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Huiping Jiao1, Xiao Zhang2 and Chao Wei3,∗

1 School of Basic Science, Zhengzhou University of Technology, Zhengzhou 450044, China
2 School of Marxism, Anyang Normal University, Anyang 455000, China
3 School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China

* Correspondence: Email: chaowei0806@aliyun.com; Tel: 13523302755.

Abstract: This paper is concerned with L∞-norm minimum distance estimation for stochastic
differential equations driven by small fractional Lévy noise. By applying the Gronwall-Bellman
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1. Introduction

Almost all systems are affected by noise and exhibit certain random characteristics. Therefore,
it is reasonable and interesting to use random systems to model actual systems. When modeling or
optimizing a stochastic system, due to the complexity of the internal structure and the uncertainty of
the external environment, parameters of the system are unknown. It is necessary to use theoretical
tools to estimate the parameters of the system. In the past few years, some authors studied the
parameter estimation problem for stochastic models ( [1, 2]). For example, Ji et al. ( [3]) considered
the parameter estimation problems of two-input single-output Hammerstein finite impulse response
systems. Prakasa Rao ( [4]) discussed estimation of parameters for models governed by a stochastic
differential equation driven by a mixed fractional Brownian motion with Gaussian random effects based
on discrete observations. Wang et al. ( [5]) studied the parameter estimation issues of a class of
multivariate output-error systems. Xu et al. ( [6]) investigated the problem of parameter estimation
for frequency response signals. When the system is observed partially, Wei ( [7]) analyzed state and
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parameter estimation for nonlinear stochastic systems by applying extended Kalman filtering. Wei
( [8]) discussed the strong consistency and asymptotic normality of the maximum likelihood estimator
for partially observed stochastic differential equations driven by fractional Brownian motion. Zhang
and Ding ( [9]) designed a state filter for a time-delay state-space system with unknown parameters
from noisy observation information. The parameter estimation for diffusion processes with small noise
is well developed as well ( [10–12]).

In practical applications, most of the system noise is non-Gaussian. Non-Gaussian noise can more
accurately reflect the practical random perturbation. Therefore, fractional Lévy noise, as a kind of
important non-Gaussian noise, has attracted many authors’ attention ( [13, 14]). For instance, Bishwal
( [15]) analyzed the quasi-likelihood estimator of the drift parameter in the stochastic partial differential
equations driven by a cylindrical fractional Lévy process when the process is observed at the arrival
times of a Poisson process. Prakasa Rao ( [16]) discussed nonparametric estimation of the linear
multiplier in a trend coefficient in models governed by a stochastic differential equation driven by
a fractional Lévy process with small noise. Xu et al. ( [17]) used an integral transform method to
investigate an averaging principle for fractional stochastic differential equations with Lévy motion.
Yang ( [18]) studied the existence and uniqueness of (weighted pseudo) almost automorphic solutions
in distribution for fractional stochastic differential equations driven by Lévy noise.

The minimum distance methodology can be applied to the estimation of locally stationary moving
average processes. This novel approach allows for the analysis of time series data exhibiting
non-stationary behavior. The main advantages of this method are that it does not depend on the
distribution of the process, can handle missing data and is computationally efficient. Some authors
studied minimum distance estimation and use the method to estimate the parameter for stochastic
differential equations. For example, Chen et al. ( [19]) derived new estimators for the generalized
Pareto distribution by the minimum distance estimation and the M-estimation in the linear regression.
Hajargasht and Griffiths ( [20]) described the efficient methods of estimation and inference based on
two data generating mechanisms and derived several results useful for comparing the two methods
of inference. Vicuna et al. ( [21]) investigated some large sample properties of the new estimator,
established its consistency and asymptotic normality. Although minimum distance estimation has been
used by some authors to study parameter estimation problem, the stochastic differential equations are
driven by Gaussian noise. As Non-Gaussian noise can more accurately reflect the practical random
perturbation. Moreover, the financial empirical research showed that volatility in financial asset prices
shows long-range dependence and self-similarity and the fractional Lévy noise could be used to exhibit
these properties. Therefore, it is necessary to investigate the stochastic system driven by fractional
Lévy noise. Inspired by the aforementioned works, in this paper, we consider L∞-norm minimum
distance estimation for stochastic differential equations driven by small fractional Lévy noise. The
minimum distance estimator is established, the consistency and asymptotic distribution of the estimator
are derived when a small dispersion coefficient ε→ 0.

The paper is organized as follows. In Section 2, we define the minimum distance estimator and
give some assumptions. In Section 3, we give some lemmas and derive the consistency and asymptotic
distribution of the estimator. The conclusion is given in Section 4.
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2. Problem formulation and preliminaries

Definition 1. ( [22]) Let L = (L(t))t∈R be a zero-mean two sided Lévy process with E[L(1)2] < ∞ and
without a Brownian component. For fractional integration parameter d ∈ (0, 1

2 ), a stochastic process

Ld
t :=

1
Γ(d + 1)

∫ ∞

−∞

[(t − s)d
+ − (−s)d

+]L(ds), t ∈ R,

is called a fractional Lévy process, where x+ = x ∨ 0.

In this paper, we consider the following stochastic differential equations driven by small Lévy noise:dXt = f (Xt, θ)dt + εdLd
t , t ∈ [0,T ],

X0 =x0,
(2.1)

where θ ∈ Θ is an unknown parameter, Θ is an open bounded set in Rd, d ≥ 1, ε ∈ (0, 1].
Let Pε

θ be the probability measure induced by the process {Xt, 0 ≤ t ≤ T }.
Let xt(θ) be the solution of the differential equation:

dxt = f (xt, θ)dt, t ∈ [0,T ]. (2.2)

Suppose the following conditions hold:

Assumption 1. | f (x, θ)| ≤ K(1 + |x|) for all t ∈ [0,T ] where K > 0 is constant.

Assumption 2. | f (x, θ) − f (y, θ)| ≤ K1(|x − y|) for all t ∈ [0,T ] where K1 > 0 is constant.

Assumption 3. For any η > 0, a(η) = inf |θ−θ0 |≥η sup0≤t≤T |xt(θ) − xt(θ0)| > 0, where θ0 is the true value
of the parameter, xt(θ) is the solution of (2.2).

Remark 1. It is known that under the Assumptions 1–2, there exists a unique solution of (2.1).

Define the minimum distance estimator

θ∗ε = arg min
θ∈Θ

sup
0≤t≤T

|Xt − xt(θ)|. (2.3)

3. Main results

Before giving the theorems, we need to establish some preliminary results.

Lemma 1. ( [22]) Let | f |, |g| ∈ H, H is the completion of L1(R) ∩ L2(R) with respect to the norm
||g||2H = E[L2(1)]

∫
R
(Id
−g)2(u)du. Then,

E[
∫

R
f (s)dLd

s

∫
R

g(s)dLd
s ] =

Γ(1 − 2d)E[L2(1)]
Γ(d)Γ(1 − d)

∫
R

∫
R

f (t)g(s)|t − s|2d−1dsdt.

Lemma 2. ( [22]) For any 0 < b2 ≤ b1 ≤ a1, 0 < b2 ≤ a2 ≤ a1, and b1 − b2 = a1 − a2, there exists a
constant C only depend on r and d, such that

|

∫ b1

b2

∫ a1

a2

er(u+v)|u − v|2d−1dudv|
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≤

C|er(a1+b1) − er(a2+b2)||a1 − b2|
2d, i f r , 0,

C|a1 − b2|
2d, i f r = 0,

where r denotes a constant and d is the fractional integration parameter of fractional Lévy process.

Lemma 3. ( [23]) (Gronwall-Bellman lemma) Let c0, c1 and c2 be nonnegative constants, µ(t) be a
nonnegative bounded function and ν(t) be a nonnegative integrable function on [0, 1] such that

µ(t) ≤ c0 + c1

∫ t

0
ν(s)µ(s)ds + c2

∫ t

0
ν(s)[
∫ s

0
µ(t)dK(t)]ds,

where K(·) is a nondecreasing right continuous function with 0 ≤ K(s) ≤ 1. Then

µ(t) ≤ c0 exp{(c1 + c2)
∫ t

0
ν(s)ds}, 0 ≤ t ≤ 1.

In the following theorem, the consistency of the minimum distance estimator is proved.

Theorem 1. Under Assumptions 1-3, when ε→ 0,

Pεθ0
(|θ∗ε − θ0| ≥ η) ≤

2CT 2dK1εeT

a(η)
.

Proof. Note that

Xt − xt(θ0) =

∫ t

0
( f (Xs, θ0) − f (xs, θ0))ds + εLd

t . (3.1)

Then,

|Xt − xt(θ0)|

= |

∫ t

0
( f (Xs, θ0) − f (xs, θ0))ds + εLd

t |

≤

∫ t

0
| f (Xs, θ0) − f (xs, θ0)|ds + ε|Ld

t |.

By using the Gronwall-Bellman lemma and Assumption 2, it can be checked that

sup
0≤t≤T

|Xt − xt(θ0)| ≤ K1εeT sup
0≤t≤T

|Ld
t |. (3.2)

Let ‖ · ‖ be the uniform norm and

G0 = G0(η) = {ω : inf
|θ−θ0 |<η

‖X − x(θ)‖ < inf
|θ−θ0 |≥η

‖X − x(θ)‖}. (3.3)

Thus, for all ω ∈ G0, the minimum distance estimator θ∗ε ∈ {θ : |θ − θ0| < η}.
Since

inf
|θ−θ0 |<η

‖x(θ) − x(θ0)‖ = 0, (3.4)

together with (3.2) and Lemmas 1–2, we can obtain that

Pεθ0
(|θ∗ε − θ0| > η) = Pε

θ0
(Gc

0)
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≤ Pεθ0
( inf
|θ−θ0 |<η

(‖X − x(θ0)‖ + ‖x(θ) − x(θ0)‖)

≥ inf
|θ−θ0 |≥η

(‖x(θ) − x(θ0)‖ − ‖X − x(θ0)‖))

≤ Pεθ0
(‖X − x(θ0)‖ ≥ a(η) − K1εeT sup

0≤t≤T
|Ld

t |)

≤ P(2K1εeT sup
0≤t≤T

|Ld
t | ≥ a(η))

≤ P( sup
0≤t≤T

|Lt| ≥
a(η)

2K1εeT ).

Applying Chebyshev’s inequality, we have

Pεθ0
(|θ∗ε − θ0| > η)

≤ E sup
0≤t≤T

|Ld
t |

2K1εeT

a(η)

≤
2CT 2dK1εeT

a(η)
,

where C is a constant and d is the fractional integration parameter of fractional Lévy process.
The proof is complete. �

Remark 2. When ε→ 0, it is easy to check that θ∗ε
P
→ θ0.

We consider a special case to investigate the limit distribution of ε−1(θ∗ε − θ0).
We suppose that

f (Xt, θ) = M(Xt, θ) +

∫ t

0
N(Xs, θ)ds, (3.5)

where M(x, θ) and N(x, θ) have two continuous bounded derivatives with respect to x and θ.
Let ẋt(θ) denotes the vector of derivatives of xt(θ) with respect to θ. It can be checked that the

derivative exists.
It is supposed that

inf
θ∈Θ

inf
|e|=1

sup
0≤t≤T

(e, ẋt(θ)ẋt(θ)T e) > 0, (3.6)

where e is a unit vector in Rd and (·, ·) denotes the inner product.
We introduce a stochastic differential equation:dX(1)

t =[Mx(Xt, θ)X
(1)
t +

∫ t

0
Nx(Xs, θ)X(1)

s ds]dt + dLd
t , t ∈ [0,T ],

X(1)
0 =0,

(3.7)

where Mx and Nx are the derivatives of M(x, θ) and N(x, θ) with respect to x.
Define ζ = ζ(θ0) by the relation

‖X(1) − (ζ, ẋ(θ0))‖ = inf
µ∈Rd
‖X(1) − (µ, ẋ(θ0))‖. (3.8)

It is assumed that (3.8) has a unique solution ζ with probability one.
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Theorem 2. Under Assumptions 1–3, when ε→ 0,

ε−1(θ∗ε − θ0)
d
→ ζ.

Proof. Let
η = ηε = ελε → 0, (3.9)

where λε → ∞ when ε→ 0.
Note that |θ∗ε − θ0| < ηε whenever ω ∈ G0.
Let

H(µ) = sup
0≤t≤T

|xt(θ0 + µ) − xt(θ0)|2. (3.10)

It is obvious that
sup

0≤t≤T
|xt(θ0 + µ) − xt(θ0) − (µ, ẋt(θ0))| = O(|µ|2). (3.11)

Define
k0 = inf

|e|=1
sup

0≤t≤T
(e, ẋt(θ)ẋt(θ)T e), (3.12)

then k0 > 0.
Hence, there exists a neighborhood V of zero such that

inf
µ∈V

H(µ)
|µ|2

≥
1
2

k0, (3.13)

and for µ ∈ V

H(µ) ≥
1
2

k0|µ|
2. (3.14)

According to Assumption 3, we have H(µ) > 0 for µ < V . Thus, for all µ ∈ Θ − {θ0}, there exists
k > 0 such that

H(µ) ≥ k|µ|2. (3.15)

Then, we obtain
inf
|µ|>ηε

sup
0≤t≤T

|xt(θ0 + µ) − xt(θ0)|2 ≥ kη2
ε. (3.16)

Thus,
a(η) ≥

√
kηε. (3.17)

Together with (3.17) and Theorem 1, when ε→ 0, we have

Pεθ0
(|θ∗ε − θ0| ≥ ηε)

≤
2CT 2dK1εeT

√
kηε

=
2CT 2dK1eT

√
kλε

→ 0.
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Let θ = θ0 + εµ, we have

ε−1‖X − x(θ)‖

= ‖
X − x(θ0)

ε
−

x(θ) − x(θ0)
ε

‖

= ‖x(1) − (µ, ẋ(θ0)) − (
x(θ0 + εµ) − x(θ0)

ε
− (µ, ẋ(θ0))) + (

X − x(θ0)
ε

− x(1))‖.

Applying Taylor’s formula, we have

sup
0≤t≤T

|
xt(θ0 + εµ) − xt(θ0)

ε
− (µ, ẋt(θ0))|

= sup
0≤t≤T

|(µ, (ẋt(θ∗0) − ẋt(θ0)))|

≤ |µ| sup
0≤t≤T

|ẋt(θ∗0) − ẋt(θ0)|

≤ Cε|µ|2,

where C is a constant.
Thus, we have

sup
|µ|≤λε

sup
0≤t≤T

|
xt(θ0 + εµ) − xt(θ0)

ε
− (µ, ẋt(θ0))| ≤ Cελ2

ε. (3.18)

Then, we obtain

|
Xt − xt(θ0)

ε
− x(1)

t |

= |

∫ t

0
[

fη(Xt, θ0) − fη(xt, θ0)
ε

− Mx(xη, θ0)x(1)
η −

∫ η

0
Nx(xh, θ0)x(1)

h dh]dη|

≤

∫ t

0
|
M(Xs, θ0) − M(xs, θ0)

ε
− Mx(xs, θ0)x(1)

s |ds

+

∫ t

0

∫ s

0
|
N(Xs, θ0) − N(Xη, θ0)

ε
− Nx(xη, θ0)x(1)

η |dηds

≤

∫ t

0
|Mx(X̃s, θ0)

(Xs − xs)
ε

− Mx(xs, θ0)x(1)
s |ds

+

∫ t

0

∫ s

0
|Nx(X̂η, θ0)

(Xη − xη)
ε

− Nx(xη, θ0)x(1)
η |dηds

≤

∫ t

0
|Mx(X̃s, θ0)|

(Xs − xs)
ε

− x(1)
s |ds +

∫ t

0
|Mx(X̃s, θ0) − Mx(xs, θ0)||x(1)

s |ds

+

∫ t

0

∫ s

0
|Nx(X̂η, θ0)|

(Xη − xη)
ε

− x(1)
η |dηds

+

∫ t

0

∫ s

0
|Nx(X̂η, θ0) − Nx(xη, θ0)||x(1)

η |dηds

≤ L1

∫ t

0
|
(Xs − xs(θ0))

ε
− x(1)

s |ds + L2

∫ t

0

∫ s

0
|
(Xη − xη(θ0))

ε
− x(1)

η |dηds

+L3ε sup
0≤t≤T

|Ld
t | sup

0≤t≤T
|x(1)

t |,
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where L1, L2, L3 are positive constants.
Then, we have

sup
0≤t≤T

|
Xt − xt(θ0)

ε
− x(1)

t | ≤ Cε sup
0≤t≤T

|Ld
t |

2. (3.19)

Therefore,

sup
|µ|<λε

sup
0≤t≤T

|
Xt − xt(θ0 + εµ)

ε
− (x(1)

t − (µ, ẋt(θ0)))|

≤ sup
|µ|<λε

sup
0≤t≤T
{|

Xt − xt(θ0)
ε

− x(1)
t | + |

xt(θ0 + εµ) − xt(θ0)
ε

− (µ, ẋt(θ0))|}

≤ Cε sup
0≤t≤T

|Ld
t |

2 + Cελ2
ε.

When ε→ 0 and ελ2
ε → 0, we have

sup
|µ|<λε

‖X − x(θ0 + εµ)‖
ε

− ‖x(1) − (µ, ẋ(θ0))‖
d
→ ζ. (3.20)

The proof is complete.
�

4. Conclusions

The aim of this paper is to study L∞-norm minimum distance estimation for stochastic differential
equations driven by small fractional Lévy noise. The consistency and asymptotic distribution of the
estimator have been investigated by applying the Gronwall-Bellman lemma, Chebyshev’s inequality
and Taylor’s formula. Further research topics will include minimum distance estimation for partially
observed stochastic differential equations driven by small fractional Lévy noise.

Acknowledgments

This work was supported in part by the key research projects of universities under Grant
22A110001.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. Y. Hu, D. Nualart, H. Zhou, Drift parameter estimation for nonlinear stochastic differential
equations driven by fractional Brownian motion, Stochastics, 91 (2019), 1067–1091.
https://doi.org/10.1080/17442508.2018.1563606

2. Z. Liu, Generalized moment estimation for uncertain differential equations, Appl. Math. Comput.,
392 (2021), 125724. https://doi.org/10.1016/j.amc.2020.125724

AIMS Mathematics Volume 8, Issue 1, 2083–2092.

http://dx.doi.org/https://doi.org/10.1080/17442508.2018.1563606
http://dx.doi.org/https://doi.org/10.1016/j.amc.2020.125724


2091

3. Y. Ji, X. Jiang, L. Wan, Hierarchical least squares parameter estimation algorithm for two-
input Hammerstein finite impulse response systems, J. Franklin Inst., 357 (2020), 5019–5032.
https://doi.org/10.1016/j.jfranklin.2020.03.027

4. B. L. S. Prakasa Rao, Parametric inference for stochastic differential equations driven by a mixed
fractional Brownian motion with random effects based on discrete observations, Stoch. Anal. Appl.,
40 (2022), 236–245. https://doi.org/10.1080/07362994.2021.1902352

5. Y. Wang, F. Ding, M. Wu, Recursive parameter estimation algorithm for multivariate output-error
systems, J. Franklin Inst., 355 (2018), 5163–5181. https://doi.org/10.1016/j.jfranklin.2018.04.013

6. L. Xu, W. Xiong, A. Alsaedi, T. Hayat, Hierarchical parameter estimation for the frequency
response based on the dynamical window data, Int. J. Control Autom. Syst., 16 (2018), 1756–1764.
https://doi.org/10.1007/s12555-017-0482-7

7. C. Wei, Estimation for incomplete information stochastic systems from discrete observations, Adv.
Differ. Equ., 2019 (2019), 227. https://doi.org/10.1186/s13662-019-2169-2

8. C. Wei, Parameter estimation for partially observed stochastic differential equations
driven by fractional Brownian motion, AIMS Mathematics, 7 (2022), 12952–12961.
https://doi.org/10.3934/math.2022717

9. X. Zhang, F. Ding, Adaptive parameter estimation for a general dynamical system with unknown
states, Int. J. Robust Nonlinear Control, 30 (2020), 1351–1372. https://doi.org/10.1002/rnc.4819

10. F. Ding, L. Xu, F. E. Alsaadi, T. Hayat, Iterative parameter identification for pseudo-linear systems
with ARMA noise using the filtering technique, IET Control Theory Appl., 12 (2018), 892–899.
https://doi.org/10.1049/iet-cta.2017.0821

11. M. Li, X. Liu, The least squares based iterative algorithms for parameter estimation of a bilinear
system with autoregressive noise using the data filtering technique, Signal Process., 147 (2018),
23–34. https://doi.org/10.1016/j.sigpro.2018.01.012

12. C. Wei, Estimation for the discretely observed Cox-Ingersoll-Ross model driven by small
symmetrical stable noises, Symmetry, 12 (2020), 327. https://doi.org/10.3390/sym12030327

13. B. L. S. Prakasa Rao, Nonparametric estimation of trend for stochastic differential equations driven
by fractional Levy process, J. Stat. Theory Pract., 15 (2021), 7. https://doi.org/10.1007/s42519-
020-00138-z

14. G. Shen, Q. Wang, X. Yin, Parameter estimation for the discretely observed Vasicek
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