Citation: Syed Ahtsham Ul Haq Bokhary, Zill-e-Shams, Abdul Ghaffar, Kottakkaran Sooppy Nisar. On the metric basis in wheels with consecutive missing spokes[J]. AIMS Mathematics, 2020, 5(6): 6221-6232. doi: 10.3934/math.2020400
[1] | G. Abbas, U. Ali, M. Munir, et al. Power graphs and exchange property for resolving sets, Open Math., 17 (2019), 1303-1309. doi: 10.1515/math-2019-0093 |
[2] | D. L. Boutin, Determining sets, resolving sets and the exchange property, Graphs Combin., 25 (2009), 789-806. doi: 10.1007/s00373-010-0880-6 |
[3] | P. S. Buczkowski, G. Chartrand, C. Poisson, et al. On k-dimensional graphs and their bases, Periodica Math. Hung., 46 (2003), 9-15. doi: 10.1023/A:1025745406160 |
[4] | J. Caceres, C. Hernando, M. Mora, et al. On the metric dimension of cartesian product of graphs, SIAM J. Disc. Math., 2 (2007), 423-441. |
[5] | P. J. Cameron, J. H. Van Lint, Designs, Graphs, Codes and their Links, London Mathematical Society Student Texts 22, Cambridge University Press, Cambridge, 1991. |
[6] | G. Chartrand, L. Eroh, M. A. Johnson, et al. Resolvability in graphs and metric dimension of a graph, Disc. Appl. Math., 105 (2000), 99-113. doi: 10.1016/S0166-218X(00)00198-0 |
[7] | F. M. Dong, Y. P. Liu, All wheels with two missing consecutive spokes are chromatically unique, Disc. Math., 184 (1998), 71-85. doi: 10.1016/S0012-365X(96)00288-9 |
[8] | M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP- Completeness, Freeman, New York, 1979. |
[9] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191-195. |
[10] | M. Imran, A. Q. Baig, M. K. Shafiq, et al. On metric dimension of generlized Petersen graphs P(n, 3), Ars Combin., 117 (2014), 113-130. |
[11] | M. Imran, A. Q. Baig, S. A. Bokhary, et al. On the metric dimension of circulant graphs, Appl. Math. Lett., 25 (2012), 320-325. doi: 10.1016/j.aml.2011.09.008 |
[12] | M. Imran, S. A. Bokhary, A. Q. Baig, On families of convex polytopes with constant metric dimension, Comput. Math. Appl., 60 (2010), 2629-2638. doi: 10.1016/j.camwa.2010.08.090 |
[13] | M. Imran, A. Ahmad, S. A. Bokhary, et al. On classes of regular graphs with constant metric dimension, Acta Math. Scientia, 33 (2013), 187-206. doi: 10.1016/S0252-9602(12)60204-5 |
[14] | M. Imran, H. M. A. Siddiqui, Computing the metric dimension of convex polytopes generated by wheel related graphs, Acta Math. Hungar., 149 (2016), 10-30. doi: 10.1007/s10474-016-0606-1 |
[15] | I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Utilitas Math., 75 (2008), 21-33. |
[16] | S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Disc. Appl. Math., 70 (1996), 217-229. doi: 10.1016/0166-218X(95)00106-2 |
[17] | S. Khuller, B. Raghavachari, A. Rosenfeld, Localization in graphs, Technical Report CS-TR-3326, University of Maryland at College Park, 1994. |
[18] | R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vision Graphics, Image Processing, 25 (1984), 113-121. doi: 10.1016/0734-189X(84)90051-3 |
[19] | O. R. Oellermann, J. Peters-Fransen, Metric dimension of Cartesian products of graphs, Utilitas Math., 69 (2006), 33-41. |
[20] | M. Salman, I. Javaid, M. A. Chaudhry, Resolvability in circulant graphs, Acta Math. Sin. Engl. Ser., 28 (2012), 1851-1864. doi: 10.1007/s10114-012-0417-4 |
[21] | A. Sebö, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29(2004),383-393. doi: 10.1287/moor.1030.0070 |
[22] | H. M. A. Siddiqui, M. Imran, Computing the metric dimension of wheel related graphs, Appl. Math. Comput., 242 (2014), 624-632. |
[23] | P. J. Slater, Leaves of trees, Congress. Numer., 14 (1975), 549-559. |
[24] | P. J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22 (1988), 445-455. |
[25] | I. Tomescu, M. Imran, On metric and partition dimensions of some infinite regular graphs, Bull. Math. Soc. Sci. Math. Roumanie, 52 (2009), 461-472. |
[26] | I. Tomescu, I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie, 50 (2007), 371-376. |
[27] | U. Ali, S. A. Bokhary, K. Wahid, et al. On resolvability of a graph associated to a finite vector space, Journal of Algebra and Its Applications, 18 (2018), 1950028. |