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Abstract: Partial domination was proposed in 2017 on the basis of domination theory, which has good
practical application background in communication network. Let G = (V, E) be a graph and F be a
family of graphs, a subset S ⊆ V is called an F -isolating set of G if G[V\NG[S ]] does not contain F as
a subgraph for all F ∈ F . The subset S is called an isolating set of G if F = {K2} and G[V\NG[S ]] does
not contain K2 as a subgraph. The isolation number of G is the minimum cardinality of an isolating set
of G, denoted by ι(G). The hypercube network and n-star network are the basic models for network
systems, and many more complex network structures can be built from them. In this study, we obtain
the sharp bounds of the isolation numbers of the hypercube network and n-star network.
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1. Introduction

In this paper, all graphs considered are non-empty, finite, undirected and simple. Additionally, for
standard graph theory terminology not given here, we refer to [1]. Let G be a simple graph with the
vertex set V(G) and the edge set E(G), and |V(G)| = n, |E(G)| = m. For any v ∈ V(G), the degree dG(v)
of v is the number of neighbors of v. The minimum and maximum degree of G are denoted by δ(G)
and ∆(G), respectively. The open neighborhood NG(v) of v is the set N(v) = {u ∈ V | uv ∈ E} and the
closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}. For any S ⊆ V(G), the open neighborhood
of S is the set NG(S ) =

⋃
v∈S NG(v) and the closed neighborhood of S is the set NG[S ] = NG(S ) ∪ S .

Furthermore, we define NS (v) = NG(v) ∩ S and NS [v] = NS (v) ∪ {v}. The subgraph of G induced by
S is denoted by G[S ]. For a graph H, we say that G is H- f ree if G does not contain H as a subgraph.
The cycle and clique on n vertices are denoted as Cn and Kn. Abbreviate {1, 2, · · · , n} to [n] and say
“i” is a symbol of [n], where n ∈ N∗ and i ∈ [n].
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In recent years, with the rapid development of information technology, the domination theory has
been widely used in computer technology, cryptography, social network, communication network and
many other subjects. In 1958, Claude Berge [2] first proposed the concept of the domination number. A
vertex subset S ⊆ V(G) is a dominating set of G if NG[S ] = V(G). The domination number γ(G) of G
is the minimum cardinality of a dominating set of G, i.e γ(G) = min{|S | : S is a dominating set o f G}.

In 2017, Caro and Hansberg [3] extended the domination to the partial domination, and proposed
the concept of an F -isolating set of a graph G for the first time. Let G = (V, E) be a graph and F be a
family of graphs.

Definition 1.1. [3] A subset S ⊆ V is called an F -isolating set of G if G[V\NG[S ]] does not contain
F as a subgraph for all F ∈ F . The F -isolation number of G is the minimum cardinality of an
F -isolating set of G, denoted by ι(G,F ).

In particalur, if F = {Kk}, the set S is called a {Kk}-isolating set of G if G[V\NG[S ]] does not
contain Kk as a subgraph, and the {Kk}-isolation number of G is the minimum cardinality of a {Kk}-
isolating set of G, denoted by ι(G, k). For any positive integer k, if F = {K1,k+1}, the set S is called a
k-isolating set of G if G[V\NG[S ]] does not contain K1,k+1 as a subgraph, and the k-isolation number
of G is the minimum cardinality of a k-isolating set of G, denoted by ιk(G). Especially, when k = 0,
the set S is called an isolating set of G, and the minimum cardinality of an isolating set of G is the
isolation number of G, denoted by ι(G).

With respect to this problem, Borg et al. [4] studied the ι(G, k) of a connected graph G is at most
n

k+1 unless G � Kk, or k = 2 and G � C5. Caro and Hansberg [3] investigated that ι(G) ≤ n
3 for n ≥ 6,

ιk(T ) ≤ n
k+3 of a tree T which is different from K1,k+1, ιk(G) ≤ n

4 of a maximal outerplanar graph G
with n ≥ 4 and so on. Tokunaga et al. [5] studied that if G is a maximal outerplanar graph of order
n with n2 vertices of degree 2, then ι(G) ≤ n+n2

5 when n2 ≤
n
4 , and ι(G) ≤ n−n2

3 otherwise. Borg and
Kaemawichanurat [6] showed that if G is a maximal outerplanar graph with n ≥ 5, then ι1(G) ≤ n

5 ,
they also showed that ι1(G) ≤ n+n2

6 when n2 ≤
n
3 , and ι1(G) ≤ n−n2

3 otherwise, where n2 is the number
of vertices of degree 2. Borg and Kaemawichanurat [7] obtained that ιk(G) ≤ min{ n

k+4 ,
n+n2

5 , n−n2
3 } for

a maximal outerplanar graph G and k ≥ 0, where n2 is the number of vertices of degree 2. Vazquez-
Araujo [8] analyzed that ι(T ) = n

3 implies ι(T ) = γ(T ) for a tree T , and proposed simple algorithms to
build these trees from the connections of stars.

For a {Kk}-isolating set S , in 2021, Favaron and Kaemawichanurat [9] restriced the induced
subgraph G[S ] to be an independent set and introduced the concept of the independent {Kk}-isolation
number of G. The vertex subset S ⊆ V is said to be independent {Kk}-isolating if S is a {Kk}-isolating
set of G and G[S ] has no edge. The independent {Kk}-isolation number of G is the minimum cardinality
of an independent {Kk}-isolating set of G. Based on the concept, we propose the following concepts.

Definition 1.2. A subset S ⊆ V is called an independent F -isolating set of G if S is an F -isolating
set of G and S is an independent set. The independent F -isolation number of G is the minimum
cardinality of an independent F -isolating set of G, denoted by ιI(G,F ).

Definition 1.3. A subset S ⊆ V is called an independent isolating set of G if S is an isolating set of
G and G[S ] has no edge. The independent isolation number of G is the minimum cardinality of an
independent isolating set of G, denoted by ιI(G).

In this paper, we investigate respectively the sharp bounds of the isolation number and the
independent isolation number of the hypercube network and n-star network.
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2. Main results

2.1. Isolation number of the hypercube network

The hypercube network is the basic model for interconnection networks, and it is a popular network
because of its attractive properties, including regularity, symmetry, small diameter, strong connectivity,
recursive construction, partitionability and relatively low link complexity [10, 11]. In general, a
network model can be modeled as a graph. Let n be a positive integer. The hypercube network of
dimension n, denoted by Qn, is the simple graph whose vertices are the n-tuples with entries in {0, 1}
and whose edges are the pairs of n-tuples that differ in exactly one position (see Figure 1). A m-
dimensional subcube of Qn is isomorphic to Qm for any positive integer 1 ≤ m ≤ n. A vertex of V(Qn)
is an even vertex if the number of 1s is even in its all symbols. A vertex of V(Qn) is an odd vertex if
the number of 1s is odd in its all symbols.

The hypercube network have many classic and fascinating topological structural properties, such as
those below.

Lemma 2.1. [1] Hypercube network satisfies the following properties:
(a) |V(Qn)| = 2n, |E(Qn)| = n · 2n−1;
(b) Each edge of Qn has an even endvertex and an odd endvertex;
(c) Qn is a n-regular bipartite graph;
(d) Every perfect matching of Qn has 2n−1 edges;
(e) If n ≥ 3, then Qn has 2n−3 disjoint 3-dimensional subcubes of Qn.

(a)

(1, 1, 0)

(1, 0, 0)

(0, 0, 1)

(0, 1, 1)(0, 1, 0)

(1, 0, 1)

(1, 1, 1)

(0, 0, 0)

(b)

(c)

Figure 1. (a)Q2; (b)Q3; (c)Q4.
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By Lemma 2.1, we obtain the following results.

Theorem 2.2. ι(Q2) = 1, ι(Q3) = ι(Q4) = 2.

Proof. According to the structure of Qn, we know that Q2 � C4, so ι(Q2) = ι(C4) = 1.
It is easy to know {(0, 0, 0), (1, 1, 1)} is an isolating set of Q3 (see Figure 1(b)), so ι(Q3) ≤ 2.

Let S 1 be a minimum isolating set of Q3, clearly, |S 1| ≥ 1. Suppose that |S 1| = 1. If the vertex
of S 1 is an even vertex, without loss of generality, let S 1 = {(1, 1, 0)}, then V(Q3)\NQ3[S 1] =

{(0, 0, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}. Hence, V(Q3)\NQ3[S 1] is not an independent set of Q3, which
is a contradiction. If the vertex of S 1 is an odd vertex, without loss of generality, let S 1 = {(0, 1, 0)},
then V(Q3)\NQ3[S 1] = {(1, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)}. Hence, V(Q3)\NQ3[S 1] is not an
independent set of Q3, which is a contradiction. Thus, |S 1| , 1, furthermore, ι(Q3) = |S 1| ≥ 2.
Hence, ι(Q3) = 2.

Additionally, it is easy to know {(0, 0, 0, 0), (1, 1, 1, 1)} is an isolating set of Q4 (see Figure 1(c)),
so ι(Q4) ≤ 2. Let Q1

3 and Q2
3 be two disjoint 3-dimensional subcubes of Q4 by Lemma 2.1(e), and S 2

be a minimum isolating set of Q4. Obviously, |S 2| ≥ 1. If |S 2| = 1 and S 2 = {v}, then v ∈ Qi
3 for any

i ∈ {1, 2}. Since Q j
3 ⊂ G[V(Q4)\NQ4[v]] for j ∈ {1, 2}\{i}, V(Q4)\NQ4[S 2] is not an independent set of

Q4, which is a contradiction. Thus, |S 2| , 1, furthermore, ι(Q4) = |S 2| ≥ 2. Hence, ι(Q4) = 2. �

Theorem 2.3. Let n be a positive integer and n ≥ 4, then 2n−1

n ≤ ι(Qn) ≤ 2n−3. Moreover, the bounds
are sharp.

Proof. Let S be a minimum {K2}-isolating set of Qn. Since every perfect matching of Qn has 2n−1 edges
and V(Qn)\NQn[S ] is an independent set, every edge of a perfect matching of Qn has at least one vertex
in NQn(S ), that is, |NQn(S )| ≥ 2n

2 = 2n−1. By Lemma 2.1(c), we have |NQn(S )| ≤ ∆(Qn)|S | = d(v)|S | =
n|S | for any vertex v ∈ S . Thus, ι(Qn) = |S | ≥ |NQn (S )|

d(v) ≥
2n−1

d(v) = 2n−1

n .

By Lemma 2.1, we know that Qn has 2n−3 disjoint 3-dimensional subcubes of Qn for n ≥ 4 and each
edge of Qn has one even endvertex and one odd endvertex, so each Q3 has four odd vertices and four
even vertices, and every even vertex is adjacent to three odd vertices in Q3. Without loss of generality,
let x ∈ V(Q1

3) be an even vertex and y ∈ V(Q1
3)\NQ1

3
[x] be an odd vertex of Q1

3. Since n ≥ 4, there exists
a Qi

3 (2 ≤ i ≤ 2n−3) such that |NQn(x) ∩ V(Qi
3)| = 1. Let NQn(x) ∩ V(Qi

3) = {x′} and y′ ∈ V(Qi
3)\NQi

3
[x′]

be an even vertex of Qi
3. By the structure of Qn, we know that N(x)∩V(Qi

3) = {x′}, N(y)∩V(Qi
3) = {y′}

and yy′ is an edge, then all vertices of (V(Q1
3) ∪ V(Qi

3))\NQn[{x, y′}] are even vertices, and {x, y′} is
an isolating set of Q1

3 ∪ Qi
3. Choose one even vertex in each Q j

3 (1 ≤ j ≤ 2n−3) as the set S such
that all vertices of V(Qn)\NQn[S ] are even vertices (In Figure 2, a, b, c, d are even vertices of V(Q5)
and {a, b, c, d} is an isolating set of Q5). Since each edge of Qn has an even endvertex and an odd
endvertex, the set V(Qn)\NQn[S ] is an independent set of Qn, thus the set S is an isolating set of Qn.
Since |S ∩V(Q j

3)| = 1 for 1 ≤ j ≤ 2n−3, we obtain ι(Qn) ≤ |S | = 2n−3. In conclusion, 2n−1

n ≤ ι(Qn) ≤ 2n−3

for n ≥ 4.
Especially, if 2n−1

n = 2n−3, then n = 4. So the upper bound is equal to the lower bound if and only if
n = 4. If n = 4, then ι(Qn) = 2 = 2n−3 = 2n−1

n by Theorem 2.2. Thus, the upper and lower bounds are
sharp. �
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d

c

b

a

Figure 2. a = {0, 0, 0, 0, 0}, b = {0, 1, 1, 1, 1}, c = {1, 0, 1, 1, 1}, d = {1, 1, 0, 0, 0}.

Corollary 2.4. Let n be a positive integer and n ≥ 4, then 2n−1

n ≤ ιI(Qn) ≤ 2n−3. Moreover, the bounds
are sharp.

Proof. Let S I be a minimum independent isolaing set of Qn. Obviously, S I is an isolating set of Qn.
Thus, by Theorem 2.2, we have ιI(Qn) ≥ 2n−1

n . Let {Q1
3, Q2

3, · · · , Q2n−3

3 } be the set of 2n−3 disjoint 3-
dimensional subcubes of Qn. Choose one even vertex in each Qi

3 (1 ≤ i ≤ 2n−3) as the set S such
that all vertices of V(Qn)\NQn[S ] are even vertices. According to the proof of Theorem 2.2, the set
S is an isolating set of Qn and ι(Qn) ≤ 2n−3. Since all vertices of S are even vertices, the set S is an
independent isolating set of Qn. Thus ιI(Qn) ≤ 2n−3. In conclusion, 2n−1

n ≤ ιI(Qn) ≤ 2n−3 for n ≥ 4.
Especially, if n = 4, then ι(Qn) = 2 = 2n−3 = 2n−1

n by Theorem 2.2. Thus, the upper and lower
bounds are sharp. �

2.2. Isolation number of the n-star network

The n-star network was proposed by Akers, Harel and Krishnamurthy [12] as an attractive
alternative to the hypercube network for interconnecting processors on a parallel computer. For a
positive integer n(n ≥ 2), the n-star network on n symbols, denoted by S n, is the graph with n! vertices,
whose the vertex set V(S n) is all permutations of symbols 1, 2, · · · , n, and each vertex v ∈ V(S n) is
connected to n − 1 vertices which can be obtained by interchanging the first symbol of v with the ith
symbol of v for 2 ≤ i ≤ n (S 4 is shown as an example in Figure 3).

Lemma 2.5. [13, 14] Let G be an n-vertex graph with minimum degree δ(G). If δ(G) ≥ 1, then
γ(G) ≤ n

2 .

Theorem 2.6. Let n be a positive integer and n ≥ 2, then n·(n−2)!
2 ≤ ι(S n) ≤ (n − 1)!. Moreover, the

bounds are sharp.

Proof. Let S be a minimum isolating set of S n. According to the structure of S n, we know that S n is a
(n−1)-regular bipartite graph, and every perfect matching of S n has n!

2 edges. Note that S is a minimum
isolating set of S n and V(S n)\NS n[S ] is an independent set, then every edge of a perfect matching of
S n has at least one endvertex in NS n(S ), that is, |NS n(S )| ≥ n!

2 . For any vertex v ∈ S , we have |NS n(S )| ≤

AIMS Mathematics Volume 8, Issue 10, 24225–24232.
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(2,3,1,4)

(1,3,2,4)

(2,1,3,4)

(3,1,2,4)

(1,4,3,2)

(3,1,4,2)

(4,1,3,2)

(3,4,1,2)

(4,3,1,2)

(1,3,4,2) (4,1,2,3)

(2,4,1,3)

(1,4,2,3)

(2,1,4,3)

(1,2,4,3)

(4,2,1,3)

(2,3,4,1)
(4,3,2,1)

(3,4,2,1) (3,2,4,1)

(4,2,3,1)(2,4,3,1)(3,2,1,4)(1,2,3,4)

Figure 3. S 4.

∆(S n)|S | = d(v)|S | = (n − 1)|S |. Thus, ι(S n) = |S | ≥ |NS n (S )|
d(v) ≥

n!
2

n−1 =
n·(n−2)!

2 .
Inspired by Alon and Spencer [15] and Caroa and Hansbergb [3], we show that ι(S n) ≤ (n − 1)! by

the probabilistic method. Since n ≥ 2, d(v) = n − 1 ≥ 1 for any vertex v ∈ V(S n). Let p ∈ [0, 1],
and we independently select a vertex subset A ⊂ V(S n) at random such that P(v ∈ A) = p. Let I
be the set of the isolated vertices of V(S n)\A. Meanwhile, let B = V(S n)\(NS n[A] ∪ I) and D be a
minimum dominating set of G[B]. Since there is no isolated vertice in B, δ(G[B]) ≥ 1, furthermore,
γ(G[B]) = |D| ≤ |B|

2 by Lemma 2.5. Thus, A ∪ D is an isolating set of S n. Note that the expectated
value E[|D|] ≤ E[ |B|2 ] = 1

2 E[|B|]. Hence, we have

P(v ∈ B) = P(v ∈ B) = P(v ∈ V(S n)\(NS n[A] ∪ I)) = P(v ∈ V(S n)\NS n[A])

= (1 − p)d(v)+1 = (1 − p)n−1+1 = (1 − p)n.

Thus, we obtain that

E[|A ∪ D|] ≤ E[|A|] +
1
2

E[|B|] = p|V(S n)| +
1
2

(1 − p)n|V(S n)| = (p +
1
2

(1 − p)n) · (n!).

Considering the function f (p) = (p+ 1
2 (1− p)n) ·(n!) and its derivative f ′(p) = (1− 1

2n(1− p)n−1 ·(n!),
we can see that f ′(p) = 0 when p = 1 − (2

n )
1

n−1 . It follows that

ι(S n) ≤ E[|A ∪ D|] ≤ (p +
1
2

(1 − p)n) · (n!) ≤ (1 − (
2
n

)
1

n−1 +
1
2

((
2
n

)
1

n−1 )n) · (n!)

= (1 − (
2
n

)
1

n−1 +
1
2

(
2
n

)(
2
n

)
1

n−1 ) · (n!).
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Since n ≥ 2, we have (2
n )

1
n−1 ≤ 1. Then ι(S n) ≤ (1 − 1 + 1

2 (2
n ) · (n!) = 1

n · (n!) = (n − 1)!.
In conclusion, n·(n−2)!

2 ≤ ι(S n) ≤ (n − 1)! for any positive integer n ≥ 2.
Especially, if n = 2, then S 2 � K2, and ι(K2) = 1 = 2·0!

2 =
n·(n−2)!

2 . If n = 3, then S 3 � C6, and
ι(C6) = 2 = (3 − 1)! = (n − 1)!. Hence, the bounds are sharp. �

Corollary 2.7. Let n be a positive integer and n ≥ 2, then n·(n−2)!
2 ≤ ιI(S n) ≤ (n − 1)!. Moreover, the

bounds are sharp.

Proof. Let S I be a minimum independent isolaing set of S n. Obviously, S I is also an isolating set of
S n. By Theorem 2.6, we have ιI(S n) ≥ n·(n−2)!

2 . Let V1 be the set of all vertices with the first symbol is 1.
Clearly, the set V1 is an independent set of S n. According the structure of S n, we know that any vertex
of V1 has different n − 1 neighbors, and the first symbol of these n − 1 neighbors is 2, 3, · · · , n − 1, n
respectively. Let x, y ∈ V1 and x , y. If NS n(x)∩NS n(y) , ∅, then there exists a vertex to be adjacent to
x and y, which contradicts the definition of S n. Thus, NS n(x) ∩ NS n(y) = ∅, that is, the neighborhoods
of any two vertices of V1 are disjoint. Hence, |NS n[V1]| = (n − 1) · |V1| + |V1| = n · |V1| = n · (n − 1)! =

n! = |V(S n)|, this means that G[V(S n)\NS n[V1]] has no edge. Since V1 is independent, the set V1 is an
independent isolating set of S n. Then ιI(S n) ≤ |V1| = (n− 1)!. In conclusion, n·(n−2)!

2 ≤ ιI(S n) ≤ (n− 1)!
for any positive integer n ≥ 2.

Especially, if n = 2, then {(1, 2)} is an independent isolating set of S 2. Thus, ιI(S 2) = 1 = 2·0!
2 =

n·(n−2)!
2 . If n = 3, then {(1, 2, 3), (1, 3, 2)} is an independent isolating set of S 3. Thus, ιI(S 3) = 2 =

(3 − 1)! = (n − 1)!. Hence, the bounds are sharp. �

3. Conclusions and problems

The hypercube network Qn and n-star network S n are both recursively constructed networks, and
they have many known and attractive topological properties. This paper demonstrates the sharp bounds
of the isolation number and the independent isolation number of the hypercube network and n-star
network. In view of this research direction, there are still many academic issues worth studying:

Problem 1. Let m ≥ 1 be a positive integar and F = {F1, F2, · · · , Fm}. For any Fi ∈ F , if Fi � K2,
what Fi can be used to explore the F -isolation number of the hypercube network or n-star network?

Problem 2. Consider the F -isolation number of some other network models.

For future work, it would be interesting and meaningful to probe and research the F -isolation
number of some other network models.
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