://doi.org/10.1002/mma.5497 doi: 10.1002/mma.5497
    [42] M. Cinar, A. Secer, M. Bayram, An application of Genocchi wavelets for solving the fractional Rosenau-Hyman equation, Alex. Eng. J., 60 (2021), 5331–5340. https://doi.org/10.1016/j.aej.2021.04.037 doi: 10.1016/j.aej.2021.04.037
    [43] S. O. Ajibola, A. S. Oke, W. N. Mutuku, LHAM approach to fractional order Rosenau-Hyman and Burgers' equations, Asian Res. J. Math., 16 (2020), 1–14. https://doi.org/10.9734/ARJOM/2020/v16i630192 doi: 10.9734/ARJOM/2020/v16i630192
    [44] M. Alaroud, Application of Laplace residual power series method for approximate solutions of fractional IVP's, Alex. Eng. J., 61 (2022), 1585–1595. https://doi.org/10.1016/j.aej.2021.06.065 doi: 10.1016/j.aej.2021.06.065
    [45] M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Results Phys., 19 (2020), 103667. https://doi.org/10.1016/j.rinp.2020.103667 doi: 10.1016/j.rinp.2020.103667
    [46] H. Aljarrah, M. Alaroud, A. Ishak, M. Darus, Approximate solution of nonlinear time-fractional PDEs by Laplace residual power series method, Mathematics, 10 (2022), 1980. https://doi.org/10.3390/math10121980 doi: 10.3390/math10121980
    [47] A. Shafee, Y. Alkhezi, R. Shah, Efficient solution of fractional system partial differential equations using Laplace residual power series method, Fractal Fract., 7 (2023), 429. https://doi.org/10.3390/fractalfract7060429 doi: 10.3390/fractalfract7060429
    [48] M. N. Oqielat, T. Eriqat, O. Ogilat, A. El-Ajou, S. E. Alhazmi, S. Al-Omari, Laplace-residual power series method for solving time-fractional reaction-diffusion model, Fractal Fract., 7 (2023), 309. https://doi.org/10.3390/fractalfract7040309 doi: 10.3390/fractalfract7040309
    [49] N. Anjum, J. H. He, Laplace transform: making the variational iteration method easier, Appl. Math. Lett., 92 (2019), 134–138. https://doi.org/10.1016/j.aml.2019.01.016 doi: 10.1016/j.aml.2019.01.016
    [50] N. Bildik, A. Konuralp, The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 65–70. https://doi.org/10.1515/IJNSNS.2006.7.1.65 doi: 10.1515/IJNSNS.2006.7.1.65
    [51] N. A. Shah, I. Dassios, E. R. El-Zahar, J. D. Chung, S. Taherifar, The variational iteration transform method for solving the time-fractional Fornberg-Whitham equation and comparison with decomposition transform method, Mathematics, 9 (2021), 141. https://doi.org/10.3390/math9020141 doi: 10.3390/math9020141
    [52] S. M. Kenneth, B. Ross, An introduction to the fractional calculus and fractional differential equations, Hoboken: Wiley, 1993.
    [53] R. Almeida, D. F. Torres, Calculus of variations with fractional derivatives and fractional integrals, Appl. Math. Lett., 22 (2009), 1816–1820. https://doi.org/10.1016/j.aml.2009.07.002 doi: 10.1016/j.aml.2009.07.002
    [54] R. Almeida, D. F. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1490–1500. https://doi.org/10.1016/j.cnsns.2010.07.016 doi: 10.1016/j.cnsns.2010.07.016
    [55] O. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor., 40 (2007), 6287. https://doi.org/10.1088/1751-8113/40/24/003 doi: 10.1088/1751-8113/40/24/003
    [56] R. Kumar, R. Koundal, Generalized least square homotopy perturbations for system of fractional partial differential equations, preprint paper, 2018. https://doi.org/10.48550/arXiv.1805.06650
    [57] A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus, 136 (2021), 229. https://doi.org/10.1140/epjp/s13360-020-01061-9 doi: 10.1140/epjp/s13360-020-01061-9
    [58] Z. Korpinar, M. Inc, E. Hınçal, D. Baleanu, Residual power series algorithm for fractional cancer tumor models, Alex. Eng. J., 59 (2020), 1405–1412. https://doi.org/10.1016/j.aej.2020.03.044 doi: 10.1016/j.aej.2020.03.044
    [59] J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 6159024. https://doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024
  • This article has been cited by:

    1. Liyun Zeng, Rita Yi Man Li, Tan Yigitcanlar, Huiling Zeng, Public Opinion Mining on Construction Health and Safety: Latent Dirichlet Allocation Approach, 2023, 13, 2075-5309, 927, 10.3390/buildings13040927
    2. Houssem Ben Khalfallah, Mariem Jelassi, Narjes Bellamine Ben Saoud, Jacques Demongeot, 2023, Chapter 19-2, 978-3-319-12125-3, 1, 10.1007/978-3-319-12125-3_19-2
    3. Houssem Ben Khalfallah, Mariem Jelassi, Narjes Bellamine Ben Saoud, Jacques Demongeot, 2023, Chapter 19, 978-3-031-40115-2, 229, 10.1007/978-3-031-40116-9_19
    4. Muhammad Hussain, Ioanna Iacovides, Tom Lawton, Vishal Sharma, Zoe Porter, Alice Cunningham, Ibrahim Habli, Shireen Hickey, Yan Jia, Phillip Morgan, Nee Ling Wong, 2024, Development and translation of human-AI interaction models into working prototypes for clinical decision-making, 9798400705830, 1607, 10.1145/3643834.3660697
    5. Mouin Jammal, Antoine Saab, Cynthia Abi Khalil, Charbel Mourad, Rosy Tsopra, Melody Saikali, Jean-Baptiste Lamy, Impact on clinical guideline adherence of Orient-COVID, a clinical decision support system based on dynamic decision trees for COVID19 management: a randomized simulation trial with medical trainees, 2024, 13865056, 105772, 10.1016/j.ijmedinf.2024.105772
    6. Ourania Manta, Nikolaos Vasileiou, Olympia Giannakopoulou, Konstantinos Bromis, Konstantinos Georgas, Theodoros P. Vagenas, Ioannis Kouris, Maria Haritou, George Matsopoulos, Dimitris Koutsouris, 2024, TeleRehaB DSS Project: Advancing Balance Rehabilitation Through Digital Health Technologies, 979-8-3503-6243-5, 1, 10.1109/ICE/ITMC61926.2024.10794240
    7. Houssem Ben Khalfallah, Mariem Jelassi, Jacques Demongeot, Narjès Bellamine Ben Saoud, Advancements in Predictive Analytics: Machine Learning Approaches to Estimating Length of Stay and Mortality in Sepsis, 2025, 13, 2079-3197, 8, 10.3390/computation13010008
    8. Divya Divya, Savita Savita, Sandeepa Kaur, Unveiling excellence in Indian healthcare: a patient-centric PRISMA analysis of hospital service quality, patient satisfaction and loyalty, 2025, 1750-6123, 10.1108/IJPHM-05-2024-0043
    9. Regina Silva, Luis Gomes, An adaptive language model-based intelligent medication assistant for the decision support of antidepressant prescriptions, 2025, 190, 00104825, 110065, 10.1016/j.compbiomed.2025.110065
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(89) PDF downloads(16) Cited by(0)

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog