Research article
Invariants in partition classes
-
Received:
14 April 2020
Accepted:
14 June 2020
Published:
05 August 2020
-
-
MSC :
05A17, 11P81
-
-
With $ p\left(n, k\right) $ denote the numerical value of the number of partitions of the natural number $ n $ on exactly $ k $ parts. Form an arithmetic progression of $ k $ natural numbers with an arbitrary first value $ x_1 = p\left(j, k\right)$, and the difference $ d = m \cdot LCM\left(1, 2, \dots, k\right) $, where $ j$ and $ m $ an arbitrary natural numbers. Calculate all the values of $ \left\{p\left(x_i, k\right)\right\}_{i = 1, 2, \dots, k} $ and make the alternating sum with the appropriate binomial coefficients $ \sum_{i = 0}^{k-1}\left(-1\right)^i \binom{k-1}{i}p\left(j+i\cdot d, k\right). $ The last sum has a constant value equal to $ \left(-1\right)^{k-1}\frac{d^{k-1}}{k!} $, regardless of the first selected member $ x_1 $ of the arithmetic progression. We call this sum the first partition invariant, and it exists in all classes. In addition to these values there are a whole number of other invariant values, but they exist only in some classes, and so forth.
Citation: Aleksa Srdanov. Invariants in partition classes[J]. AIMS Mathematics, 2020, 5(6): 6233-6243. doi: 10.3934/math.2020401
-
Abstract
With $ p\left(n, k\right) $ denote the numerical value of the number of partitions of the natural number $ n $ on exactly $ k $ parts. Form an arithmetic progression of $ k $ natural numbers with an arbitrary first value $ x_1 = p\left(j, k\right)$, and the difference $ d = m \cdot LCM\left(1, 2, \dots, k\right) $, where $ j$ and $ m $ an arbitrary natural numbers. Calculate all the values of $ \left\{p\left(x_i, k\right)\right\}_{i = 1, 2, \dots, k} $ and make the alternating sum with the appropriate binomial coefficients $ \sum_{i = 0}^{k-1}\left(-1\right)^i \binom{k-1}{i}p\left(j+i\cdot d, k\right). $ The last sum has a constant value equal to $ \left(-1\right)^{k-1}\frac{d^{k-1}}{k!} $, regardless of the first selected member $ x_1 $ of the arithmetic progression. We call this sum the first partition invariant, and it exists in all classes. In addition to these values there are a whole number of other invariant values, but they exist only in some classes, and so forth.
References
[1]
|
A. Srdanov, The universal formulas for the number of partitions, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), 40.
|
[2]
|
Aleksa Srdanov, Fractal form of the partition functions p (n), AIMS Math., 5 (2020), 2539-2568. doi: 10.3934/math.2020167
|
[3]
|
A. Srdanov, R. Stefanovic, A. Jankovic, et al. Reducing the number of dimensions of the possible solution space as a method for finding the exact solution of a system with a large number of unknowns, Math. Found. Comput., 2 (2019), 83-93. doi: 10.3934/mfc.2019007
|
[4]
|
E. R. Heineman, Generalized Vandermonde determinants, Trans. Amer. Math. Soc., 31 (1929), 464-476.
|
[5]
|
J. W. L. Glaisher, On the number of partitions of a number into a given number of parts, Quart. J. Pure Appl. Math., 40 (1909), 57-143.
|
-
-
-
-