Research article Special Issues

A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy


  • Received: 18 June 2022 Revised: 17 August 2022 Accepted: 18 August 2022 Published: 24 August 2022
  • In this paper, we mainly study the high-order numerical scheme of right Caputo time fractional differential equations with uniform accuracy. Firstly, we construct the high-order finite difference method for the right Caputo fractional ordinary differential equations (FODEs) based on piecewise quadratic interpolation. The local truncation error of right Caputo FODEs is given, and the stability analysis of the right Caputo FODEs is proved in detail. Secondly, the time fractional partial differential equations (FPDEs) with right Caputo fractional derivative is studied by coupling the time-dependent high-order finite difference method and the spatial central second-order difference scheme. Finally, three numerical examples are used to verify that the convergence order of high-order numerical scheme is $ 3-\lambda $ in time with uniform accuracy.

    Citation: Li Tian, Ziqiang Wang, Junying Cao. A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy[J]. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195

    Related Papers:

  • In this paper, we mainly study the high-order numerical scheme of right Caputo time fractional differential equations with uniform accuracy. Firstly, we construct the high-order finite difference method for the right Caputo fractional ordinary differential equations (FODEs) based on piecewise quadratic interpolation. The local truncation error of right Caputo FODEs is given, and the stability analysis of the right Caputo FODEs is proved in detail. Secondly, the time fractional partial differential equations (FPDEs) with right Caputo fractional derivative is studied by coupling the time-dependent high-order finite difference method and the spatial central second-order difference scheme. Finally, three numerical examples are used to verify that the convergence order of high-order numerical scheme is $ 3-\lambda $ in time with uniform accuracy.



    加载中


    [1] J. Cao, Z. Cai, Numerical analysis of a high-order scheme for nonlinear fractional difffferential equations with uniform accuracy, Numer. Math. Theor. Meth. Appl., 14 (2021), 71–112. https://doi.org/10.4208/nmtma.OA-2020-0039 doi: 10.4208/nmtma.OA-2020-0039
    [2] J. Cao, C. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), 154–168. https://doi.org/10.1016/j.jcp.2012.12.013 doi: 10.1016/j.jcp.2012.12.013
    [3] Y. Wang, L. Ren, Analysis of a high-order compact finite difference method for Robin problems of time-fractional sub-diffusion equations with variable coefficients, Appl. Numer. Math., 156 (2020), 467–492. https://doi.org/10.1016/j.apnum.2020.05.023 doi: 10.1016/j.apnum.2020.05.023
    [4] C. Lv, C. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38 (2016), A2699–A2724. https://doi.org/10.1137/15M102664X doi: 10.1137/15M102664X
    [5] Z. Wang, H. Sun, Generalized finite difference method with irregular mesh for a class of three-dimensional variable-order time-fractional advection-diffusion equations, Eng. Anal. Boundary Elem., 132 (2021), 345–355. https://doi.org/10.1016/j.enganabound.2021.08.009 doi: 10.1016/j.enganabound.2021.08.009
    [6] G. Gao, Z. Sun, H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. https://doi.org/10.1016/j.jcp.2013.11.017 doi: 10.1016/j.jcp.2013.11.017
    [7] M. Dehghan, M. Abbaszadeh, A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation, Comput. Math. Appl., 75 (2018), 2903–2914. https://doi.org/10.1016/j.camwa.2018.01.020 doi: 10.1016/j.camwa.2018.01.020
    [8] S. Kazem, M. Dehghan, Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL), Eng. Comput., 35 (2019), 229–241. https://doi.org/10.1007/s00366-018-0595-5 doi: 10.1007/s00366-018-0595-5
    [9] Y. Xing, Y. Yan, A higher order numerical method for time fractional partial differential equations with nonsmooth data, J. Comput. Phys., 357 (2018), 305–323. https://doi.org/10.1016/j.jcp.2017.12.035 doi: 10.1016/j.jcp.2017.12.035
    [10] C. Li, A. Chen, J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230 (2011), 3352–3368. https://doi.org/10.1016/j.jcp.2011.01.030 doi: 10.1016/j.jcp.2011.01.030
    [11] G. Anastassiou, On right fractional calculus, Chaos, Solitons Fractals, 42 (2009), 365–376. https://doi.org/10.1016/j.chaos.2008.12.013
    [12] I. Ameen, M. Zaky, E. Doha, Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative, J. Comput. Appl. Math., 392 (2021), 113468. https://doi.org/10.1016/j.cam.2021.113468 doi: 10.1016/j.cam.2021.113468
    [13] S. Ezz-Eldien, A. El-Kalaawy, Numerical simulation and convergence analysis of fractional optimization problems with right-sided Caputo fractional derivative, J. Comput. Nonlinear Dynam., 13 (2018), 011010. https://doi.org/10.1115/1.4037597 doi: 10.1115/1.4037597
    [14] H. Ding, The development of higher-order numerical differential formulas of Caputo derivative and their applications (I), Comput. Math. Appl., 84 (2021), 203–223. https://doi.org/10.1016/j.camwa.2020.12.017 doi: 10.1016/j.camwa.2020.12.017
    [15] E. Mendes, G. Salgado, L. Aguirre, Numerical solution of Caputo fractional differential equations with infinity memory effect at initial condition, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 237–247. https://doi.org/10.1016/j.cnsns.2018.09.022 doi: 10.1016/j.cnsns.2018.09.022
    [16] R. Mokhtari, F. Mostajeran, A high order formula to approximate the Caputo fractional derivative, Commun. Appl. Math. Comput., 2 (2020), 1–29. https://doi.org/10.1007/s42967-019-00023-y doi: 10.1007/s42967-019-00023-y
    [17] S. Yeganeh, R. Mokhtari, J. Hesthaven, Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method, BIT Numer. Math., 57 (2017), 685–707. https://doi.org/10.1007/s10543-017-0648-y doi: 10.1007/s10543-017-0648-y
    [18] J. Cao, C. Li, Y. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II), Fract. Calc. Appl. Anal., 18 (2015), 735–761. https://doi.org/10.1515/fca-2015-0045 doi: 10.1515/fca-2015-0045
    [19] A. Jannelli, M. Speciale, On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations, AIMS Math., 6 (2021), 9109–9125. https://doi.org/10.3934/math.2021529 doi: 10.3934/math.2021529
    [20] R. Du, Y Yan, Z. Liang, A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation, J. Comput. Phys., 376 (2019), 1312–1330. https://doi.org/10.1016/j.jcp.2018.10.011 doi: 10.1016/j.jcp.2018.10.011
    [21] D. Baleanu, B. Shiri, Generalized fractional differential equations for past dynamic, AIMS Math., 7 (2022), 14394–14418. https://doi.org/10.3934/math.2022793 doi: 10.3934/math.2022793
    [22] D. Baleanu, B. Shiri, Nonlinear higher order fractional terminal value problems, AIMS Math., 7 (2022), 7489–7506. https://doi.org/10.3934/math.2022420 doi: 10.3934/math.2022420
    [23] G. Yang, B. Shiri, H. Kong, G. Wu, Intermediate value problems for fractional differential equations, Comp. Appl. Math., 40 (2021), 195. https://doi.org/10.1007/s40314-021-01590-8 doi: 10.1007/s40314-021-01590-8
    [24] B. Shiri, G. Wu, D. Baleanu, Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math., 170 (2021), 162–178. https://doi.org/10.1016/j.apnum.2021.06.015 doi: 10.1016/j.apnum.2021.06.015
    [25] B. Shiri, G. Wu, D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math., 156 (2020), 385–395. https://doi.org/10.1016/j.apnum.2020.05.007 doi: 10.1016/j.apnum.2020.05.007
    [26] G. Ameen, N. Elkot, M. Zaky, A. Hendy, E. Doha, A pseudo-spectral scheme for systems of two-point boundary value problems with file and right sided fractional derivatives and related integral equations, Comput. Model. Eng. Sci., 128 (2021), 21–41. https://doi.org/10.32604/cmes.2021.015310 doi: 10.32604/cmes.2021.015310
    [27] A. Hendy, M. Zaky, Graded mesh discretization for coupled system of nonlinear multi-term time-space fractional diffusion equations, Eng. Comput., 38 (2022), 1351–1363. https://doi.org/10.1007/s00366-020-01095-8 doi: 10.1007/s00366-020-01095-8
    [28] M. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 357 (2019), 103–122. https://doi.org/10.1016/j.cam.2019.01.046 doi: 10.1016/j.cam.2019.01.046
    [29] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [30] Z. Li, Z. Qiao, T. Tang, Numerical Solution of Differential Equations: Introduction to Finite Difference and Finite Element Methods, Cambridge University Press, New York, 2017. https://doi.org/10.1017/9781316678725
    [31] Z. Wang, J. Cui, Second-order two-scale method for bending behavior analysis of composite plate with 3-D periodic configuration and its approximation, Sci. China Math., 57 (2014), 1713–1732. https://doi.org/10.1007/s11425-014-4831-1 doi: 10.1007/s11425-014-4831-1
    [32] C. Wu, Z. Wang, The spectral collocation method for solving a fractional integro-differential equation, AIMS Math., 7 (2022), 9577–9587. https://doi.org/10.3934/math.2022532 doi: 10.3934/math.2022532
    [33] Z. Wang, Q. Liu, J. Cao, A higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy, Fractal Fract., 6 (2022), 314. https://doi.org/10.3390/fractalfract6060314 doi: 10.3390/fractalfract6060314
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1378) PDF downloads(62) Cited by(1)

Article outline

Figures and Tables

Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog