Research article

Performance analysis of nanosystem based on cooperative relay for nanonetworks

  • Received: 03 March 2023 Revised: 11 August 2023 Accepted: 21 August 2023 Published: 14 September 2023
  • Recent nanomedical applications, particularly targeted drug delivery system (TDDS) scenarios, have made use of molecular communications via diffusion (MCvD) based on nanosystems. In order to improve the performance of such nanosystems, nanonetworks-based molecular communication is investigated. Employing a nanorelay approach and cooperative molecular communications, we provide a method for optimizing the performance of the nanosystem while taking blood flow effects into consideration in terms of drift velocity. Unlike the earlier studies, the position of the nanorelay and the allocated amount of molecular drugs will be optimized. We provide closed-form expressions for molecular channel capacity and the error probability of a molecular frame. According to the simulation results, it is possible to significantly reduce error probability of a molecular frame and thus increase channel capacity by optimizing the drift velocity, detection threshold and the location of the nanorelay within the proposed nanosystem.

    Citation: Eman S. Attia, Ashraf A. M. Khalaf, Fathi E. Abd El-Samie, Saied M. Abd El-atty, Konstantinos A. Lizos, Osama Alfarraj. Performance analysis of nanosystem based on cooperative relay for nanonetworks[J]. Networks and Heterogeneous Media, 2023, 18(4): 1657-1677. doi: 10.3934/nhm.2023072

    Related Papers:

  • Recent nanomedical applications, particularly targeted drug delivery system (TDDS) scenarios, have made use of molecular communications via diffusion (MCvD) based on nanosystems. In order to improve the performance of such nanosystems, nanonetworks-based molecular communication is investigated. Employing a nanorelay approach and cooperative molecular communications, we provide a method for optimizing the performance of the nanosystem while taking blood flow effects into consideration in terms of drift velocity. Unlike the earlier studies, the position of the nanorelay and the allocated amount of molecular drugs will be optimized. We provide closed-form expressions for molecular channel capacity and the error probability of a molecular frame. According to the simulation results, it is possible to significantly reduce error probability of a molecular frame and thus increase channel capacity by optimizing the drift velocity, detection threshold and the location of the nanorelay within the proposed nanosystem.



    加载中


    [1] S. M. Abd El‐atty, Health monitoring scheme‐based Forster resonance energy transfer nano communications in the Internet of Biological Nanothings, Int. J. Commun. Syst., 33 (2020), e4398. https://doi.org/10.1002/dac.4398 doi: 10.1002/dac.4398
    [2] S. Mohamed, J. Dong, S. M. A. El-Atty, M. A. Eissa, Bio-Cyber Interface Parameter Estimation with Neural Network for the Internet of Bio-Nano Things, Wirel. Pers. Commun., 123 (2022), 1245–1263. https://doi.org/10.1007/s11277-021-09177-6 doi: 10.1007/s11277-021-09177-6
    [3] A. El-Fatyany, H. Z. Wang, S. M. Abd El-atty, Efficient framework analysis for targeted drug delivery based on internet of bio-nanothings, Arab. J. Sci. Eng., 46 (2021), 9965–9980. https://doi.org/10.1007/s13369-021-05651-2 doi: 10.1007/s13369-021-05651-2
    [4] S. M. Abd El-atty, N. A. Arafa, A. Abouelazm, O. Alfarraj, K. A. Lizos, F. Shawki, Performance analysis of an artificial intelligence nanosystem with biological internet of nano things, CMES-Comp. Model. Eng. Sci., 133 (2022), 111–131. https://doi.org/10.32604/cmes.2022.020793 doi: 10.32604/cmes.2022.020793
    [5] M. Germain, F. Caputo, S. Metcalfe, G. Tosi, K. Spring, A. K. Åslund, et al., Delivering the power of nanomedicine to patients today, J. Controlled Release, 326 (2020), 164–171. https://doi.org/10.1016/j.jconrel.2020.07.007 doi: 10.1016/j.jconrel.2020.07.007
    [6] E. S. Attia, A. A. M. Khalaf, F. E. A. El-Samie, S. M. A. El-Atty, K. A. Lizos, O. Alfarraj, et al., Embedded coded relay system for molecular communications, Comput. Mater. Contin., 72 (2022), 2729–2748. https://doi.org/10.32604/cmc.2022.026197 doi: 10.32604/cmc.2022.026197
    [7] U. Chude-Okonkwo, R. Malekian, B. T. Maharaj, Advanced Targeted Nanomedicine A Communication Engineering Solution, Switzerland: Springer Nature, 2009.
    [8] S. Zafar, M. Nazir, T. Bakhshi, H. A. Khattak, S. Khan, M. Bilal, et al., A systematic review of bio-cyber interface technologies and security issues for internet of bio-nano things, IEEE Access, 9 (2021), 93529–93566. https://doi.org/10.1109/ACCESS.2021.3093442 doi: 10.1109/ACCESS.2021.3093442
    [9] W. X. Pan, X. K. Chen, X. D. Yang, N. Zhao, L. G. Meng, F. H. Shah, A molecular communication platform based on body area nanonetwork, Nanomaterials, 12 (2022), 722. https://doi.org/10.3390/nano12040722 doi: 10.3390/nano12040722
    [10] S. Canovas-Carrasco, A. J. Garcia-Sanchez, J. Garcia-Haro, The IEEE 1906.1 Standard: Nanocommunications as a new source of data, in 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K), IEEE, Nanjing, (2017), 1–7. https://doi.org/10.23919/ITU-WT.2017.8247001
    [11] N. Farsad, H. B. Yilmaz, A. Eckford, C. B. Chae, W. S. Guo, A comprehensive survey of recent advancements in molecular communication, IEEE Commun. Surv. Tutorials, 18 (2016), 1887–1919. https://doi.org/10.1109/COMST.2016.2527741 doi: 10.1109/COMST.2016.2527741
    [12] M. Ş. Kuran, H. B. Yilmaz, I. Demirkol, N. Farsad, A. Goldsmith, A survey on modulation techniques in molecular communication via diffusion, IEEE Commun. Surv. Tutorials, 23 (2020), 7–28. https://doi.org/10.1109/COMST.2020.3048099 doi: 10.1109/COMST.2020.3048099
    [13] N. R. Kim, C. B. Chae, Novel modulation techniques using isomers as messenger molecules for nano communication networks via diffusion, IEEE J. Sel. Areas Commun., 31 (2013), 847–856. https://doi.org/10.1109/JSAC.2013.SUP2.12130017 doi: 10.1109/JSAC.2013.SUP2.12130017
    [14] H. B. Yilmaz, N. R. Kim, C. B. Chae, Modulation techniques for molecular communication via diffusion, in Modeling, Methodologies and Tools for Molecular and Nano-scale Communications: Modeling, Methodologies and Tools, Switzerland: Springer, 9 (2017), 99–118. https://doi.org/10.1007/978-3-319-50688-3-5
    [15] M. U. Mahfuz, D. Makrakis, H. T. Mouftah, A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication, IEEE Trans. Nanobiosci., 13 (2014), 208–222. https://doi.org/10.1109/TNB.2014.2341693 doi: 10.1109/TNB.2014.2341693
    [16] M. F. Ghazani, G. Aminian, M. Mirmohseni, A. Gohari, M. N. Kenari, Physical layer network coding in molecular two-way relay networks, In 2016 Iran Workshop on Communication and Information Theory (IWCIT), IEEE, Tehran, Iran, (2016), 1–6. https://doi.org/10.1109/IWCIT.2016.7491619
