Research article

On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense

  • Received: 12 September 2022 Revised: 30 September 2022 Accepted: 10 October 2022 Published: 27 October 2022
  • MSC : 26D15, 26A33

  • By making use of the conformable integrals, we establish some new results on Cerone's and Bellman's generalization of Steffensen's integral inequality. In fact, we provide a variety of generalizations of Steffensen's integral inequality by using conformable calculus.

    Citation: Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad. On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense[J]. AIMS Mathematics, 2023, 8(1): 2062-2082. doi: 10.3934/math.2023106

    Related Papers:

  • By making use of the conformable integrals, we establish some new results on Cerone's and Bellman's generalization of Steffensen's integral inequality. In fact, we provide a variety of generalizations of Steffensen's integral inequality by using conformable calculus.



    加载中


    [1] A. A. K. Abu Hany, M. S. El-Khatib, K. A. K. Shourrab, On some fractional Hardy-Hilbert's integral inequalities, Gen. Lett. Math., 6 (2019), 35–44. https://doi.org/10.31559/glm2019.6.1.5 doi: 10.31559/glm2019.6.1.5
    [2] A. A. K. Abu Hany, M. Al Agha, Some extensions on Cerone's generalizations of Steffensen's inequality, Gen. Lett. Math., 3 (2017), 112–120. https://doi.org/10.31559/glm2016.3.2.4 doi: 10.31559/glm2016.3.2.4
    [3] A. A. K. Abu Hany, M. S. El-Khatib, K. A. K. Shourrab, Some new Hilbert type fractional inequalities, J. Nat. Stud., 27 (2019), 44–52.
    [4] D. S. Mitrinvic, The Steffensen inequality, Publ. Elektroteh. Fak. Univ. Beogradu Ser. Mat. Fiz., 1969,247–273. Available from: https://www.jstor.org/stable/43667360.
    [5] J. F. Steffensen, On certain inequalities between mean values, and their application to actuarial problems, Scand. Actuar. J., 1918 (1918), 82–97. https://doi.org/10.1080/03461238.1918.10405302 doi: 10.1080/03461238.1918.10405302
    [6] P. Cerone, On some generalizations of Steffensen's inequality and related results, J. Inequal. Pure Appl. Math., 2 (2001), 28.
    [7] U. N. Katugampola, A new fractional derivative with classical properties, arXiv, 2014. https://doi.org/10.48550/arXiv.1410.6535
    [8] D. R. Anderson, Taylor's formula and integral inequalities for conformable fractional derivatives, Contrib. Math. Eng., 2016, 25–43. https://doi.org/10.1007/978-3-319-31317-7-2 doi: 10.1007/978-3-319-31317-7-2
    [9] M. Z. Sarikaya, H. Yaldiz, H. Budak, Steffensen's integral inequality for conformable fractional integrals, Int. J. Anal. Appl., 15 (2016), 23–30.
    [10] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [11] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Dordrecht, 1993. https://doi.org/10.1007/978-94-017-1043-5
    [12] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [13] K. S. Miller, B. Ross, An introdsction to fractional calculus and fractional differential equations, New York Wiley, 1993.
    [14] I. Podlubny, Fractional differential equations, Academic Press, 1998.
    [15] I. E. Abo Amra, M. M. Matar, Coupled system of fractional differential equations with impulsive and nonlocal coupled boundary conditions, Bol. Soc. Matematica Mex., 26 (2020), 477–497. https://doi.org/10.1007/s40590-019-00254-2 doi: 10.1007/s40590-019-00254-2
    [16] N. Tabouche, A. Berhail, M. M. Matar, J. Alzabut, A. G. M Selvam, D. Vignesh, Existence and stability analysis of solution for Mathieu fractional differential equations with applications on some physical phenomena, Iran. J. Sci. Technol. Trans. A Sci., 45 (2021), 973–982. https://doi.org/10.1007/s40995-021-01076-6 doi: 10.1007/s40995-021-01076-6
    [17] I. Suwan, M. S. Abdo, T. Abdeljawad, M. M. Matar, A. Boutiara, M. Almalahi, Existence theorems for $\psi$-fractional hybrid systems with periodic boundary conditions, AIMS Math., 7 (2021), 171–186. https://doi.org/10.3934/math.2022010 doi: 10.3934/math.2022010
    [18] S. Rezapour, S. T. M. Thabet, M. M. Matar, J. Alzabut, S. Etemad, Some existence and stability criteria to a generalized FBVP having fractional Composite-Laplacian operator, J. Funct. Spaces, 2021 (2021), 9554076. https://doi.org/10.1155/2021/9554076 doi: 10.1155/2021/9554076
    [19] M. M. Matar, M. Abu Jarad, M. Ahmad, A. Zada, S. Etemad, S. Rezapour, On the existence and stability of two positive solutions of a hybrid differential system of arbitrary fractional order via Avery–Anderson–Henderson criterion on cones, Adv. Differ. Equ., 2021 (2021), 423. https://doi.org/10.1186/s13662-021-03576-6 doi: 10.1186/s13662-021-03576-6
    [20] M. E. Samei, M. M. Matar, S. Etemad, S. Rezapour, On the generalized fractional snap boundary problems via G-Caputo operators: Existence and stability analysis, Adv. Differ. Equ., 2021 (2021), 498. https://doi.org/10.1186/s13662-021-03654-9 doi: 10.1186/s13662-021-03654-9
    [21] M. M. Matar, O. M. Al-Salmy, Existence and uniqueness of solution for conformable sequential differential equations, J. Nat. Sci., 19 (2017), 41–56.
    [22] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1076) PDF downloads(63) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog