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1. Introduction

Factional-order mathematical models and fractional calculus (FC) have several applications in
applied sciences, engineering, plasma physics, and fluid mechanics due to their capacity to accurately
and comprehensively portray a variety of issues and applications. A wide range of studies have
applied these models, namely for modelling biological events and diseases [1, 2], modelling diffusive
type circuits [3], conducting a thorough survey on fractional-order derivative-based techniques in
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computer vision [4], and researching sensors, analogs, and digital filters [5]. Several early
recommendations were given for the basic structure of FC and viewpoints on generalized
calculus [6–10]. Numerous areas have employed FC due to its interesting and realistic implications
related to temporal and hereditary aspects [11–16]. To reveal the physical essence of complex
problems, fractional differential equations must be solved. This study adopts the Caputo fractional
derivative because it provides beneficial applications to model physical and engineering problems.
The Caputo derivative provides a solution for physical applications by handling traditional initial
conditions along with fractional-order derivatives while differentiating from the requirements of the
Riemann-Liouville derivative. The Caputo derivative offers a generalized mathematical approach
using traditional differential equations, surpassing both Jumarie’s and He’s fractional derivatives,
which are primarily employed in modified frameworks. When problems demand both initial
conditions and solutions in continuous domains, the Caputo derivative proves to be a superior choice
than Yang’s local fractional derivative. The Caputo derivative provides this research with both
traditional model alignment and accurate fractional system memory representation.

Due to their superior capabilities as shown in references [17–20], fractional partial differential
equations (PDEs) may more successfully solve complex engineering and physical difficulties than
usual integer-order PDEs. Furthermore, they have the capacity to simulate the intricate systems
connected to the genetic or memory characteristics [21, 22], and their management of non-local
interactions and long-term temporal dependency is a crucial advantage over conventional differential
equations.

Since partial derivatives, which are calculated using different integral and derivative definitions in
fractional calculus, allow us to analyze problems in greater depth, the numerical solutions of
fractional PDEs (FPDEs) have started to be studied. The homotopy perturbation method for the
fractional Lotka-Volterra equations and fractional Kdv-Burgers’ equation [23, 24], the variational
iteration approach for fractional Burgers’ equation [25, 26], the homotopy analysis approach for
fractional Chan-Allen equations and damped Burgers’ equation [27], and the Adomian method for
fractional wave and diffusion equations [28] have all been expanded upon. Many definitions of
fractional derivatives and integrals have been established by authors who deal with fractional analysis
in an effort to improve comprehension of the dynamics of real-world situations and address
computational flaws. To further explain the dynamics of the issues, definitions of non-local and local
fractional derivatives and integrals have been proposed in various works [29].

Consider the damped Burgers’ equation of time-fractional order:

Dµγζ(δ, γ) +
∂2ζ(δ, γ)
∂δ2 + ζ(δ, γ)

∂ζ(δ, γ)
∂δ

+
1
5
ζ(δ, γ) = 0, γ > 0, 0 < µ ≤ 1. (1.1)

The Eq (1.1) fractional form will be examined in the present study using the Caputo derivative. The
damped Burgers’ equation appears in the literature as an example of an equation for describing diffuse
waves that are susceptible to diffusion in fluid mechanics. Furthermore, the numerical solutions of
the nonlinear acoustics problem, which also occur as a model equation in gas dynamics, have been
examined in [30, 31]. The approximate solution of the damped Burgers equation has been obtained by
Malfliet using the tanh method as a perturbation approach [32]. Yilmaz and Karasozen solved optimum
control issues for the unsteady Burgers equation using COMSOL Multiphysics [33].
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Consider the fractional-order Rosenau-Hyman equation:

Dµγζ(δ, γ) − ζ(δ, γ)
∂ζ(δ, γ)
∂δ

− ζ(δ, γ)
∂3ζ(δ, γ)
∂δ3 − 3

∂ζ(δ, γ)
∂δ

∂2ζ(δ, γ)
∂δ2 = 0, γ > 0, 0 < µ ≤ 1. (1.2)

The authors of the 1993 compactons experiment, Philip Rosenau and James M. Hyman, are honoured
by this equation. The Rosenau-Hyman equation is a simple model for studying nonlinear dispersion
in pattern formation in liquid droplets. It may also be used to illustrate a variety of physics and
engineering problems [34]. In mathematical physics and applied sciences, the compactons
explorations of the Rosenau-Hyman equation are particularly beneficial [35–38]. Through these
applications, we are urged to solve this equation and learn more about their characteristics. There are
several ways to solve the fractional Rosenau-Hyman problem, including the reduced differential
transform approach [39], the homotopy perturbation method [40], the residual power series method
and perturbation-iteration algorithm [41], the Genocchi wavelets method [42], and the Laplace
homotopy analysis method [43].

In the present work, we analyze the fractional damped Burgers’ equation and the Rosenau-Hyman
equation using two novel methods: the Laplace least squares residual power series method
(LLSRPSM) and the Laplace least squares variational iteration method (LLSVIM). The least square
technique combined with these two methods [44–51] make them reliable and efficient for the solution
of the fractional-order partial differential equation. These methods provide approximations easily that
are closer to the exact solution. The solution obtained via these methods, along with the figures and
tables, are compared and contrasted in the paper to show the reliability of these methods. This work
also provides a framework for the solution of various types of nonlinear and linear PDEs.

2. Preliminaries

This section provides a systematic description of the Caputo fractional derivative (CFD) and
fractional partial Wronskian (FPW).

Definition 2.1. For the fractional-order µ ≥ 0, the fractional Riemann-Liouville (RL) integral
according to [17, 52, 53] is given as

Jµζ(γ) =

 1
Γ(µ)

∫ γ
0

ζ(s)
(γ−s)1−µds = 1

Γ(µ)γ
µ−1, µ > 0, γ > 0,

ζ(γ), µ = 0,

where the convolution product of γµ−1 and ζ(γ) is denoted by γµ−1ζ(γ).
The subsequent characteristics are related to the fractional RL integral.

(1) Jµγν = Γ(ν+1)
Γ(ν+1+µ)γ

ν+µ, ν > −1,
(2) Jµ(λζ(γ) + θG(γ)) = λJµζ(γ) + θJµG(γ),

where the real constants are λ and θ.

Definition 2.2. For the fractional-order µ, the CFD according to [54, 55] is given as

Dµζ(γ) =
1

Γ(1 − µ)

∫ γ

0

ζµ(s)
(γ − s)µ+1−µds, µ − 1 < µ ≤ µ, n ∈ N.
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The CFD has the following properties:

(1) DµJµζ(γ) = ζ(γ),
(2) JµDµζ(γ) = ζ(γ) −

∑n−1
i=0 Y

i(0)(γ
i

i! ),

(3) Dµγν
 Γ(ν+1)
Γ(ν+1−µ)γ

ν−µ, ν ≥ µ,

0, ν < µ,
(4) Dµc = 0,
(5) Dµ(λζ(γ) + θG(γ)) = λDµζ(γ) + θDµG(γ).

Definition 2.3. [56] Consider n functions Ψ1,Ψ2,Ψ3 · · · ,Ψn of variables δ and γ, which are defined
on domain I; then, FPW of Ψ1,Ψ2,Ψ3 · · · ,Ψn is

ωµ[Ψ1,Ψ2,Ψ3 · · · ,Ψn] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ1 Ψ2 Ψ3 · · · Ψn

DµΨ1 DµΨ2 DµΨ3 · · · DµΨn

D2µΨ1 D2µΨ2 D2µΨ3 · · · D2µΨn
...

...
...

...
...

D(n−1)µΨ1 D(n−1)µΨ2 D(n−1)µΨ3 · · · D(n−1)µΨn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where DµΨk = ( ∂

∂δ
+ ∂µ

∂γµ
)Ψk and Dnµ = DµDµDµ · · ·Dµ(n − times) and k = 1, 2, 3, · · · n.

Definition 2.4. [56] Consider the FPW of the n functions Ψ1(δ, γ),Ψ2(δ, γ),Ψ3(δ, γ), · · · ,Ψn(δ, γ) at
least one point of the domain I = [a, b] × [a, b] is not zero, then the functions
Ψ1(δ, γ),Ψ2(δ, γ),Ψ3(δ, γ), · · · ,Ψn(δ, γ) are linearly independent.

Definition 2.5. Consider the exponential-order piecewise continuous function ζ(δ, γ) in I × [0,∞).
Then, the Laplace transform (LT) of ζ(δ, γ) according to [57] is given as:

ζ(δ, s) = L[ζ(δ, γ)] :=
∫ ∞

0
e−sγζ(δ, γ)dγ, s > ϱ.

The Laplace inverse transform (LIT) for the function ζ(δ, s) is described as follows:

ζ(δ, γ) = L−1[ζ(δ, s)] :=
∫ c+i∞

c−i∞
esγζ(δ, s)ds, c = Re(s) > ϱ0,

where the Laplace integral absolutely converges on the right half-plane, where ϱ0 is located.

Lemma 2.1. [57] Assume that the functions ζ(δ, γ) and ξ(δ, γ) are continuous piecewise on the
interval I × [0,∞) and ϱ1 and ϱ2 are its exponential orders, respectively, where ϱ1 < ϱ2. Suppose that
ϑ1(δ, γ) = L[ζ(δ, γ)],ϑ2(δ, γ) = L[ξ(δ, γ)], and the arbitrary constants are a, b. Then, the subsequent
characteristics are true.

(1) L[aζ(δ, γ) + bξ(δ, γ)] = aϑ1(δ, s) + bϑ2(δ, s), δ ∈ I, s > ϱ1,
(2) L−1[aϑ1(δ, s) + bϑ2(δ, s)] = aζ(δ, γ) + bξ(δ, γ), δ ∈ I, γ ≥ 0,
(3) L[eaγζ(δ, γ)] = ϑ1(δ, s − a), δ ∈ I. s > a + ϱ1,
(4) lims→∞ sϑ1(δ, s) = ζ(δ, 0), δ ∈ I.
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Lemma 2.2. [57] Let us assume the exponential-order and piecewise continuous function ζ(δ, γ) on
I × [0,∞) and ϑ1(δ, γ) = L[ζ(δ, γ)]. Then, the subsequent characteristics are true:

(1) L[Jζ(δ, γ) = aµ−1ϑ1(δ, s), µ > 0,
(2) LDµγ[ζ(δ, γ) = aµϑ1(δ, s) −

∑n−1
k=0 sµ−k−1Dkµ

γ ζ(δ, 0), n − 1 < µ ≤ n,
(3) LD jµ

γ [ζ(δ, γ) = a jµϑ1(δ, s)−
∑ j−1

k=0 s( j−k)µ−1Dkµ
γ ζ(δ, 0), 0 < µ ≤ 1, where D jµ = Dµ.Dµ.Dµ · · · .Dµ( j−

times).

Theorem 2.3. [57] Consider the exponential-order and piecewise continuous function ζ(δ, γ) on I ×
[0,∞). Let us consider that the function ϑ1(δ, s) = L[ζ(δ, γ)] has the fractional expansion, which is
given as:

ϑ1(δ, s) =
∞∑

n=0

ℏr(δ)
snφ+1 , δ ∈ I, s > ϱ, 0 < µ ≤ 1.

Then
ℏn(δ) = Dnµ

γ ζ(δ, 0),

Remark 2.4. In Theorem 2.3, the LIT for the function ζ(δ, γ) = L−1ϑ1(δ, s) is given as:

ζ(δ, γ) =
∞∑

n=0

Dnµ
γ ζ(δ, 0)

γnµ

Γ(nµ + 1)
, 0 < µ ≤ 1, γ ≥ 0.

Theorem 2.5. [57] Consider the exponential-order and piecewise continuous function ζ(δ, γ). Assume
that in Theorem 2.3, the fractional expansion for the function ϑ1(δ, s) = L[ζ(δ, γ)] is given below. If∣∣∣sL[D(n+1)µ

γ ]ζ(δ, γ)
∣∣∣ ≤ M(δ) on I × (δ, γ] where 0 < µ ≤ 1, then the remainder Rn(δ, s) of the fractional

expansion in Theorem 2.3 validates the subsequent inequality:

|Rn(δ, s)| ≤
M(δ)

s1+(n+1)µ , δ ∈ I, δ < s ≤ τ.

Theorem 2.6. If a ∈ (0, 1), ∥ζk+1(δ, γ)∥ ≤ a∥ζk(δ, γ)∥ gives ∀ k ∈ N and 0 < γ < T < 1, then the series
of numerical solutions converges to the exact solution [58]:

Proof. Let us assume that ∀ 0 < γ < T < 1,

∥ζ(δ, γ) − ζk(δ, γ)∥ = ∥
∞∑

m=k+1

ζm(δ, γ)∥ ≤
∞∑

m=k+1

∥ζm(δ, γ)∥

≤ ∥(η)∥∥
∞∑

m=k+1

Cm∥ =
µk+1

1 − µ
∥(η)∥ → 0 as k → ∞.

□

3. The general implementation of Laplace least squares residual power series method

The general process of the Laplace least squares residual power series approach is provided in this
section. For time-fractional differential equations, a combination of the Laplace residual power series
and the least squares approach is employed, which is based on the traditional Laplace residual power
series method.
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3.1. Laplace residual power series method (LRPSM)

Assume the fractional-order nonlinear PDE

Dµγζ(δ, γ) = Nδ[ζ(δ, γ)]

ζ(δ, 0) = f (δ).
(3.1)

The nonlinear operator Nδ is dependent on δ and has a degree of r. The δ ∈ I, γ ≥ 0, and the Caputo
derivative for µ ∈ (0, 1] is represented by Dµγ, and we will have to find ζ(δ, γ).

A number of steps may be taken in order to create an approximate solution for Eq (3.1) using the
LRPSM:

Step 1: Utilize the starting constraint from Eq (3.1) and take the LT on Eq (3.1).

ζ(δ, s) =
f (δ)

s
−

1
sµ
L {Nδ[ζ(δ, γ)]} ,

where ζ(δ, s) = L[ζ(δ, γ)](s), s > γ.
(3.2)

Step 2: The fractional expansion for finding the solution of Eq (3.2) is given below:

ζ(δ, s) =
f (δ)

s
+

∞∑
n=1

hn(x)
snµ+1 , x ∈ I, s > γ ≥ 0. (3.3)

One may obtain the k-th Laplace series solution as given below:

ζk(δ, s) =
f (δ)

s
+

k∑
n=1

hn(x)
snµ+1 , δ ∈ I, s > γ ≥ 0. (3.4)

Step 3: Equation 3.2 has a k-th Laplace fractional residual function (LFRF) as stated below:

L (Resk(δ, s)) = ζk(δ, s) −
f (δ)

s
+

1
sµ
L {Nδ[ζk(δ, γ)]} , (3.5)

Hence the Laplace residual function (LRF) of Eq (3.2) has this definition:

lim
k→∞
L (Resk(δ, s)) = L (Res(δ, s)) = ζ(δ, s) −

f (δ)
s
+

1
sµ
L {Nδ[ζ(δ, γ)]} . (3.6)

Key characteristics of the LRF that are necessary to determine the approximate solution are listed
below:

(1) limk→∞L (Resk(δ, s)) = L (Res(δ, s)), for δ ∈ I, s > γ ≥ 0,
(2) L (Res(δ, s)) = 0, for δ ∈ I, s > γ ≥ 0,
(3) lims→∞ skµ+1L (Resk(δ, s)) = 0, for δ ∈ I, s > γ ≥ 0, and k = 1, 2, 3, . . .

Step 4: In the k-th LFRF of Eq (3.5), substitute the k-th Laplace series solution (LSS) Eq (3.4).
Step 5: For k = 1, 2, 3, . . ., the unknown coefficients hk(δ) might be obtained by solving the system
lims→∞ skµ+1L (Resk(δ, s)) = 0. Subsequently, we calculate the acquired coefficients using Eq (3.4).
Step 6: For the main Eq (3.1), the approximate solution ζk(δ, γ) may be obtained by applying the LIT
to both sides of the derived LSS.
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3.2. Laplace least square residual power series method (LLSRPSM)

This section presents the LLSRPSM technique and suggests some needed definitions.
In accordance with Eq (3.5), let the residual Res for the suggested PDE be expressed as

Res(δ, γ) = L−1
[
ζ(δ, s) −

f (δ)
s
+

1
sµ
L {Nδ[ζ(δ, γ)]}

]
, (3.7)

starting constraint
I(ζ) = 0. (3.8)

Hence, the approximate solution to Eq (3.1) is represented by ζ.

Remark 3.1. [Sk
µ(δ, s)]k∈N converge to the solution of Eq (3.1) if

lim
k→∞

(Res(δ, γ,Sk
µ(δ, γ))) = 0. (3.9)

Definition 3.1. Assume that ζ is the ϵ-approximate LRPSM solution of Eq (3.1) on domain I if∣∣∣Res(δ, γ)
∣∣∣ < ϵ, (3.10)

and ζ also satisfies Eq (3.8).

Definition 3.2. Assume that ζ is the weak ϵ-approximate LRPSM solution of Eq (3.1) on domain I if∫ ∫
I
Res2(δ, γ))dδdγ ≤ ϵ, (3.11)

and ζ also satisfies Eq (3.8).
For the LLSRPSM, we suggest the following procedures.

Step 1. Using the LRPSM, we first determine the kth approximate solution.

ζk(δ, γ) = Ψ1 + Ψ2 + Ψ3 + · · · + Ψn. (3.12)

Step 2. Verification of the linearly independent functions may be carried out by

ωµ[Ψ1,Ψ2,Ψ3 · · · ,Ψn] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ1 Ψ2 Ψ3 · · · Ψn

DµΨ1 DµΨ2 DµΨ3 · · · DµΨn

D2µΨ1 D2µΨ2 D2µΨ3 · · · D2µΨn
...

...
...

...
...

D(n−1)µΨ1 D(n−1)µΨ2 D(n−1)µΨ3 · · · D(n−1)µΨn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, 0 (3.13)

where DµΨk = ( ∂
∂δ
+ ∂µ

∂γµ
)Ψk, 0 < µ ≤ 0.

Assume that in the vector space of continuous functions defined on I, S k = Ψ1,Ψ2,Ψ3, · · · ,Ψn and
its components are linearly independent for k = 1, 2, 3, · · · , n.

Remark 3.2. The set S k is said to be linearly dependent, if there is not such a point for which
ωµ[Ψ1,Ψ2,Ψ3 · · · ,Ψn] , 0. So, we use the classical LRPSM in such a situation.
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Step 3. Consider that Eq (3.1) has the following approximate solution

ζk =

k∑
n=0

Υn
kΨr. (3.14)

Insert ζk in Eq (3.7), and we get
Res(δ, γ,Υn

k) = Resk(δ, γ). (3.15)

Step 4. We attach to the subsequent functional:

min(J) =
∫ ∫

I
Res2(δ, γ,Υn

k)dδdγ. (3.16)

Here, a few constants Υm+1
k ,Υ

m+2
k ,Υ

m+3
k , · · · ,Υ

n
k are calculated.

Using the starting conditions, we calculate the values of Υm+1
k ,Υ

m+2
k ,Υ

m+3
k , · · · ,Υ

n
k as the values

that provide the minimum of Eq (3.16) and the values of Υ0
k ,Υ

1
k ,Υ

2
k , · · · ,Υ

m
k as functions of

Υm+1
k ,Υ

m+2
k ,Υ

m+3
k , · · · ,Υ

n
k again.

When we solve Eq (3.16), we can obtain the values of Sk
µ(δ, γ):

Sk
µ(δ, γ) =

k∑
n=0

Υn
kΨr. (3.17)

We may obtain the following result from Eq (3.14) to (3.17)

Res2(δ, γ,Sk
µ) ≤ Res2

k(δ, γ). (3.18)

In our study, we begin by formulating the fractional partial differential equation using the Caputo
derivative and then we apply the Laplace transform to convert the time-fractional derivative into an
algebraic expression, thereby simplifying the problem. Next, we assume a power series expansion for
the solution and substitute it into the transformed equation, which leads to a residual function that
quantifies the deviation from an exact solution. To minimize this residual, we employ a least squares
optimization strategy, determining the optimal coefficients in the series expansion. For the stability
analysis, we introduce a small perturbation to the obtained approximate solution and express this
perturbation as a Fourier mode, which allows us to derive a growth factor. The method is considered
stable if this growth factor remains less than or equal to one under the chosen conditions. Finally,
numerical experiments are conducted to validate that the residual error diminishes over iterations,
confirming that the Laplace least squares residual power series method is robust and reliable when
applied to fractional partial differential equations.

Theorem 3.3. Sk
µ(δ, γ)’s values meet the following property [59]:

lim
k→∞

∫ ∫
I

(
Res2(δ, γ,Sk

µ)
)

dδdγ = 0. (3.19)

Proof. The subsequent inequality is based on the computation of Sk
µ(δ, γ):∫ ∫

I

(
Res2(δ, γ,Sk

µ)
)

dδdγ ≥ 0. (3.20)
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Also, from Eq (3.18), we have∫ ∫
I

(
Res2

k(δ, γ)
)

dδdγ ≥
∫ ∫

I

(
Res2(δ, γ,Sk

µ)
)

dδdγ, ∀ k ∈ N. (3.21)

As the convergence of the LRPSM solution, we have

0 ≤ lim
k→∞

∫ ∫
I

(
Res2(δ, γ,Sk

µ)
)

dδdγ,

≤ lim
k→∞

∫ ∫
I

(
Res2

k(δ, γ)
)

dδdγ = 0.
(3.22)

The weak solutions of Eq (3.1) are also the ϵ-approximate residual power series solutionsSk
µ(δ, γ). □

4. The general implementation of Laplace least squares variational iteration method

4.1. Laplace variation iteration transform method (LVIM)

Assume the fractional-order nonlinear PDE

Dµγζ(δ, γ) = Rζ(δ, γ) +Nζ(δ, γ) + H(δ, γ), µ ∈ (0, 1]. (4.1)

Starting constraint

ζ(δ, 0) = ζ0(δ). (4.2)

Utilize the LT on Eq (4.1),

L[Dµγζ(δ, γ)] = L[Rζ(δ, γ) +Nζ(δ, γ) + H(δ, γ)]. (4.3)

By utilizing the iterative capability of the transform, the following outcome may be obtained:

L[ζ(δ, γ)] −
m−1∑
k=0

sµ−k−1∂
kζ(δ, γ)
∂γk |γ=0 = L[Rζ(δ, γ) +Nζ(δ, γ) + H(δ, γ)]. (4.4)

The Lagrange multiplier (−λ(s)) is used in an iterative process.

L[ζn+1(δ, γ)] = L[ζn(δ, γ)] − λ(s)
[
L[ζn(δ, γ)] −

m−1∑
k=0

sµ−k−1∂
kζ(δ, 0)
∂γk

]
. (4.5)

Substitute Eq (4.5) into Eq (4.4) after taking λ(s) = − 1
sµ .

L[ζn+1(δ, γ)] = L[ζn(δ, γ)] − λ(s)
[
L[ζn(δ, γ)] −

m−1∑
k=0

sµ−k−1∂
kζ(δ, 0)
∂γk

+L[Rζ(δ, γ) +Nζ(δ, γ) + H(δ, γ)]
]
.

(4.6)
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Eq (4.6), using LIT, yields

ζn+1(δ, γ) = ζn(δ, γ) +L−1
[ 1
sµ

m−1∑
k=0

sµ−k−1∂
kζ(δ, 0)
∂γk +L[Rζ(δ, γ) +Nζ(δ, γ) + H(δ, γ)]

]
. (4.7)

The following is the starting constraint:

ζ0(δ, γ) = L−1
[ 1
sµ

m−1∑
k=0

sµ−k−1∂
kζ(δ, 0)
∂γk

]
. (4.8)

The recursive formula that is built is as follows:

ζn+1(δ, γ) = ζn(δ, γ) +L−1
[ 1
sµ

m−1∑
k=0

sµ−k−1∂
kζ(δ, 0)
∂γk +L[Rζ(δ, γ) +Nζ(δ, γ) + H(δ, γ)]

]
. (4.9)

4.2. Laplace least squares variational iteration method (LLSVIM)

The procedure of the LLSVIM method is presented in this section.
Let us express the remainder RLVIM for the suggested PDE using Equation 4.1 as

RLVIMk+1(δ, γ) = ζk(δ, γ) +L
−1

[ 1
sµ

m−1∑
κ=0

sµ−κ−1∂
κζ(δ, 0)
∂γκ

+L[Rζ(δ, γ) +Nζ(δ, γ) + H(δ, γ)]
]
, (4.10)

starting constraint
I(ζ) = 0. (4.11)

The approximate solution of Eq (4.1) is represented by ζ.
Step 1. First, we use LVIM to obtain the kth approximate solution.

ζk(δ, γ) = Ψ1 + Ψ2 + Ψ3 + · · · + Ψn. (4.12)

Step 2. Verification of the linearly independent functions may be carried out by

ωµ[Ψ1,Ψ2,Ψ3 · · · ,Ψn] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ1 Ψ2 Ψ3 · · · Ψn

DµΨ1 DµΨ2 DµΨ3 · · · DµΨn

D2µΨ1 D2µΨ2 D2µΨ3 · · · D2µΨn
...

...
...

...
...

D(n−1)µΨ1 D(n−1)µΨ2 D(n−1)µΨ3 · · · D(n−1)µΨn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, 0 (4.13)

where DµΨk = ( ∂
∂δ
+ ∂µ

∂γµ
)Ψk, 0 < µ ≤ 0.

Assume that in the vector space of continuous functions defined on I, S k = Ψ1,Ψ2,Ψ3, · · · ,Ψn and
its components are linearly independent for k = 1, 2, 3, · · · , n.
Step 3. Assume the subsequent approximate solution to Eq (4.1):

ζk =

k∑
n=0

Υn
kΨr. (4.14)
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Insert ζk in Eq (4.10), we get
RLVIM(δ, γ,Υn

k) = RLVIMk(δ, γ). (4.15)

Step 4. We attach to the subsequent functional:

min(J) =
∫ ∫

I
RLVIM

2(δ, γ,Υn
k)dδdγ. (4.16)

The constants Υn
k are calculated using Eq (4.16) and then the values of these constants are put in

Eq (4.14) to obtain the LLSVIM approximate solution.

5. Numerical example 1

5.1. Implementation of LLSRPSM

Consider the fractional damped Burgers’ equation

Dµγζ(δ, γ) +
∂2ζ(δ, γ)
∂δ2 + ζ(δ, γ)

∂ζ(δ, γ)
∂δ

+
1
5
ζ(δ, γ) = 0, γ > 0, 0 < µ ≤ 1, (5.1)

starting constraint

ζ(δ, 0) =
δ

5
. (5.2)

Using the LRPSM, we get

Ψ0 =
δ

5
,

Ψ1 = −
2δγµ

25Γ(µ + 1)
,

Ψ2 =
6δγ2µ

125Γ(2µ + 1)
.

(5.3)

Then,

ωµ[Ψ0,Ψ1,Ψ2] =

∣∣∣∣∣∣∣∣∣∣∣
δ
5 −

2δγµ

25Γ(µ+1)
6δγ2µ

125Γ(2µ+1)

Dµ
(
δ
5

)
Dµ

(
−

2δγµ

25Γ(µ+1)

)
Dµ

(
6δγ2µ

125Γ(2µ+1)

)
D2µ

(
δ
5

)
D2µ

(
−

2δγµ

25Γ(µ+1)

)
D2µ

(
6δγ2µ

125Γ(2µ+1)

)
∣∣∣∣∣∣∣∣∣∣∣ . (5.4)

When µ = 1, δ = 15, and γ = 0.5, ω1[Ψ0,Ψ1,Ψ2] = −2.592 , 0. Hence, the functions Ψ0,Ψ1, and Ψ2

are linearly independent.
This allows us to derive the approximate solution, which is expressed as

ζ(δ, γ) = Υ0

(
δ

5

)
+ Υ1

(
−

2δγµ

25Γ(µ + 1)

)
+ Υ2

(
6δγ2µ

125Γ(2µ + 1)

)
. (5.5)

Equation (5.1) provides the residual function.

Res(δ, γ) = Dµγζ(δ, γ) +
∂2ζ(δ, γ)
∂δ2 + ζ(δ, γ)

∂ζ(δ, γ)
∂δ

+
1
5
ζ(δ, γ), (5.6)
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with the starting constraint

ζ(δ, 0) =
δ

5
. (5.7)

Υ0 = 1 is obtained by applying the specified condition Eq (5.7) in Eq (5.5). Therefore, Eq (5.5) may
be expressed as

ζ(δ, γ) =
δ

5
+ Υ1

(
−

2δγµ

25Γ(µ + 1)

)
+ Υ2

(
6δγ2µ

125Γ(2µ + 1)

)
. (5.8)

In this way, we may get Res by putting Eq (5.8) in Eq (5.6). Hence, the functional J will be

J(Υ1,Υ2) =
∫ ∫

I
Res2(δ, γ,Υk)dδdγ, where k = 1, 2. (5.9)

We calculate the minimal of J in Eq (5.9) and obtain two algebraic equations,

∂J
∂Υ1
= 0,

∂J
∂Υ2
= 0.

(5.10)

Hence, when µ = 1, we obtain the unknown coefficients of Eq (5.10):

Υ1 = 0.9995859373898288,
Υ2 = 0.9581200433133302.

(5.11)

Putting the values of Eq (5.11) in Eq (5.8), we get the LLSRPSM solution.
For µ = 1, the exact solution is given as

ζ(δ, γ) =
δ

5
(
2e

γ
5 − 1

) . (5.12)

5.2. Implementation of LLSVIM

Consider the fractional damped Burgers’ equation

Dµγζ(δ, γ) +
∂2ζ(δ, γ)
∂δ2 + ζ(δ, γ)

∂ζ(δ, γ)
∂δ

+
1
5
ζ(δ, γ) = 0, γ > 0, 0 < µ ≤ 1, (5.13)

starting constraint

ζ(δ, 0) =
δ

5
, (5.14)

Using the LVIM, we get

Ψ0 =
δ

5
,

Ψ1 = −
2δγµ

25Γ(µ + 1)
,

Ψ2 =
6δγ2µ

125Γ(2µ + 1)
−

4δΓ(2µ + 1)γ3ρ

625Γ(µ + 1)2Γ(3µ + 1)
.

(5.15)
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Then,

ωµ[Ψ0,Ψ1,Ψ2] =

∣∣∣∣∣∣∣∣∣∣∣
δ
5 −

2δγµ

25Γ(µ+1)
6δγ2µ

125Γ(2µ+1) −
4δΓ(2µ+1)γ3ρ

625Γ(µ+1)2Γ(3µ+1)

Dµ
(
δ
5

)
Dµ

(
−

2δγµ

25Γ(µ+1)

)
Dµ

(
6δγ2µ

125Γ(2µ+1) −
4δΓ(2µ+1)γ3ρ

625Γ(µ+1)2Γ(3µ+1)

)
D2µ

(
δ
5

)
D2µ

(
−

2δγµ

25Γ(µ+1)

)
D2µ

(
6δγ2µ

125Γ(2µ+1) −
4δΓ(2µ+1)γ3ρ

625Γ(µ+1)2Γ(3µ+1)

)
∣∣∣∣∣∣∣∣∣∣∣ . (5.16)

When µ = 1, δ = 15, and γ = 0.5, ω1[Ψ0,Ψ1,Ψ2] = −2.2464 , 0. Hence, the functions Ψ0,Ψ1, and Ψ2

are linearly independent.
This allows us to derive the approximate solution, which is expressed as

ζ(δ, γ) = Υ0

(
δ

5

)
+ Υ1

(
−

2δγµ

25Γ(µ + 1)

)
+ Υ2

(
6δγ2µ

125Γ(2µ + 1)
−

4δΓ(2µ + 1)γ3ρ

625Γ(µ + 1)2Γ(3µ + 1)

)
. (5.17)

Equation (5.13) provides the residual function.

RLVIM(δ, γ) = Dµγζ(δ, γ) +
∂2ζ(δ, γ)
∂δ2 + ζ(δ, γ)

∂ζ(δ, γ)
∂δ

+
1
5
ζ(δ, γ), (5.18)

with the starting constraint

ζ(δ, 0) =
δ

5
. (5.19)

Υ0 = 1 is obtained by applying the specified condition of Eq (5.19) in Eq (5.17). Therefore, Eq (5.17)
may be expressed as

ζ(δ, γ) =
δ

5
+ Υ1

(
−

2δγµ

25Γ(µ + 1)

)
+ Υ2

(
6δγ2µ

125Γ(2µ + 1)
−

4δΓ(2µ + 1)γ3ρ

625Γ(µ + 1)2Γ(3µ + 1)

)
. (5.20)

In this way, we may get RLVIM by putting Eq (5.20) in Eq (5.18). Hence, the functional J will be

J(Υ1,Υ2) =
∫ ∫

I
RLVIM

2(δ, γ,Υk)dδdγ, where k = 1, 2. (5.21)

We compute the functional J of Eq (5.21). We receive two algebraic equations as

∂J
∂Υ1
= 0,

∂J
∂Υ2
= 0. (5.22)

Hence, when µ = 1, we obtain the unknown coefficients of Eq (5.22):

Υ1 = 0.9997161819861972,Υ2 = 0.9710931448883657. (5.23)

Putting the values of Eq (5.23) in Eq (5.20), we get the LLSVIM solution.
The analysis combines various graphical illustrations with tabulated results to study solutions

derived through LLSRPSM and LLSVIM. The proposed methods require visual and numerical data to
show their accuracy and confirm convergence and behavior across different fractional orders.
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Figure 1 illustrates the fractional solutions that LLSRPSM produces when implementing fractional
parameter values µ during the computation process. The figure shows solution characteristics at µ = 0.5
in subfigure (a) with additional visualizations at µ = 0.7 in subfigure (b), and µ = 1.0 in subfigure (c).
The combined solution comparison at µ = 0.5, 0.7, and 1.0 is given in subfigure (d) when γ = 0.1. The
experimental results demonstrate how different fractional orders impact the shape along with stability
characteristics of obtained solutions.

Figure 1. (a) LLSRPSM solution for µ = 0.5; (b) LLSRPSM solution for µ = 0.7; (c)
LLSRPSM solution for µ = 1.0; (d) LLSRPSM solution comparison for µ = 0.5, 0.7, and 1.0
at γ = 0.1.

The LLSRPSM solution shown in Figure 2 matches the exact analytical solution when µ equals 1.0
and γ equals 0.1, which proves the accuracy of this proposed technique. Visual verification of the two
solutions through comparison confirms the dependable and effective nature of the LLSRPSM method.

Figure 2. The LLRPSM solution and exact solution comparison for µ = 1.0 and γ = 0.1.

Figure 3 showcases three-dimensional fractional-order LLSRPSM solutions at γ = 0.1 for the four
values of µ: 0.3, 0.5, 0.7, and 1.0. The illustrations show the solution structure transformation as
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fractional orders transform indicating that the fractional model functions dynamically.

Figure 3. The 3D fractional-order comparison for µ = 0.3, 0.5, 0.7, and 1.0 for γ = 0.1.

The results produced by LLSVIM appear in Figure 4 with an organization matching the format
of Figure 1. Figure 4 shows the effect of different fractional orders (µ = 0.5, 0.7, 1.0) on the results
presented in subfigure (d) at γ = 0.1. The performance assessment of the method becomes possible
through direct analysis of its fractional-order configurations in different settings.

Figure 4. (a) LLSVIM solution for µ = 0.5; (b) LLSVIM solution for µ = 0.7; (c) LLSVIM
solution for µ = 1.0; (d) LLSVIM solution comparison for µ = 0.5, 0.7, and 1.0 at γ = 0.1.

The LLSVIM solution matches exactly with the exact solution at a µ value of 1.0 and γ value
of 0.1, as shown in Figure 5. The performance of LLSVIM becomes evident because it provides
accurate approximations of analytical solutions. A 3D fractional-order representation at γ = 0.1
comparing µ = 0.3, 0.5, 0.7, and 1.0 appears in Figure 6 following LLSVIM. The fractional-order

AIMS Mathematics Volume 10, Issue 3, 7099–7126.



7114

solution simulations in the results shed more light on how the method measures up against the system
dynamics.

Figure 5. The LLRVIM solution and exact solution comparison for µ = 1.0 and γ = 0.1.

Figure 6. The 3D fractional-order comparison for µ = 0.3, 0.5, 0.7, and 1.0 for γ = 0.1.

The provided Table 1 displays the fractional-order solution ζ(δ, γ) evaluated at γ = 0.10 through
LRPSM and LLSRPSM for the numerical example 1. The proposed method shows its accuracy and
convergence performance through these numerical values when used for different fractional orders.
The fractional-order evaluation of solution ζ(δ, γ) at γ = 0.10 comes from LVIM and LLSVIM
methods for the numerical example 1 as shown in Table 2. The variational iteration-based approach
demonstrates high effectiveness in solving fractional differential equations according to the presented
results. The solutions from LLSRPSM and LLSVIM at a γ value of 0.10 are examined in Table 3
regarding the numerical example 1. The analysis enables a broader assessment of method suitability
through a presentation of their combined advantages and weaknesses. These research methods
demonstrate powerful performance in dealing with fractional nonlinear differential equations based on
the presented figures and tables. These techniques demonstrate remarkable accuracy in their ability to
solve nonlinear fractional models as proven through both exact solution checking and numerical
validation processes for mathematical physics and engineering applications.
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Table 1. The fractional-order analysis of the solution ζ(δ, γ) at γ = 0.10 obtained through
LRPS M and LLS RPS M absolute error (AE) for numerical example 1.
µ = 0.7 µ = 0.7 µ = 1.0 µ = 1.0 µ = 1.0 µ = 1.0

δ ζ(δ, γ)LRPS M ζ(δ, γ)LLS RPS M ζ(δ, γ)LRPS M ζ(δ, γ)LLS RPS M Exact AE of LRPSM AE of LLSRPSM
1 0.18397132 0.18391416 0.19224000 0.19223326 0.19223326 6.73894216×10−6 2.53439519×10−10

2 0.36794264 0.36782833 0.38448000 0.38446652 0.38446652 1.34778843×10−5 5.06879038×10−10

3 0.55191396 0.55174250 0.57672000 0.57669978 0.57669978 2.02168264×10−5 7.60318474×10−10

4 0.73588529 0.73565667 0.76896000 0.76893304 0.76893304 2.69557686×10−5 1.01375807×10−9

5 0.91985661 0.91957084 0.96119999 0.96116630 0.96116630 3.36947108×10−5 1.26719756×10−9

6 1.10382793 1.10348501 1.15344000 1.15339956 1.15339956 4.04336529×10−5 1.52063694×10−9

7 1.28779925 1.28739918 1.34567999 1.34563282 1.34563282 4.71725951×10−5 1.77407644×10−9

8 1.47177058 1.47131335 1.53792000 1.53786609 1.53786608 5.39115373×10−5 2.02751615×10−9

9 1.65574190 1.65522752 1.73016000 1.73009935 1.73009934 6.06504794×10−5 2.28095564×10−9

10 1.83971322 1.83914169 1.92239999 1.92233261 1.92233261 6.73894216×10−5 2.53439513×10−9

Table 2. The fractional-order analysis of the solution ζ(δ, γ) at γ = 0.10 obtained through
LVIM and LLS VIM for numerical example 1.
µ = 0.7 µ = 0.7 µ = 1.0 µ = 1.0 µ = 1.0 µ = 1.0

δ ζ(δ, γ)LVIM ζ(δ, γ)LLS VIM ζ(δ, γ)LVIM ζ(δ, γ)LLS VIM Exact AE of LVIM AE of LLSVIM
1 0.18393651 0.18389804 0.19223786 0.19223326 0.19223326 4.60560882×19−6 1.75670811×19−10

2 0.36787303 0.36779608 0.38447573 0.38446652 0.38446652 9.21121765×19−6 3.51341622×19−10

3 0.55180955 0.55169412 0.57671359 0.57669978 0.57669978 1.38168264×19−5 5.27012322×19−10

4 0.73574607 0.73559216 0.76895146 0.76893304 0.76893304 1.84224353×19−5 7.02683244×19−10

5 0.91968259 0.91949020 0.96118933 0.96116630 0.96116630 2.30280441×19−5 8.78354167×19−10

6 1.10361911 1.10338824 1.15342719 1.15339956 1.15339956 2.76336529×19−5 1.05402464×19−9

7 1.28755563 1.28728628 1.34566506 1.34563282 1.34563282 3.22392618×19−5 1.22969567×19−9

8 1.47149215 1.47118433 1.53790293 1.53786608 1.53786608 3.68448706×19−5 1.40536648×19−9

9 1.65542866 1.65508237 1.73014080 1.73009935 1.73009934 4.14504794×19−5 1.58103752×19−9

10 1.83936518 1.83898041 1.92237866 1.92233261 1.92233261 4.60560882×19−5 1.75670833×19−9

Table 3. The comparison of LLSRPSM and LLSVIM solutions ζ(δ, γ) at γ = 0.10 for
numerical example 1.

δ ζ(δ, γ)LLS RPS Mµ=1.0 ζ(δ, γ)LLS VIMµ=1.0 Exact AE LLSRPSM at µ = 1.0 AE LLSVIM at µ = 1.0
1 0.19223326 0.19223326 0.19223326 2.53439519×10−10 1.75670811×10−10

2 0.38446652 0.38446652 0.38446652 5.06879038×10−10 3.51341622×10−10

3 0.57669978 0.57669978 0.57669978 7.60318474×10−10 5.27012322×10−10

4 0.76893304 0.76893304 0.76893304 1.01375807×10−9 7.02683244×10−10

5 0.96116630 0.96116630 0.96116630 1.26719756×10−9 8.78354167×10−10

6 1.15339956 1.15339956 1.15339956 1.52063694×10−9 1.05402464×10−9

7 1.34563282 1.34563282 1.34563282 1.77407644×10−9 1.22969567×10−9

8 1.53786609 1.53786608 1.53786608 2.02751615×10−9 1.40536648×10−9

9 1.73009935 1.73009935 1.73009934 2.28095564×10−9 1.58103752×10−9

10 1.92233261 1.92233261 1.92233261 2.53439513×10−9 1.75670833×10−9
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6. Numerical example 2

6.1. Implementation of LLSRPSM

Consider the fractional Rosenau-Hyman equation

Dµγζ(δ, γ) − ζ(δ, γ)
∂ζ(δ, γ)
∂δ

− ζ(δ, γ)
∂3ζ(δ, γ)
∂δ3 − 3

∂ζ(δ, γ)
∂δ

∂2ζ(δ, γ)
∂δ2 = 0, γ > 0, 0 < µ ≤ 1, (6.1)

starting constraint

ζ(δ, 0) = −
8q
3

cos2
(
δ

4

)
. (6.2)

Utilizing LRPSM, we get

Ψ0 = −
8q
3

cos2
(
δ

4

)
,

Ψ1 = −
2q2γµ sin

(
δ
2

)
3Γ(µ + 1)

,

Ψ2 =
q3γ2µ cos

(
δ
2

)
3Γ(2µ + 1)

.

(6.3)

Then,

ωµ[Ψ0,Ψ1,Ψ2] =

∣∣∣∣∣∣∣∣∣∣∣∣∣
−

8q
3 cos2

(
δ
4

)
−

2q2γµ sin( δ2 )
3Γ(µ+1)

q3γ2µ cos( δ2 )
3Γ(2µ+1)

Dµ
(
−

8q
3 cos2

(
δ
4

))
Dµ

(
−

2q2γµ sin( δ2 )
3Γ(µ+1)

)
Dµ

(
q3γ2µ cos( δ2 )

3Γ(2µ+1)

)
D2µ

(
−

8q
3 cos2

(
δ
4

))
D2µ

(
−

2q2γµ sin( δ2 )
3Γ(µ+1)

)
D2µ

(
q3γ2µ cos( δ2 )

3Γ(2µ+1)

)
∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.4)

When µ = 1, δ = 105, γ = 0.1, and q = 1.5, ω1[Ψ0,Ψ1,Ψ2] = −1.11836 , 0. Hence, the functions
Ψ0,Ψ1, and Ψ2 are linearly independent.

This allows us to derive the approximate solution, which is expressed as

ζ(δ, γ) = Υ0

(
−

8q
3

cos2
(
δ

4

))
+ Υ1

−2q2γµ sin
(
δ
2

)
3Γ(µ + 1)

 + Υ2

q3γ2µ cos
(
δ
2

)
3Γ(2µ + 1)

 . (6.5)

Equation (6.1) provides the residual function.

Res(δ, γ) = Dµγζ(δ, γ) − ζ(δ, γ)
∂ζ(δ, γ)
∂δ

− ζ(δ, γ)
∂3ζ(δ, γ)
∂δ3 − 3

∂ζ(δ, γ)
∂δ

∂2ζ(δ, γ)
∂δ2 , (6.6)

with the starting constraint

ζ(δ, 0) = −
8q
3

cos2
(
δ

4

)
. (6.7)
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Υ0 = 1 is obtained by applying the specified condition Eq (6.7) in Eq (6.5). Therefore, Eq (6.5) may
be expressed as

ζ(δ, γ) = −
8q
3

cos2
(
δ

4

)
+ Υ1

−2q2γµ sin
(
δ
2

)
3Γ(µ + 1)

 + Υ2

q3γ2µ cos
(
δ
2

)
3Γ(2µ + 1)

 . (6.8)

In this way, we may get Res by putting Eq (6.8) in Eq (6.6). Hence, the functional J will be

J(Υ1,Υ2) =
∫ ∫

I
Res2(δ, γ,Υk)dδdγ, where k = 1, 2. (6.9)

We compute the functional J of Eq (6.9). We receive two algebraic equations as

∂J
∂Υ1
= 0,

∂J
∂Υ2
= 0. (6.10)

Hence, when µ = 1, we obtain the unknown coefficients of Eq (6.10):

Υ1 = 0.9990707576494097, Υ2 = 1.0005136662458496. (6.11)

Putting the values of Eq (6.11) in Eq (6.8), we get the LLSRPSM solution.
For µ = 1, the exact solution is given as

ζ(δ, γ) = −
8q
3

cos2
(
δ − qγ

4

)
. (6.12)

6.2. Implementation of LLSVIM

Consider the fractional Rosenau-Hyman equation

Dµγζ(δ, γ) − ζ(δ, γ)
∂ζ(δ, γ)
∂δ

− ζ(δ, γ)
∂3ζ(δ, γ)
∂δ3 − 3

∂ζ(δ, γ)
∂δ

∂2ζ(δ, γ)
∂δ2 = 0, γ > 0, 0 < µ ≤ 1, (6.13)

starting constraint

ζ(δ, 0) = −
8q
3

cos2
(
δ

4

)
. (6.14)

Utilizing LVIM, we get

Ψ0 = −
8q
3

cos2
(
δ

4

)
,

Ψ1 = −
2q2γµ sin

(
δ
2

)
3Γ(µ + 1)

,

Ψ2 =
q3γ2ρ cos

(
δ
2

)
cos2

(
δ
4

)
3Γ(2µ + 1)

+
q3γ2µ sin2

(
δ
4

)
cos

(
δ
2

)
3Γ(2µ + 1)

.

(6.15)

Then,

ωµ[Ψ0,Ψ1,Ψ2] =

∣∣∣∣∣∣∣∣∣
Ψ0 Ψ1 Ψ2

DµΨ0 DµΨ1 DµΨ2

D2µΨ0 D2µΨ1 D2µΨ2

∣∣∣∣∣∣∣∣∣ . (6.16)
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When µ = 1, δ = 105, γ = 0.1, and q = 1.5, ω1[Ψ0,Ψ1,Ψ2] = −1.11836 , 0. Hence, the functions
Ψ0,Ψ1, and Ψ2 are linearly independent.

This allows us to derive the approximate solution, which is expressed as

ζ(δ, γ) = Υ0

(
−

8q
3

cos2
(
δ

4

))
+ Υ1

−2q2γµ sin
(
δ
2

)
3Γ(µ + 1)

 + Υ2

(q3γ2ρ cos
(
δ
2

)
cos2

(
δ
4

)
3Γ(2µ + 1)

+
q3γ2µ sin2

(
δ
4

)
cos

(
δ
2

)
3Γ(2µ + 1)

)
(6.17)

Eq (6.13) provides the residual function.

RLVIM(δ, γ) = Dµγζ(δ, γ) − ζ(δ, γ)
∂ζ(δ, γ)
∂δ

− ζ(δ, γ)
∂3ζ(δ, γ)
∂δ3 − 3

∂ζ(δ, γ)
∂δ

∂2ζ(δ, γ)
∂δ2 , (6.18)

with the starting constraint

ζ(δ, 0) = −
8q
3

cos2
(
δ

4

)
. (6.19)

Υ0 = 1 is obtained by applying the specified condition Eq (6.19) in Eq (6.17). Therefore, Eq (6.17)
may be expressed as

ζ(δ, γ) = −
8q
3

cos2
(
δ

4

)
+ Υ1

−2q2γµ sin
(
δ
2

)
3Γ(µ + 1)


+ Υ2

(q3γ2ρ cos
(
δ
2

)
cos2

(
δ
4

)
3Γ(2µ + 1)

+
q3γ2µ sin2

(
δ
4

)
cos

(
δ
2

)
3Γ(2µ + 1)

)
.

(6.20)

In this way, we may get RLVIM by putting Eq (6.20) in Eq (6.18). Hence, the functional J will be

J(Υ1,Υ2) =
∫ ∫

I
RLVIM

2(δ, γ,Υk)dδdγ, where k = 1, 2. (6.21)

We compute the functional J of Eq (6.21). We receive two algebraic equations as

∂J
∂Υ1
= 0,

∂J
∂Υ2
= 0, (6.22)

Hence, when µ = 1, we obtain the unknown coefficients of Eq (6.22):

Υ1 = 0.999070757649409, Υ2 = 1.000513666245874. (6.23)

Putting the values of Eq (6.23) in Eq (6.20), we get the LLSVIM solution.
A graphical and tabulated display serves as an effective method to validate the approximate

solutions derived using multiple methods for solving the fractional-order nonlinear model. These
visual displays, together with numerical figures, reveal essential information about solution behavior
at different fractional orders, which helps confirm the accuracy of the proposed solution methods.

The selected method generates approximate solutions for different values of fractional order µ as
shown in Figure 7. Subfigure (a) presents the solution for µ = 0.5, subfigure (b) for µ = 0.7, and
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subfigure (c) for µ = 1.0. The solution profiles for γ = 0.1 show the impact of fractional-order
parameter µ for values 0.5, 0.7, and 1.0 in subfigure (d). The solution profiles show a gradual
transformation as µ changes because this fractional-order parameter makes the model more
responsive to dynamic properties.

Figure 7. (a) Approximate solution for µ = 0.5; (b) approximate solution for µ = 0.7; (c)
approximate solution for µ = 1.0; (d) approximate solution comparison for µ = 0.5, 0.7, and
1.0 at γ = 0.1.

The approximate response compares with the exact solution in Figure 8 while both solutions have
µ = 1.0 for a γ value of 0.1. The matching results between the two solutions proves that the adopted
methodology delivers both high accuracy and reliability. The validation process through comparative
analysis guarantees that the proposed approximation approach delivers accurate solution estimates with
a small departure from actual values.

Figure 8. The approximate solution and exact solution comparison for µ = 1.0 and γ = 0.1.
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Figure 9. The 3D fractional-order comparison for µ = 0.3, 0.5, 0.7, and 1.0 for γ = 0.1.

A three-dimensional fractional-order representation shows the results for µ values from 0.3 to 0.7
and 1.0 when γ equals 0.1. The graphical depiction of the solution surface reveals the impact that
varying the fractional-order parameter has on the solution. The solution methods must take into
account the changing amplitude and wave structures because the varied fractional orders reveal
complex patterns in fractional differential equations.

Solution ζ(δ, γ) shows its response under fractional order µ = 1.0 when γ equals 0.10 based on the
data in Table 4. The author conducted four methodological investigations for numerical example 2,
namely LRPSM, LLSRPSM, LVIM, and LLSVIM. The provided table enables users to evaluate both
the precision and convergence levels of each solution approach. Numerical value consistency between
various solution techniques demonstrates the reliable performance of the proposed methods and
reveals minor variations that stem from fundamental characteristics of each method. All information
about solution behavior across different fractional orders can be found through analysis of the
presented figures and tables. Double graphical comparison of numerical solutions with exact
solutions helps prove calculation accuracy, and the additional 3D graphs and tables strengthen the
research findings. Researchers along with practitioners who study fractional-order nonlinear
differential equations in applied mathematics and physics obtain useful information from these
analytical findings.

Table 4. The effect of fractional-order µ = 1.0 on the solution ζ(δ, γ) at γ = 0.10 obtained
through LRPS M, LLS RPS M, LVIM, and LLS VIM for the numerical example 2.

δ ζ(δ, γ)LRPS M ζ(δ, γ)LLS RPS M ζ(δ, γ)LVIM ζ(δ, γ)LLS VIM Exact AE of LLSRPSM AE of LLSVIM
1 -3.82214255 -3.82207319 -3.82214255 -3.82207319 -3.82207746 4.27428752×10−6 4.27428752×10−6

2 -3.20378605 -3.20366720 -3.20378605 -3.20366720 -3.20366918 1.97648334×10−6 1.97648334×10−6

3 -2.29070075 -2.29056151 -2.29070075 -2.29056151 -2.29056070 8.05232887×10−7 8.05232887×10−7

4 -1.30644176 -1.30631622 -1.30644176 -1.30631622 -1.30631283 3.38980002×10−6 3.38980002×10−6

5 -0.49199002 -0.49190891 -0.49199002 -0.49190891 -0.49190377 5.14442589×10−6 5.14442589×10−6

6 -0.04675171 -0.04673490 -0.04675171 -0.04673490 -0.04672926 5.63951689×10−6 5.63951689×10−6

7 -0.07973671 -0.07978831 -0.07973671 -0.07978831 -0.07978355 4.75385746×10−6 4.75385746×10−6

8 -0.58286912 -0.58297650 -0.58286912 -0.58297650 -0.58297380 2.70428793×10−6 2.70428793×10−6

9 -1.43296460 -1.43310147 -1.43296460 -1.43310147 -1.43310148 7.38559968×10−9 7.38559990×10−9

10 -2.42189012 -2.42202297 -2.42189012 -2.42202297 -2.42202568 2.71725088×10−6 2.71725088×10−6
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7. Conclusions

In this study, we successfully developed and applied two novel methods, the Laplace least squares
residual power series method (LLSRPSM) and the Laplace least squares variational iteration method
(LLSVIM), to solve the fractional damped Burgers’ equation. By integrating Laplace transforms with
least square techniques, we addressed the challenges posed by the nonlinear and fractional nature of
the equation. The use of Caputo fractional operators provided a rigorous mathematical foundation
for modeling the fractional derivatives, ensuring accurate representation of the system’s memory and
non-local effects.

The proposed methods demonstrated remarkable efficiency and accuracy in obtaining approximate
solutions, as evidenced by numerical results and comparisons with existing techniques. The
combination of Laplace transforms and least square minimization not only simplified the solution
process but also enhanced the precision of the results. These approaches offer a powerful and versatile
framework for solving a wide range of nonlinear fractional differential equations, extending their
applicability to various scientific and engineering problems.

Future work could explore the application of these methods to other complex fractional models, as
well as further optimization of the computational algorithms to handle higher-dimensional systems.
Overall, this study contributes significantly to the field of fractional calculus and provides a promising
direction for solving challenging nonlinear fractional differential equations.
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