Equilibria and stability analysis of a branched metabolic network with feedback inhibition

  • Received: 01 June 2005 Revised: 01 September 2005
  • 93B05, 93B60, 35P20.

  • This paper deals with the analysis of a metabolic network with feedback inhibition. The considered system is an acyclic network of mono-molecular enzymatic reactions in which metabolites can act as feedback regulators on enzymes located "at the beginning" of their own pathway, and in which one metabolite is the root of the whole network. We show, under mild assumptions, the uniqueness of the equilibrium. We then show that this equilibrium is globally attractive if we impose conditions on the kinetic parameters of the metabolic reactions. Finally, when these conditions are not satisfied, we show, with a specific fourth-order example, that the equilibrium may become unstable with an attracting limit cycle.

    Citation: Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition[J]. Networks and Heterogeneous Media, 2006, 1(1): 219-239. doi: 10.3934/nhm.2006.1.219

    Related Papers:

    [1] Yacine Chitour, Frédéric Grognard, Georges Bastin . Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks and Heterogeneous Media, 2006, 1(1): 219-239. doi: 10.3934/nhm.2006.1.219
    [2] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
    [3] Nathaniel J. Merrill, Zheming An, Sean T. McQuade, Federica Garin, Karim Azer, Ruth E. Abrams, Benedetto Piccoli . Stability of metabolic networks via Linear-in-Flux-Expressions. Networks and Heterogeneous Media, 2019, 14(1): 101-130. doi: 10.3934/nhm.2019006
    [4] Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel . Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2(4): 751-759. doi: 10.3934/nhm.2007.2.751
    [5] Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497
    [6] Ginestra Bianconi, Riccardo Zecchina . Viable flux distribution in metabolic networks. Networks and Heterogeneous Media, 2008, 3(2): 361-369. doi: 10.3934/nhm.2008.3.361
    [7] Alberto Bressan, Ke Han . Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8(3): 627-648. doi: 10.3934/nhm.2013.8.627
    [8] Zhong-Jie Han, Gen-Qi Xu . Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6(2): 297-327. doi: 10.3934/nhm.2011.6.297
    [9] Jan Haskovec, Vybíral Jan . Robust network formation with biological applications. Networks and Heterogeneous Media, 2024, 19(2): 771-799. doi: 10.3934/nhm.2024035
    [10] Alberto Bressan, Khai T. Nguyen . Optima and equilibria for traffic flow on networks with backward propagating queues. Networks and Heterogeneous Media, 2015, 10(4): 717-748. doi: 10.3934/nhm.2015.10.717
  • This paper deals with the analysis of a metabolic network with feedback inhibition. The considered system is an acyclic network of mono-molecular enzymatic reactions in which metabolites can act as feedback regulators on enzymes located "at the beginning" of their own pathway, and in which one metabolite is the root of the whole network. We show, under mild assumptions, the uniqueness of the equilibrium. We then show that this equilibrium is globally attractive if we impose conditions on the kinetic parameters of the metabolic reactions. Finally, when these conditions are not satisfied, we show, with a specific fourth-order example, that the equilibrium may become unstable with an attracting limit cycle.


  • This article has been cited by:

    1. Murat Arcak, Eduardo D. Sontag, 2007, A passivity-based stability criterion for a class of interconnected systems and applications to biochemical reaction networks, 978-1-4244-1497-0, 4477, 10.1109/CDC.2007.4434115
    2. Ismail Belgacem, Jean-Luc Gouzé, Global Stability of Enzymatic Chains of Full Reversible Michaelis-Menten Reactions, 2013, 61, 0001-5342, 425, 10.1007/s10441-013-9195-3
    3. Somnath Tagore, Rajat K. De, Dipshikha Chakravortty, Simulating an Infection Growth Model in Certain Healthy Metabolic Pathways of Homo sapiens for Highlighting Their Role in Type I Diabetes mellitus Using Fire-Spread Strategy, Feedbacks and Sensitivities, 2013, 8, 1932-6203, e69724, 10.1371/journal.pone.0069724
    4. David Angeli, Eduardo D. Sontag, Oscillations in I/O Monotone Systems Under Negative Feedback, 2008, 53, 0018-9286, 166, 10.1109/TAC.2007.911320
    5. Eduardo D. Sontag, Murat Arcak, 2008, Chapter 14, 978-1-84800-154-1, 195, 10.1007/978-1-84800-155-8_14
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3677) PDF downloads(71) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog