This paper studies the reducibility for a class of Hamiltonian almost periodic systems that are degenerate in a small perturbation parameter. We prove for most of the sufficiently small parameter, the Hamiltonian system is reducible by a symplectic almost periodic mapping.
Citation: Jia Li, Xia Li, Chunpeng Zhu. Reducibility for a class of almost periodic Hamiltonian systems which are degenerate[J]. AIMS Mathematics, 2023, 8(1): 2296-2307. doi: 10.3934/math.2023119
This paper studies the reducibility for a class of Hamiltonian almost periodic systems that are degenerate in a small perturbation parameter. We prove for most of the sufficiently small parameter, the Hamiltonian system is reducible by a symplectic almost periodic mapping.
[1] | J. Pöschel, Small divisors with spatial structure in infinite dimensional Hamiltonian systems, Commun. Math. Phys., 127 (1990), 351–393. https://doi.org/10.1007/BF02096763 doi: 10.1007/BF02096763 |
[2] | R. A. Johnson, G. R. Sell, Smoothness of spectral subbundles and reducibility of quasiperodic linear differential systems, J. Differ. Equations, 41 (1981), 262–288. https://doi.org/10.1016/0022-0396(81)90062-0 doi: 10.1016/0022-0396(81)90062-0 |
[3] | A. Jorba, C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differ. Equations, 98 (1992), 111–124. https://doi.org/10.1016/0022-0396(92)90107-X doi: 10.1016/0022-0396(92)90107-X |
[4] | J. X. Xu, Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate, PROC, 126 (1998), 1445–1451. |
[5] | J. Li, C. P. Zhu, On the reducibility of a class of finitely differentiable quasi-periodic linear systems, J. Math. Anal. Appl., 413 (2014), 69–83. https://doi.org/10.1016/j.jmaa.2013.10.077 doi: 10.1016/j.jmaa.2013.10.077 |
[6] | H. Rüssmann, Convergent transformations into a normal form in analytic Hamiltonian systems with two degrees of freedom on the zero energy surface near degenerate elliptic singularities, Ergod. Theor. Dyn. Syst., 24 (2004), 1787–1832. https://doi.org/10.1017/S0143385703000774 doi: 10.1017/S0143385703000774 |
[7] | J. X. Xu, X. Z. Lu, On the reducibility of two-dimensional linear quasi-periodic systems with small parameter, Ergod. Theor. Dyn. Syst., 35 (2015), 2334–2352. https://doi.org/10.1017/etds.2014.31 doi: 10.1017/etds.2014.31 |
[8] | J. X. Xu, K. Wang, M. Zhu, On the reducibility of 2-dimensional linear quasi-periodic systems with small parameters, PROC, 144 (2016), 4793–4805. http://doi.org/10.1090/proc/13088 doi: 10.1090/proc/13088 |
[9] | X. C. Wang, J. X. Xu, On the reducibility of a class of nonlinear quasi-periodic system with small perturbation parameter near zero equilibrium point, Nonlinear Anal.: Theory, Methods Appl., 69 (2008), 2318–2329. https://doi.org/10.1016/j.na.2007.08.016 doi: 10.1016/j.na.2007.08.016 |
[10] | J. Li, J. X. Xu, On the reducibility of a class of almost periodic Hamiltonian systems, Discrete Cont. Dyn.-B, 26 (2021), 3905–3919. https://doi.org/10.3934/dcdsb.2020268 doi: 10.3934/dcdsb.2020268 |
[11] | A. Jorba, C. Simó, On quasi-periodic perturbations of elliptic equilibrium points, Siam J. Math. Anal., 27 (1996), 1704–1737. https://doi.org/10.1137/S0036141094276913 doi: 10.1137/S0036141094276913 |
[12] | J. Li, C. P. Zhu, S. T. Chen, On the reducibility of a class of quasi-periodic Hamiltonian systems with small perturbation parameter near the equilibrium, Qual. Theory Dyn. Syst., 16 (2017), 127–147. https://doi.org/10.1007/s12346-015-0164-x doi: 10.1007/s12346-015-0164-x |
[13] | J. X. Xu, J. G. You, On reducibility of linear differential equations with almost-periodic coefficients, Chinese Ann. Math. A, 17 (1996), 607–616. |
[14] | H. Whitney, Analytical extensions of differentiable functions defined in closed sets, In: Hassler Whitney collected papers, Boston: Birkhäuser, 1992. https://doi.org/10.1007/978-1-4612-2972-8_4 |