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1. Introduction and main results

Definition 1.1. If f (t) = L(ω1t, ω2t, · · · , ωrt) with θ j = ω jt, j = 1, 2 · · · , r, and L(θ1, θ2, · · · , θr) is 2π
periodic with respect to all θ j, we say a function f is quasi-periodic with frequencies
ω = (ω1, ω2, · · · , ωr). Further, if L(θ) (θ = (θ1, θ2, · · · , θr)) is analytic on
Dρ = {θ ∈ Cr| |Imθ j| ≤ ρ, j = 1, 2, · · · , r}, we say f (t) is analytic quasi-periodic on Dρ. The norm of f
on Dρ is defined as || f ||ρ = sup

θ∈Dρ

|L(θ)|.

Definition 1.2. If pi j(t)(i, j = 1, 2 · · · n) are all analytic quasi-periodic on Dρ, we say a matrix function
P(t) = (pi j(t))1≤i, j≤n is analytic quasi-periodic on Dρ.

Define the norm of the matrix P by ‖ P ‖ρ= max
1≤i≤n

n∑
j=1
‖ pi j ‖ρ. Obviously, ‖ P1P2 ‖ρ≤‖ P1 ‖ρ‖ P2 ‖ρ.

For simplicity, if the matrix P is constant, denote ‖ P ‖=‖ P ‖ρ.
For almost periodic Hamiltonian systems, we use notations and definitions of finite spatial

structure [1].
Definition 1.3. Assume τ is a family of subsets of N and N is a natural number set. If τ fulfills (i)
∪Λ∈τΛ = N; (ii) if Λ1,Λ2 ∈ τ, then Λ1 ∪ Λ2 ∈ τ; (iii) φ ∈ τ, where φ is an empty set, we say (τ,[·]) is a
finite spatial structure. Moreover, [·] is called a weight function on τ if [φ]=0 and [Λ1∪Λ2]≤[Λ1]+[Λ2].
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Definition 1.4. Assume k = (k1, k2, · · · ) ∈ Z∞. Define the support of k by suppk = {i | ki , 0}. Denote

|k| =
∞∑

i=1
|ki|. The weight of its support is defined as [k] = inf suppk⊆Λ∈τ[Λ].

Definition 1.5. If P(t) =
∑
Λ∈τ

PΛ(t),where PΛ(t) is a quasi-periodic matrix with frequenciesωΛ = {ωi|i ∈

Λ}, we say P(t) is an almost periodic matrix with weighted spatial structure (τ,[·]). In the context of
integer modulus, frequencies ω of Q(t) is the the biggest subset of

⋃
ωΛ.

Definition 1.6. Denote P(t) =
∑
Λ∈τ

PΛ(t). When m > 0, ρ > 0, |||P|||m,ρ =
∑
Λ∈τ

em[Λ]||PΛ(t)||ρ (see [1]) is

defined as a weighted norm of P(t). Clearly, for m > 0, ρ > 0, ||P(t)||ρ ≤ |||P(t)|||0,ρ ≤ |||P(t)|||m,ρ.

If the quasi-periodic equation
ẋ = B(t)x, x ∈ Rn, (1.1)

by a non-sigular mapping x = ψ(t)y, where ψ(t)−1 and ψ(t) are bounded and quasi-periodic, (1.1) can
become

ẏ = Cy

with the matrix C is constant, we call (1.1) is reducible. When the matrix B(t) is periodic, the famous
Floquent theorem tells us by a (double-)periodic transformation, ẋ = B(t)x is reducible. However,for
the quasi-periodic situation it is not true. Under some “full spectrum” conditions, the authors [2]
obtained the quasi-periodic system (1.1) is reducible. For linear systems, the authors in [3] studied the
quasi-periodic system

ẋ = (A + εQ(t))x, x ∈ Rn, (1.2)

where A is an n × n constant matrix with different eigenvalues λ1, λ2, · · · , λn. If non-degeneracy
conditions

d
dε

(λ̄i(ε) − λ̄ j(ε))|ε=0 , 0, i , j, (1.3)

and non-resonance conditions | 〈k, ω〉
√
−1 + λi − λ j |≥

α0
|k|τ are satisfied, where ∀k ∈ Zr \ {0}, ∀i, j =

1, 2, · · · , n, α0 > 0 is a small constant, τ > r − 1, λ̄i(ε)(i = 1, 2, · · · , n) are eigenvalues of A + εQ̄ and
Q̄ is the average of Q(t), for ε ∈ E with the nonempty Cantor subset E, (1.2) is reducible.

In [4], λ̄i(ε) − λ̄ j(ε) are called degenerate if non-degeneracy conditions (1.3) do not hold. The
authors [4] considered this degenerate case. They proved a similar result under weaker non-degeneracy
conditions .

Previously, the reducibility for analytic quasi-periodic systems were mainly considered. The finitely
smooth case was considered in [5].

In KAM theorems, non-degeneracy conditions are always necessary. But when the hamiltonian
system is two degrees of freedom, a special result [6] is obtained. Without any non-degeneracy
condition, the authors [7] obtained the reducible result for the linear two-dimensional quasi-periodic
system depending on a small parameter analytically. For the case that depends on the small parameter
smoothly, there is a similar result [8]. Without any non-degeneracy condition, the authors [9] obtained
the reducible result for the nonlinear two-dimensional quasi-periodic system. Recently, for the two
dimensional almost periodic system, we also obtain a similar result in [10].

For nonlinear quasi-periodic systems, the authors [11] studied the following system

ẋ = (A + εQ(t, ε))x + εg(t, ε) + h(x, t, ε), (1.4)
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where the matrix A is constant and h is O(x2). If non-degeneracy conditions and non-resonance
conditions are satisfies, using an analogous way as [3], the system (1.4) is reducible. When the
system (1.4) becomes the hamiltonian system with multiple eigenvalues, we obtain an analogous
result in [12].

In [13], under non-resonance and non-degeneracy conditions, Xu further considered the reducibility
for the almost periodic system.

Motivated by [1, 4, 13], here we consider the reducibility for the higher dimensional Hamiltonian
almost periodic system under weaker non-degeneracy conditions, which is called degenerate in [4].

Here non-resonance conditions are presented by so called approximation function. If ∆ : [1,+∞)→
[1,+∞), ∆(1) = 1,

log ∆(t)
t

↘ 0, 1 ≤ t → ∞,

and ∫ ∞

1

log ∆(t)
t2 dt < +∞,

we say an increasing function ∆(t) is an approximation function [1]. obviously, when ∆(t) is an
approximation function, so is ∆4(t).

Let

Γ(%) = sup
t≥0

(∆3(t)e−%t), ψ(%) =
1
2

inf
%0+%1+···%n+···≤%

∞∏
v=1

(Γ(%v))( 3
2 )−(v+1)

.

There exists a sequence %̄1 ≥ %̄2 ≥ · · · ≥ 0, such that
∞∑

v=0
%̄v = % and ψ(%) = 1

2

∞∏
v=0

(Γ(%̄v))( 3
2 )−(v+1)

. For the

details, see [1].
Suppose ω = (ω1, ω2, · · · ) is frequencies of Q(t), λ1, λ2, · · · , λ2n are the different eigenvalues of A,

∆(t) is an approximation function that fulfills∑
k∈Z∞

1
∆(|k|)∆([k])

< +∞. (1.5)

For Theorem 1.1 of this paper, non-resonance conditions are

| 〈k, ω〉
√
−1 − λi + λ j |≥

α

∆(|k|)∆([k])
, ∀k ∈ Z∞\{0}, i, j = 1, 2, · · · , 2n. (1.6)

Since [1], when we choose ∆(t) which satisfies (1.5) and [Λ] = 1 +
∑
i∈Λ

logr(1 + |i|) (r > 2), there exists

ω = (ω1, ω2, · · · ) [1] which fulfills non-resonance conditions (1.6). The following theorem is the main
result of this paper.

Theorem 1.1. Consider the linear Hamiltonian system

ẋ = (A + εQ(t, ε))x, x ∈ R2n, (1.7)

where A = diag(λ1, λ2, · · · , λ2n) is a 2n× 2n constant Hamiltonian matrix with λi , λ j, i , j, 1 ≤ i, j ≤
2n, and λp+n = −λp, p = 1, 2, · · · , n. Suppose a small parameter ε ∈ (0, ε0), Q(t, ε) =

∑
Λ∈τ

QΛ(t, ε) is

Hamiltonian analytic almost periodic in t with frequencies ω = (ω1, ω2, · · · ) on Dρ and analytic in ε.
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Assume
(A1) (non-resonance conditions) The frequencies ω = (ω1, ω2, · · · ) satisfies

| 〈k, ω〉
√
−1 − λi + λ j |≥

α

∆(|k|)∆([k])
(1.8)

for ∀k ∈ Z∞\{0}, 1 ≤ i, j ≤ 2n, where α > 0 is a small constant.
(A2) Let q̄ii be the average of qii(t) and R̄0 = diag(q̄11, q̄22, · · · , q̄2n,2n). Assume when j , i, ε(q̄ j j− q̄ii)

satisfies one of the following forms:

µ1ε
l1 + o(εl1), µ2ε

l2 + o(εl2), · · · , µpε
lp + o(εlp),

where µi , 0, i = 1, 2, · · · , p, 1 ≤ l1 < l2 < · · · < lp, and o(εl) is of order smaller than εl as ε→ 0.
(A3) There exists m > 0 satisfying |||Q(t, ε)|||m,ρ < +∞.

Then for ε ∈ Ẽ, there exists an analytic symplectic almost periodic mapping x = φ(t, ε)y, where
φ(t, ε) and Q(t, ε) have the same spatial structure and frequencies, such that (1.7) becomes the
Hamiltonian system

ẏ = A∞(ε)y, y ∈ R2n, (1.9)

where Ẽ ⊂ (0, ε0) is a non-empty Cantor subset of positive Lebesgue measure satisfying meas((0, ε0) \
Ẽ) = o(ε0) when ε0 → 0, and a constant matrix A∞ is Hamiltonian.

Remark 1: We understand the smoothness of the function in ε for Cantor set Ẽ in the sense of
Whitney [14].

Remark 2: Generally, Q depends on ε. Sometimes this dependence is not shown explicitly for
simplicity.

Remark 3: If α is small enough and ∀λ = (λ1, λ2, · · · , λ2n) is given, by [1], there exists ω ∈ R∞

satisfying (1.8).
Remark 4: Now the Hamiltonian system is

ẋ = JS (t, ε)x = (A + εQ(t, ε))x, x ∈ R2n,

where

J =

(
0 In

−In 0

)
.

Since it is the Hamiltonian system, there exists a symmetric matrix S (t, ε) such that JS (t, ε) = A +

εQ(t, ε).
Remark 5: In [4], the degenerate case is also the condition (A2). However, it is the quasi-periodic

case for [4] and it is the almost periodic case for this paper.

2. The lemmas

To prove Theorem 1.1, in this section we formulate some lemmas which will be used in the next
section. Below c > 0 indacate a constant.

Lemma 2.1. Suppose D(t) and G(t) are almost periodic matrices with the same spatial structure and
frequencies. If |||D(t)|||m,ρ, |||G(t)|||m,ρ < +∞, then DG is also an almost periodic matrix with the same
spatial structure and frequencies as D and G. Furthermore, |||DG|||m,ρ ≤ |||D|||m,ρ|||G|||m,ρ.
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The proof can be seen in [13]. �
To solve the transformation equation, we give the following lemma.

Lemma 2.2. Consider the equation

Ṗ = AP − PA + Q(t), (2.1)

where A = diag(λ1, λ2, · · · , λ2n), |λl − λm| ≥ µ with a constant µ > 0, l , m, 1 ≤ l,m ≤ 2n, and
λi+n = −λi, 1 ≤ i ≤ n. Suppose Q(t) = (qi j(t))1≤i, j≤2n =

∑
Λ∈τ

QΛ(t) is analytic Hamiltonian almost

periodic in t with frequencies ω = (ω1, ω2, · · · ) on Dρ with finite spatial structure (τ,[·]). Suppose
q̄ii = 0, i = 1, 2, · · · , 2n, where q̄ii is the average of qii(t) in t. Assume

| 〈k, ω〉
√
−1 − λi + λ j |≥

α

∆3(|k|)∆3([k])
, (2.2)

for ∀k ∈ Z∞\{0}, 1 ≤ i, j ≤ 2n. Then there exists a unique analytic Hamiltonian almost periodic
solution P(t) with the same frequencies and spatial structure as Q(t), and |||P|||m−m̄,ρ−ρ̄ ≤

cΓ(m̄)Γ(ρ̄)
α
|||Q|||m,ρ,

|||ε∂P
∂ε
|||m−m̄,ρ−ρ̄ ≤

cΓ2( m̄
2 )Γ2( ρ̄2 )
α2 (|||Q|||m,ρ + |||ε∂Q

∂ε
|||m,ρ), where Γ(%) = sup

t≥0
(∆3(t)e−%t), 0 < m̄ < m, 0 < ρ̄ < ρ.

Proof. Now we need solve the equation

ṖΛ = APΛ − PΛA + QΛ, (2.3)

Let
QΛ = (qi j

Λ
), qi j

Λ
=

∑
suppk⊆Λ

qi j
Λke
〈k,w〉

√
−1t,

PΛ = (pi j
Λ

), pi j
Λ

=
∑

suppk⊆Λ

pi j
Λke
〈k,w〉

√
−1t,

Comparing the coefficients of (2.3), it follows pii
Λ0 = 0; or else,

pi j
Λk =

qi j
Λk

〈k, ω〉
√
−1 − λi + λ j

.

Then we have

||pi j
Λ
||ρ−ρ̄ ≤

∑
suppk⊆Λ

∆3(|k|)e−ρ̄|k|

α
∆3([k])||qi j

Λ
||ρ.

So

||PΛ||ρ−ρ̄ ≤
cΓ(ρ̄)∆3([Λ])

α
‖ QΛ ‖ρ . (2.4)

Denote P =
∑
Λ∈τ

PΛ. Since (2.4), it follows

|||P|||m−m̄,ρ−ρ̄ =
∑
Λ∈τ

||PΛ||ρ−ρ̄e(m−m̄)[Λ]

≤
∑
Λ∈τ

cΓ(ρ̄)∆3([Λ])
α

‖ QΛ ‖ρ e(m−m̄)[Λ]
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≤
cΓ(ρ̄)Γ(m̄)

α

∑
Λ∈τ

‖ QΛ ‖ρ em[Λ]

=
cΓ(m̄)Γ(ρ̄)

α
|||Q|||m,ρ.

Let us estimate ‖ ε∂P
∂ε
‖m−m̄,ρ−ρ̄ . Moreover, dpii

Λ0(ε)
dε = 0, and

dpi j
Λk

dε
=
−(dλ j(ε)

dε −
dλi(ε)

dε )qi j
Λk + (〈k, ω〉

√
−1 − λi + λ j)

dqi j
Λk(ε)
dε

(〈k, ω〉
√
−1 − λi + λ j)2

for |i − j| + |k| , 0.

Then it follows

||ε
∂pi j

Λ

∂ε
||ρ−ρ̄ ≤

∑
suppk⊆Λ

(
c∆6(|k|)e−ρ̄|k|

α2 ∆6([k])||qi j
Λ
||ρ +

∆3(|k|)e−ρ̄|k|

α
∆3([k])||ε

∂qi j
Λ

∂ε
||ρ)

≤
cΓ2( ρ̄2 )
α2 ∆6([Λ])(||qi j

Λ
||ρ + ||ε

∂qi j
Λ

∂ε
||ρ).

So

||ε
∂PΛ

∂ε
||ρ−ρ̄ ≤

cΓ2( ρ̄2 )
α2 ∆6([Λ])(||QΛ||ρ + ||ε

∂QΛ

∂ε
||ρ).

Then

|||ε
∂P
∂ε
|||m−m̄,ρ−ρ̄ =

∑
Λ∈τ

||ε
∂PΛ

∂ε
||ρ−ρ̄e(m−m̄)[Λ]

≤
∑
Λ∈τ

cΓ2( ρ̄2 )∆6([Λ])
α2 (||QΛ||ρ + ||ε

∂QΛ

∂ε
||ρ)e(m−m̄)[Λ]

≤
cΓ2( ρ̄2 )Γ2( m̄

2 )
α2

∑
Λ∈τ

(||QΛ||ρ + ||ε
∂QΛ

∂ε
||ρ)em[Λ]

=
cΓ2( m̄

2 )Γ2( ρ̄2 )
α2 (|||Q|||m,ρ + |||ε

∂Q
∂ε
|||m,ρ).

Moreover, by A and Q are Hamiltonian, it follows Q = JQJ and A = JAJ, where QJ and AJ are
symmetric. Denote PJ = J−1P. Below we prove PJ is symmetric. (2.1) becomes

ṖJ = AJ JPJ − PJ JAJ + QJ. (2.5)

(2.5) becomes
(ṖJ)T = AJ J(PJ)T − (PJ)T JAJ + QJ.

By the solution of (2.5) is unique, it follows (PJ) = (PJ)T . So P is Hamiltonian. �

The following lemma is used for the estimate of the measure.
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Lemma 2.3. Assume
|〈k, ω〉 − χ| ≥

α

∆(|k|)∆([k])
, ∀ k ∈ Z∞\{0},

where χ ∈ R. Let α̃ ≤ α
2 , σ , 0, and

O =
{
ε ∈ (0, ε0)

∣∣∣ |〈k, ω〉 − (χ + σεq + εqg(ε))| ≥
α̃

∆3(|k|)∆3([k])
, ∀k , 0

}
,

where q ∈ Z+ and ∆(t) is an approximation function that fulfills (1.5). Suppose g(ε) fulfills |g′(ε)| ≤ c
for ε ∈ (0, ε0), and g(ε)→ 0 when ε→ 0. If ε0 is small enough, it follows

meas((0, ε0) \ O) ≤
cα̃
α
ε

q+1
0 .

Proof. Denote ϕ(ε) = 〈k, ω〉 − (χ + σεq + εqg(ε)) and fix k , 0. Let

Ik =
{
ε ∈ (0, ε∗)

∣∣∣ |ϕ(ε)| <
α̃

∆3(|k|)∆3([k])
}
.

We first consider the case εq ≤ α
4|σ|∆(|k|)∆([k]) . If εq ≤ α

4|σ|∆(|k|)∆([k]) , it follows |σεq + εqg(ε)| ≤ α
2∆(|k|)∆([k]) . So

|ϕ(ε)| ≥
α

∆(|k|)∆([k])
−

α

2∆(|k|)∆([k])
≥

α̃

∆3(|k|)∆3([k])
.

Thus, we only consider the case εq
0 ≥ ε

q ≥ α
4|σ|∆(|k|)∆([k]) . So

1
∆(|k|)∆([k])

≤
4|σ|εq

0

α
. (2.6)

For ε0 sufficiently small, we get

|
dϕ
dε

(ε)| ≥
|σ|

2
εq−1 ≥

α

8∆(|k|)∆([k])ε0
. (2.7)

By (2.6) and (2.7), we have

meas(Ik) ≤
2α̃

∆3(|k|)∆3([k])
8∆(|k|)∆([k])ε0

α

=
16α̃ε0

α

4|σ|εq
0

α

1
∆(|k|)∆([k])

.

Then since (1.5), it follows

meas((0, ε0)\O) ≤
∑
k∈Z∞

meas(Ik)

≤
cα̃
α
ε0ε

q
0

∑
k∈Z∞

1
∆(|k|)∆([k])

≤
cα̃
α
ε

q+1
0 .

�
The following lemma is used for the convergance of KAM iteration.
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Lemma 2.4. ( [11]) A sequence {ηv} satisfies

ηv+1 ≤ (γ̄zv)γ̄zv
η2

v , ∀v ≥ 0,

where ηv are all positive real numbers, 1 < z < 2 and γ̄ > 0. It follows that

ηv ≤ [(γ̄z
z

2−z )
γ̄

2−zη0]2v
.

This Lemma is used for the convergence of KAM iteration. �

3. Proof of Theorem 1.1

KAM-step. At v-th step, consider the Hamiltonian system

ẋv = (Av + ε2v
Qv(t, ε))xv, v ≥ 0, (3.1)

where A0 = A, Q0 = Q, Av = diag(λv
1, λ

v
2, · · · , λ

v
2n), |λv

i − λ
v
j| ≥ µ > 0, i , j, 1 ≤ i, j ≤ 2n, λd+n = −λd,

1 ≤ d ≤ n, and Qv is almost periodic on Dρv .

Let Qv = (qv
i j)1≤i, j≤2n Rv = diag(qv

11, q
v
22, · · · , q

v
2n,2n), R0 = diag(q11, q22, · · · , q2n,2n). Denote the

average of Rv by R̄v = diag(q̄v
11, q̄

v
22, · · · , q̄

v
2n,2n). Hamiltonian system (3.1) becomes

ẋv = (Av+1 + ε2v
Q̃v(t, ε))xv, (3.2)

where Av+1 = Av + ε2v
R̄v = diag(λv+1

1 , λv+1
2 , · · · , λv+1

2n ) and Q̃v = Qv − R̄v.

We now make the symplectic mapping xv = eε
2v

Pv(t)xv+1 to (3.2) to obtain

ẋv+1 =
(
e−ε

2v
Pv(Av+1 + ε2v

Q̃v − ε
2v

Ṗv)eε
2v

Pv

+ e−ε
2v

Pv(ε2v
Ṗveε

2v
Pv(t) −

d
dt

(eε
2v

Pv(t)))
)
xv+1, (3.3)

Expand eε
2v

Pv and e−ε
2v

Pv into eε
2v

Pv = I + ε2v
Pv + Bv and e−ε

2v
Pv = I − ε2v

Pv + B̃v, where Bv =
(ε2v

Pv)2

2! +
(ε2v

Pv)3

3! + · · · and B̃v =
(ε2v

Pv)2

2! −
(ε2v

Pv)3

3! + · · · . (3.3) becomes

ẋv+1 =
(
(I − ε2v

Pv + B̃v)(Av+1 + ε2v
Q̃v − ε

2v
Ṗv)(I + ε2v

Pv + Bv)

+ e−ε
2v

Pv(ε2v
Ṗveε

2v
Pv −

d
dt

(eε
2v

Pv(t)))
)
xv+1

= (Av+1 + ε2v
Q̃v − ε

2v
Ṗv + ε2v

Av+1Pv − ε
2v

PvAv+1 + Q(1)
v )xv+1, (3.4)

where

Q(1)
v = −ε2v+1

Pv(Q̃v − Ṗv) + ε2v+1
(Q̃v − Ṗv)Pv − ε

2v+1
Pv(Av+1 + ε2v

Q̃v − ε
2v

Ṗv)

Pv − ε
2v

Pv(Av+1 + ε2v
Q̃v − ε

2v
Ṗv)Bv + (Av+1 + ε2v

Q̃v − ε
2v

Ṗv)Bv

+ B̃v(Av+1 + ε2v
Q̃v − ε

2v
Ṗv)eε

2v
Pv + e−ε

2v
Pv(ε2v

Ṗveε
2v

Pv −
d
dt

eε
2v

Pv).
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We want to have that
Q̃v − Ṗv + Av+1Pv − PvAv+1 = 0;

that is,
Ṗv = Av+1Pv − PvAv+1 + Q̃v. (3.5)

Clearly, Av+1 and Q̃v are Hamiltonian. Since Lemma 2.2, if

|< k, ω >
√
−1 − λv+1

i + λv+1
j |≥

αv+1

∆3(|k|)∆3([k])
, (3.6)

for ∀k ∈ Z∞\{0}, where 1 ≤ i, j ≤ 2n, αv+1 = α
(v+1)2 , for the Eq (3.5), we find an unique analytic almost

periodic Hamiltonian solution Pv(t) with frequencies ω, and

|||Pv|||mv−m̄v,ρv−ρ̄v ≤
cΓ(m̄v)Γ(ρ̄v)

αv+1
|||Qv|||mv,ρv ,

|||ε
∂Pv

∂ε
|||mv−m̄v,ρv−ρ̄v ≤

cΓ2( m̄v
2 )Γ2( ρ̄v

2 )

α2
v+1

(|||Qv|||mv,ρv + |||ε
∂Qv

∂ε
|||mv,ρv), (3.7)

where Γ(ρ) = sup
t≥0

(∆3(t)e−ρt), 0 < m̄v < mv, 0 < ρ̄v < ρv.

Now (3.4) is changed to the Hamiltonian system

ẋv+1 = (Av+1 + ε2v+1
Qv+1(t, ε))xv+1, (3.8)

where ε2v+1
Qv+1 = Q(1)

v .

Since Q̃v − Ṗv = PvAv+1 − Av+1Pv, it follows

ε2v+1
Qv+1 = Q(1)

v = −ε2v+1
Pv(PvAv+1 − Av+1Pv) + ε2v+1

(PvAv+1 − Av+1Pv)Pv

− ε2v+1
Pv(Av+1 + ε2v

PvAv+1 − ε
2v

Av+1Pv)Pv

− ε2v
Pv(Av+1 + ε2v

PvAv+1 − ε
2v

Av+1Pv)Bv

+ (Av+1 + ε2v
PvAv+1 − ε

2v
Av+1Pv)Bv

+ B̃v(Av+1 + ε2v
PvAv+1 − ε

2v
Av+1Pv)eε

2v
Pv

+ e−ε
2v

Pv(ε2v
Ṗveε

2v
Pv −

d
dt

eε
2v

Pv). (3.9)

Under the symplectic mapping xv = eε
2v

Pv xv+1, Hamiltonian system (3.1) becomes Hamiltonian
system (3.8).

KAM iteration. Let us prove the convergence of KAM iteration when v→ ∞. At v-th step, define

αv+1 = α
(v+1)2 , ρ0 = ρ̃, m0 = m̃, m̄v ↘ 0, ρ̄v ↘ 0,

∞∑
v=0

m̄v = 1
2m̃,

∞∑
v=0
ρ̄v = 1

2 ρ̃, mv+1 = mv− m̄v, ρv+1 = ρv− ρ̄v.

Let ||| · |||v = ||| · |||mv,ρv . Since Lemma A.1 of [1], there exists a constant H > 0, which satisfies

Γ(m̄v)Γ(ρ̄v),Γ2(
m̄v

2
)Γ2(

ρ̄v

2
) ≤ H( 3

2 )v
. (3.10)

By (3.7) and (3.9), if |||ε2v
Pv|||v ≤

1
2 , it follows

|||Qv+1|||v+1 ≤
cΓ2(m̄v)Γ2(ρ̄v)

α2
v+1

|||Qv|||
2
v ,
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|||ε
∂Qv+1

∂ε
|||v+1 ≤

cΓ4( m̄v
2 )Γ4( ρ̄v

2 )

α4
v+1

(|||Qv|||v + |||ε
∂Qv

∂ε
|||v)2. (3.11)

Denote ηv = |||Qv|||v + |||ε∂Qv
∂ε
|||v. Since (3.10) and (3.11), there exists 1 < z < 2 satisfying ηv+1 ≤

(γ̄zv)γ̄zv
η2

v . Since Lemma 2.4, it follows ηv ≤ M2v
with a constant M > 0. Thus,

|||Qv|||v, |||ε
∂Qv

∂ε
|||v ≤ M2v

. (3.12)

If 0 < Mε < 1, by (3.12) , it follows that

lim
v→∞

ε2v
Qv = 0.

By (3.2) , it follows that
||Av+1 − Av|| ≤ cε2v

|||Qv|||v ≤ (εM)2v
.

When 0 < Mε < 1, Av is convergent as v→ ∞. Denote

lim
v→∞

Av = A∞.

By (3.7), (3.10) and (3.12), we have
|||Pv|||v ≤ c2v

. (3.13)

Thus, there exists a symplectic mapping x = φ(t, ε)y, such that Hamiltonian system (1.7) becomes
Hamiltonian system (1.9).

Estimate of measure. Below let us prove if ε0 is sufficiently small, for most ε ∈ (0, ε0), non-
resonance conditions

| 〈k, ω〉
√
−1 − λv+1

i + λv+1
j |≥

αv+1

∆3(|k|)∆3([k])
(3.14)

hold, where 0 , k ∈ Z∞, v = 0, 1, 2 · · · , and i, j = 1, 2, · · · , 2n. Denote

Ev+1 =
{
ε ∈ (0, ε0)

∣∣∣ | 〈k, ω〉 √−1 − λv+1
i + λv+1

j |≥
αv+1

∆3(|k|)∆3([k])
,

∀k ∈ Z∞\{0}, i, j = 1, 2, · · · , 2n
}
.

If i = j, since (1.8), (3.14) holds. So we merely need prove for most ε ∈ (0, ε0),

| 〈k, ω〉
√
−1 − λv+1

i + λv+1
j |≥

αv+1

∆3(|k|)∆3([k])
, i , j.

Without generality, since (A2), we assume

λ1
j − λ

1
i = λ j − λi + µ1ε

l1 + o(εl1), i , j. (3.15)

There exists an integer N ≥ 0 satisfy
2N ≤ l1 ≤ 2N+1. (3.16)

So after N + 2 KAM steps, by (3.12), we have

λt
j − λ

t
i = λN+1

j − λN+1
i + ε2N+1

f (ε), i , j, (3.17)
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where | f ′(ε)| ≤ c, f (ε) → 0 when ε → 0, and the integer t ≥ N + 2. Moreover, for previous N + 1
KAM steps, by (3.15), we have

λs
j − λ

s
i = λ j − λi + σεq + o(εq), (3.18)

where s = 1, 2, · · · ,N + 1, 0 < q ≤ l1 is an integer, and σ , 0 is a constant. Now substitute (3.18)
(s = N + 1) into (3.17), by (3.16), we have

λt
j − λ

t
i = λ j − λi + σεq + εqK(ε), (3.19)

where |K′(ε)| ≤ c, K(ε)→ 0 as ε→ 0. By (3.18), (3.19), (A1), and Lemma 2.3, it follows

meas((0, ε0) \ Ev+1) ≤ c
1

(v + 1)2ε
q+1
0 . (3.20)

Denote Ẽ = ∩∞v=0Ev+1. By (3.20), it follows that

meas((0, ε0) \ Ẽ) ≤
∞∑

v=0

meas((0, ε0) \ Ev+1)

≤

∞∑
v=0

c
1

(v + 1)2ε
q+1
0 = cεq+1

0 .

So when ε0 is sufficiently small, non-resonance conditions (3.14) hold for most ε ∈ (0, ε0).
We prove Theorem 1.1 completely. �
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1. J. Pöschel, Small divisors with spatial structure in infinite dimensional Hamiltonian systems,
Commun. Math. Phys., 127 (1990), 351–393. https://doi.org/10.1007/BF02096763

2. R. A. Johnson, G. R. Sell, Smoothness of spectral subbundles and reducibility of quasiperodic
linear differential systems, J. Differ. Equations, 41 (1981), 262–288. https://doi.org/10.1016/0022-
0396(81)90062-0
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