    [17] P. Manocha, G. Chandwani, Design methodology of passive in-line relays for molecular communication in flow-induced microfluidic channel, Biosensors, 11 (2021), 65. https://doi.org/10.3390/bios11030065 doi: 10.3390/bios11030065
    [18] H. Du, Q. Liu, K. Yang, Multi-hop relay directional communication based on attractants in molecular communication, In Proceedings of the 9th ACM International Conference on Nanoscale Computing and Communication, (2022), 1–3. https://doi.org/10.1145/3558583.3558866
    [19] Y. J. Na, J. S. Jung, Y. H. You, H. K. Song, Adaptive relay selection scheme for minimization of the transmission time, Comput. Mater. Contin., 69 (2021), 1361–1373. https://doi.org/10.32604/cmc.2021.018481 doi: 10.32604/cmc.2021.018481
    [20] S. M. Abd El-atty, R. Bidar, ES. M. El-Rabaie, Embedded nano relay for intra-body network-based molecular communications. Wireless Pers. Commun., 125 (2022), 3049–3066. https://doi.org/10.1007/s11277-022-09697-9 doi: 10.1007/s11277-022-09697-9
    [21] N. Varshney, W. Haselmayr, W. Guo, On flow-induced diffusive mobile molecular communication: First hitting time and performance analysis, IEEE Trans. Mol. Biol. Multi-Scale Commun., 4 (2018), 195–207. https://doi.org/10.1109/TMBMC.2019.2928543 doi: 10.1109/TMBMC.2019.2928543
    [22] J. Angjo, A. E. Pusane, H. B. Yilmaz, E. Basar, T. Tugcu, Optimal relaying in molecular communications, Nano Commun. Netw., 32 (2022), 100404. https://doi.org/10.1016/j.nancom.2022.100404 doi: 10.1016/j.nancom.2022.100404
    [23] Z. Cheng, J. Sun, J. Yan, Y. Tu, Optimizations for mobile MIMO relay molecular communication via diffusion with network coding, KSII Trans. Internet Inf. Syst., 16 (2022), 1373–1391. https://doi.org/10.3837/tiis.2022.04.015 doi: 10.3837/tiis.2022.04.015
    [24] S. K. Tiwari, T. R. T. Reddy, P. K. Upadhyay, D. B. Da Costa, Joint optimization of molecular resource allocation and relay positioning in diffusive nanonetworks, IEEE Access, 6 (2018), 67681–67687. https://doi.org/10.1109/ACCESS.2018.2879159 doi: 10.1109/ACCESS.2018.2879159
    [25] N. Tavakkoli, P. Azmi, N. Mokari, Optimal positioning of relay node in cooperative molecular communication networks. IEEE Trans. Commun., 65 (2017), 5293–5304. https://doi.org/10.1109/TCOMM.2017.2737623 doi: 10.1109/TCOMM.2017.2737623
    [26] N. Tavakkoli, P. Azmi, N. Mokari, Performance evaluation and optimal detection of relay-assisted diffusion-based molecular communication with drift, IEEE Trans. Nanobioscience, 16 (2016), 34–42. https://doi.org/10.1109/TNB.2016.2626313 doi: 10.1109/TNB.2016.2626313
    [27] P. P. Ray, K. Skala, Internet of things aware secure dew computing architecture for distributed hotspot network: A conceptual study. Appl. Sci., 12 (2022), 8963. https://doi.org/10.3390/app12188963 doi: 10.3390/app12188963
    [28] M. C. Gursoy, A. E. Pusane, T. Tugcu, Molecule-as-a-frame: A frame based communication approach for nanonetworks. Nano Commun. Netw., 16 (2018), 45–59. https://doi.org/10.1016/j.nancom.2018.02.005 doi: 10.1016/j.nancom.2018.02.005
    [29] X. L. Wang, Z. Jia, Reliability analysis of molecular communication based on drift diffusion in different topologies, J. Comput. Commun., 08 (2020), 71. https://doi.org/10.4236/jcc.2020.81005 doi: 10.4236/jcc.2020.81005
    [30] M. F. O. Hameed, K. R. Mahmoud, S. S. A. Obayya, Metaheuristic algorithms for dispersion optimization of photonic crystal fibers, Opt. Quantum Electron., 48 (2016), 1–11. https://doi.org/10.1007/s11082-016-0418-0 doi: 10.1007/s11082-016-0418-0
    [31] K. R. Mahmoud, Synthesis of unequally‐spaced linear array using modified central force optimisation algorithm, IET Microw. Antennas Propag., 10 (2016), 1011–1021. https://doi.org/10.1049/iet-map.2015.0801 doi: 10.1049/iet-map.2015.0801
    [32] N. Siddique, H. Adeli, Central force metaheuristic optimization, Sci. Iran., 6 (2015), 1941–1953.
    [33] Y. B. Chen, J. Q. Yu, Y. S. Mei, Y. F. Wang, X. L. Su, Modified central force optimization (MCFO) algorithm for 3D UAV path planning, Neurocomputing, 171 (2016), 878–888. https://doi.org/10.1016/j.neucom.2015.07.044 doi: 10.1016/j.neucom.2015.07.044
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(775) PDF downloads(124) Cited by(0)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog