Research article

A fast and efficient Newton-type iterative scheme to find the sign of a matrix

  • Received: 11 July 2022 Revised: 19 October 2022 Accepted: 07 November 2022 Published: 07 June 2023
  • MSC : 65F30, 65F60

  • This work proposes a new scheme under the umbrella of iteration methods to compute the sign of an invertible matrix. To this target, a review of the exiting solvers of the same type is given and then a new scheme is derived based on a multi-step Newton-type nonlinear equation solver. It is shown that the new method and its reciprocal converge globally with wider convergence radii in contrast to their competitors of the same order from the general Padé schemes. After investigation on the theoretical parts, numerical experiments based on complex matrices of various sizes are furnished to reveal the superiority of the proposed solver in terms of elapsed CPU time.

    Citation: Malik Zaka Ullah, Sultan Muaysh Alaslani, Fouad Othman Mallawi, Fayyaz Ahmad, Stanford Shateyi, Mir Asma. A fast and efficient Newton-type iterative scheme to find the sign of a matrix[J]. AIMS Mathematics, 2023, 8(8): 19264-19274. doi: 10.3934/math.2023982

    Related Papers:

  • This work proposes a new scheme under the umbrella of iteration methods to compute the sign of an invertible matrix. To this target, a review of the exiting solvers of the same type is given and then a new scheme is derived based on a multi-step Newton-type nonlinear equation solver. It is shown that the new method and its reciprocal converge globally with wider convergence radii in contrast to their competitors of the same order from the general Padé schemes. After investigation on the theoretical parts, numerical experiments based on complex matrices of various sizes are furnished to reveal the superiority of the proposed solver in terms of elapsed CPU time.



    加载中


    [1] G. Candelario, A. Cordero, J. R. Torregrosa, M. P. Vassileva, An optimal and low computational cost fractional Newton-type method for solving nonlinear equations, Appl. Math. Lett., 124 (2022), 107650, http://doi.org/10.1016/j.aml.2021.107650 doi: 10.1016/j.aml.2021.107650
    [2] A. Cordero, F. Soleymani, J. R. Torregrosa, M. Zaka Ullah, Numerically stable improved Chebyshev-Halley type schemes for matrix sign function, J. Comput. Appl. Math., 318 (2017), 189–198, http://doi.org/10.1016/j.cam.2016.10.025 doi: 10.1016/j.cam.2016.10.025
    [3] E. D. Denman, A. N. Beavers, The matrix sign function and computations in systems, Appl. Math. Comput., 2 (1976), 63–94, http://doi.org/10.1016/0096-3003(76)90020-5 doi: 10.1016/0096-3003(76)90020-5
    [4] O. Gomilko, F. Greco, K. Ziȩtak, A Padé family of iterations for the matrix sign function and related problems, Numer. Linear. Algebr. Appl., 19 (2012), 585–605, http://doi.org/10.1002/nla.786 doi: 10.1002/nla.786
    [5] N. J. Higham, Functions of Matrices: Theory and Computation, Philadelphia: SIAM, 2008.
    [6] B. Iannazzo, Numerical Solution of Certain Nonlinear Matrix Equations, PhD thesis, Universita degli studi di Pisa, 2007.
    [7] C. S. Kenney, A. J. Laub, Rational iterative methods for the matrix sign function, SIAM J. Matrix Anal. Appl., 12 (1991), 273–291, http://doi.org/10.1137/0612020 doi: 10.1137/0612020
    [8] E. M. Maralani, F. D. Saei, A. A. J. Akbarfam, K. Ghanbari, Computation of eigenvalues of fractional Sturm-Liouville problems, Iran. J. Numer. Anal. Optim. 11 (2021), 117–133. http://doi.org/10.22067/IJNAO.2020.11305.0 doi: 10.22067/IJNAO.2020.11305.0
    [9] Y. Nakatsukasa, Z. Bai, F. Gygi, Optimizing Halley's iteration for computing the matrix polar decomposition, SIAM J. Matrix Anal. Appl., 31 (2010), 2700–2720. http://doi.org/10.1137/090774999 doi: 10.1137/090774999
    [10] J. D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Int. J. Control, 32 (1980), 677–687. http://doi.org/10.1080/00207178008922881 doi: 10.1080/00207178008922881
    [11] A. R. Soheili, F. Toutounian, F. Soleymani, A fast convergent numerical method for matrix sign function with application in SDEs, J. Comput. Appl. Math., 282 (2015), 167–178. http://doi.org/10.1016/j.cam.2014.12.041 doi: 10.1016/j.cam.2014.12.041
    [12] F. Soleymani, F. W. Khdhr, R. K. Saeed, J. Golzarpoor, A family of high order iterations for calculating the sign of a matrix, Math. Meth. Appl. Sci., 43 (2020), 8192–8203. http://doi.org/10.1002/mma.6471 doi: 10.1002/mma.6471
    [13] F. Soleymani, Some efficient seventh-order derivative-free families in root-finding, Opuscula Math., 33 (2013), 163–173. http://doi.org/10.7494/OpMath.2013.33.1.163 doi: 10.7494/OpMath.2013.33.1.163
    [14] F. Soleymani, A three-step iterative method for nonlinear systems with sixth order of convergence, Int. J. Comput. Sci. Math., 4 (2013), 363–373. https://doi.org/10.1504/IJCSM.2013.058057 doi: 10.1504/IJCSM.2013.058057
    [15] G. W. Stewart, Introduction to Matrix Computations, New York: Academic Press, 1973.
    [16] M. Trott, The Mathematica Guide-Book for Numerics, New York: Springer, 2006.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1497) PDF downloads(45) Cited by(4)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog