In this paper, the stability problem with considering time-varying delays of linear systems is investigated. By constructing new augmented Lyapunov-Krasovskii (L-K) functionals based on auxiliary function-based integral inequality (AFBI) and considering Finsler's lemma, a stability criterion is derived. Based on the previous result, a less conservative result is proposed through the augmented zero equality approach. Finally, numerical examples are given to show the effect of the proposed criteria.
Citation: Seunghoon Lee, Youngjae Kim, Yonggwon Lee, Myeongjin Park, Ohmin Kwon. Relaxed stability conditions for linear systems with time-varying delays via some novel approaches[J]. AIMS Mathematics, 2021, 6(3): 2454-2467. doi: 10.3934/math.2021149
In this paper, the stability problem with considering time-varying delays of linear systems is investigated. By constructing new augmented Lyapunov-Krasovskii (L-K) functionals based on auxiliary function-based integral inequality (AFBI) and considering Finsler's lemma, a stability criterion is derived. Based on the previous result, a less conservative result is proposed through the augmented zero equality approach. Finally, numerical examples are given to show the effect of the proposed criteria.
[1] | S. I. Niculescu, Delay effects on stability: A robust approach, Springer-Verlag, London, 2001. |
[2] | J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 1667-1694. doi: 10.1016/S0005-1098(03)00167-5 |
[3] | X. Li, J. Shen, H. Akca, R. Rakkiyappand, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798-804. |
[4] | X. Li, J. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14-30. |
[5] | D. Yang, X. Li, J. Shen, Z. Zhou, State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Method. Appl. Sci., 41 (2018), 6968-6983. doi: 10.1002/mma.5209 |
[6] | X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146. |
[7] | D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal-Hybri., 32 (2019), 294-305. doi: 10.1016/j.nahs.2019.01.006 |
[8] | K. Gu, An integral inequality in the stability problem of time-delay systems, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), Sydney, 2000, 2805-2810. |
[9] | P. G. Park, A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE T. Automat. Contr., 44 (1999), 876-877. doi: 10.1109/9.754838 |
[10] | E. Fridman, U. Shaked, An improved stabilization method for linear time-delay systems, IEEE T. Automat. Contr., 47 (2002), 1931-1937. doi: 10.1109/TAC.2002.804462 |
[11] | S. Xu, J. Lam, Improved delay-dependent stability criteria for time-delay systems, IEEE T. Automat. Contr., 50 (2005), 384-387. doi: 10.1109/TAC.2005.843873 |
[12] | S. Xu, J. Lam, A survey of linear matrix inequality techniques in stability analysis of delay systems, Int. J. Syst. Sci., 39 (2008), 1095-1113. doi: 10.1080/00207720802300370 |
[13] | M. J. Park, O. M. Kwon, J. H. Ryu, Generalized integral inequality: Application to time-delay systems, Appl. Math. Lett., 77 (2018), 6-12. doi: 10.1016/j.aml.2017.09.010 |
[14] | A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860-2866. doi: 10.1016/j.automatica.2013.05.030 |
[15] | P. G Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Frankl. Inst., 352 (2015), 1378-1396. doi: 10.1016/j.jfranklin.2015.01.004 |
[16] | P. Park, J. W. Ko, C. K. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235-238. doi: 10.1016/j.automatica.2010.10.014 |
[17] | F. L. Liu, Further Improvement on delay-range-dependent stability criteria for delayed recurrent neural networks with interval time-varying delays, Int. J. Control Autom., 16 (2018), 1186-1193. doi: 10.1007/s12555-016-0359-1 |
[18] | C. Y. Dong, M. Y. Ma, Q. Wang, S. Q. Ma, Robust stability analysis of time-varying delay systems via an augmented states approach, Int. J. Control Autom., 16 (2018), 1541-1549. doi: 10.1007/s12555-017-0398-2 |
[19] | W. Duan, B. Du, Y. Li, C. Shen, X. Zhu, X. Li, et al. Improved sufficient LMI conditions for the robust stability of time-delayed neutral-type Lur'e systems, Int. J. Control Autom., 16 (2018), 2343-2353. doi: 10.1007/s12555-018-0138-2 |
[20] | T. H. Lee, J. H. Park, S. Xu, Relaxed conditions for stability of time-varying delay systems, Automatica, 75 (2017), 11-15. doi: 10.1016/j.automatica.2016.08.011 |
[21] | T. H. Lee, J. H. Park, A novel Lyapunov functional for stability of time-varying delay systems via matrix-refined function, Automatica, 80 (2017), 239-242. doi: 10.1016/j.automatica.2017.02.004 |
[22] | T. H. Lee, J. H. Park, Improved stability conditions of time-varying delay systems based on new Lyapunov functionals, J. Frankl. Inst., 355 (2018), 1176-1191. doi: 10.1016/j.jfranklin.2017.12.014 |
[23] | R. Zhang, D. Zeng, J. H. Park, S. Zhong, Y. Liu, X. Zhou, New approaches to stability analysis for time-varying delay systems, J. Frankl. Inst., 356 (2019), 4174-4189. doi: 10.1016/j.jfranklin.2019.02.029 |
[24] | M. J. Park, O. M. Kwon, J. H. Park, Advanced stability criteria for linear systems with time-varying delays, J. Frankl. Inst., 355 (2018), 520-543. doi: 10.1016/j.jfranklin.2017.11.029 |
[25] | F. Long, C. K. Zhang, L. Jiang, Y. He, M. Wu, Stability analysis of systems with time-varying delay via improved Lyapunov-Krasovskii functionals, IEEE T. Syst. Man Cy. S., doi: 10.1109/TSMC.2019.2914367. |
[26] | X. Zhao, C. Lin, B. Chen, Q. Wang, Stability analysis for linear time-delay systems using new inequality based on the second-order derivative, J. Frankl. Inst., 356 (2019), 8770-8784. doi: 10.1016/j.jfranklin.2019.03.038 |
[27] | Z. Li, H. Yan, H. Zhang, X. Zhan, C. Huang, Improved inequality-based functions approach for stability analysis of time delay system, Automatica, 108 (2019), 1-15. |
[28] | Fulvia S. S. de Oliveira, Fernando O. Souza, Further refinements in stability conditions for timevarying delay systems, Appl. Math. Comput., 369 (2020), 124866. |
[29] | A. Seuret, F. Gouaisbaut, Delay-dependent reciprocally convex combination lemma for the stability analysis of systems with a fast-varying delay, Delays and Interconnections: Methodology, Algorithms and Applications, Springer, 2019,187-197. |
[30] | M. C. de Oliveira, R. E. Skelton, Stability tests for constrained linear systems, Perspectives in robust control, Springer, Berlin, 2001,241-257. |
[31] | X. Chang, J. H. Park, J. Zhou, Robust static output feedback $H_{\infty}$ control design for linear systems with polytopic uncertainties, Syst. Control Lett., 85 (2015), 23-32. doi: 10.1016/j.sysconle.2015.08.007 |
[32] | X. Chang, G. Yang, New results on output feedback $H_{\infty}$ control for linear discrete-time systems, IEEE T. Automat. Contr., 59 (2014), 1355-1359. doi: 10.1109/TAC.2013.2289706 |
[33] | K. Gu, S. I. Niculescu, Survey on recent results in the stability and control of time-delay systems, J. Dyn. Syst. Meas. Control, 125 (2003), 158-165. doi: 10.1115/1.1569950 |
[34] | S. Li, H. Lin, On $l_1$ stability of switched positive singular systems with time-varying delay, Int. J. Robust Nonlin., 27 (2016), 2798-2812. |
[35] | S. Li, Z. Xiang, Positivity, exponential stability and disturbance attenuation performance for singular switched positive systems with time-varying distributed delays, Appl. Math. Comput., 372 (2020), 124981. |
[36] | S. Li, Z. Xiang, J. Zhang, Dwell-time conditions for exponential stability and standard $L_1$-gain performance of discrete-time singular switched positive systems with time-varying delays, Nonlinear Anal-Hybri., 38 (2020), 100939. doi: 10.1016/j.nahs.2020.100939 |