Research article

$ L_{\infty} $-norm minimum distance estimation for stochastic differential equations driven by small fractional Lévy noise

  • Received: 16 August 2022 Revised: 13 October 2022 Accepted: 19 October 2022 Published: 27 October 2022
  • MSC : 60H10, 62F12

  • This paper is concerned with $ L_{\infty} $-norm minimum distance estimation for stochastic differential equations driven by small fractional Lévy noise. By applying the Gronwall-Bellman lemma, Chebyshev's inequality and Taylor's formula, the minimum distance estimator is established and the consistency and asymptotic distribution of the estimator are derived when a small dispersion coefficient $ \varepsilon\rightarrow 0 $.

    Citation: Huiping Jiao, Xiao Zhang, Chao Wei. $ L_{\infty} $-norm minimum distance estimation for stochastic differential equations driven by small fractional Lévy noise[J]. AIMS Mathematics, 2023, 8(1): 2083-2092. doi: 10.3934/math.2023107

    Related Papers:

  • This paper is concerned with $ L_{\infty} $-norm minimum distance estimation for stochastic differential equations driven by small fractional Lévy noise. By applying the Gronwall-Bellman lemma, Chebyshev's inequality and Taylor's formula, the minimum distance estimator is established and the consistency and asymptotic distribution of the estimator are derived when a small dispersion coefficient $ \varepsilon\rightarrow 0 $.



    加载中


    [1] Y. Hu, D. Nualart, H. Zhou, Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion, Stochastics, 91 (2019), 1067–1091. https://doi.org/10.1080/17442508.2018.1563606 doi: 10.1080/17442508.2018.1563606
    [2] Z. Liu, Generalized moment estimation for uncertain differential equations, Appl. Math. Comput., 392 (2021), 125724. https://doi.org/10.1016/j.amc.2020.125724 doi: 10.1016/j.amc.2020.125724
    [3] Y. Ji, X. Jiang, L. Wan, Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems, J. Franklin Inst., 357 (2020), 5019–5032. https://doi.org/10.1016/j.jfranklin.2020.03.027 doi: 10.1016/j.jfranklin.2020.03.027
    [4] B. L. S. Prakasa Rao, Parametric inference for stochastic differential equations driven by a mixed fractional Brownian motion with random effects based on discrete observations, Stoch. Anal. Appl., 40 (2022), 236–245. https://doi.org/10.1080/07362994.2021.1902352 doi: 10.1080/07362994.2021.1902352
    [5] Y. Wang, F. Ding, M. Wu, Recursive parameter estimation algorithm for multivariate output-error systems, J. Franklin Inst., 355 (2018), 5163–5181. https://doi.org/10.1016/j.jfranklin.2018.04.013 doi: 10.1016/j.jfranklin.2018.04.013
    [6] L. Xu, W. Xiong, A. Alsaedi, T. Hayat, Hierarchical parameter estimation for the frequency response based on the dynamical window data, Int. J. Control Autom. Syst., 16 (2018), 1756–1764. https://doi.org/10.1007/s12555-017-0482-7 doi: 10.1007/s12555-017-0482-7
    [7] C. Wei, Estimation for incomplete information stochastic systems from discrete observations, Adv. Differ. Equ., 2019 (2019), 227. https://doi.org/10.1186/s13662-019-2169-2 doi: 10.1186/s13662-019-2169-2
    [8] C. Wei, Parameter estimation for partially observed stochastic differential equations driven by fractional Brownian motion, AIMS Mathematics, 7 (2022), 12952–12961. https://doi.org/10.3934/math.2022717 doi: 10.3934/math.2022717
    [9] X. Zhang, F. Ding, Adaptive parameter estimation for a general dynamical system with unknown states, Int. J. Robust Nonlinear Control, 30 (2020), 1351–1372. https://doi.org/10.1002/rnc.4819 doi: 10.1002/rnc.4819
    [10] F. Ding, L. Xu, F. E. Alsaadi, T. Hayat, Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique, IET Control Theory Appl., 12 (2018), 892–899. https://doi.org/10.1049/iet-cta.2017.0821 doi: 10.1049/iet-cta.2017.0821
    [11] M. Li, X. Liu, The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique, Signal Process., 147 (2018), 23–34. https://doi.org/10.1016/j.sigpro.2018.01.012 doi: 10.1016/j.sigpro.2018.01.012
    [12] C. Wei, Estimation for the discretely observed Cox-Ingersoll-Ross model driven by small symmetrical stable noises, Symmetry, 12 (2020), 327. https://doi.org/10.3390/sym12030327 doi: 10.3390/sym12030327
    [13] B. L. S. Prakasa Rao, Nonparametric estimation of trend for stochastic differential equations driven by fractional Levy process, J. Stat. Theory Pract., 15 (2021), 7. https://doi.org/10.1007/s42519-020-00138-z doi: 10.1007/s42519-020-00138-z
    [14] G. Shen, Q. Wang, X. Yin, Parameter estimation for the discretely observed Vasicek model with small fractional Lévy noise, Acta Math. Sin. English Ser., 36 (2020), 443–461. https://doi.org/10.1007/s10114-020-9121-y doi: 10.1007/s10114-020-9121-y
    [15] J. P. N. Bishwal, Quasi-likelihood estimation in fractional Lévy SPDEs from Poisson sampling, European Journal of Mathematical Analysis, 2 (2022), 15. https://doi.org/10.28924/ada/ma.2.15 doi: 10.28924/ada/ma.2.15
    [16] B. L. S. Prakasa Rao, Nonparametric estimation of linear multiplier for stochastic differential equations driven by fractional Lévy process with small noise, Bulletin of informatics and cybernetics, 52 (2020), 1–14. https://doi.org/10.5109/4150376 doi: 10.5109/4150376
    [17] W. Xu, J. Duan, W. Xu, An averaging principle for fractional stochastic differential equations with Lévy noise, Chaos, 30 (2020), 083126. https://doi.org/10.1063/5.0010551 doi: 10.1063/5.0010551
    [18] M. Yang, (Weighted pseudo) almost automorphic solutions in distribution for fractional stochastic differential equations driven by lévy noise, Filomat, 35 (2021), 2403–2424. https://doi.org/10.2298/FIL2107403Y doi: 10.2298/FIL2107403Y
    [19] P. Chen, Z. Ye, X. Zhao, Minimum distance estimation for the generalized pareto distribution, Technometrics, 59 (2017), 528–541. https://doi.org/10.1080/00401706.2016.1270857 doi: 10.1080/00401706.2016.1270857
    [20] G. Hajargasht, W. E. Griffiths, Minimum distance estimation of parametric Lorenz curves based on grouped data, Economet. Rev., 39 (2020), 344–361. https://doi.org/10.1080/07474938.2019.1630077 doi: 10.1080/07474938.2019.1630077
    [21] M. I. Vicuna, W. Palma, R. Olea, Minimum distance estimation of locally stationary moving average processes, Comput. Stat. Data Anal., 140 (2019), 1–20. https://doi.org/10.1016/j.csda.2019.05.005 doi: 10.1016/j.csda.2019.05.005
    [22] T. Marquardt, Fractional Lévy processes with an application to long memory moving average processes, Bernoulli, 12 (2006), 1099–1126. https://doi.org/10.3150/bj/1165269152 doi: 10.3150/bj/1165269152
    [23] R. S. Liptser, A. N. Shiryayev, Statistics of random processes I, New York: Springer, 1977. https://doi.org/10.1007/978-1-4757-1665-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1036) PDF downloads(67) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog