Research article Special Issues

Existence and uniqueness results for coupled system of fractional differential equations with exponential kernel derivatives

  • Received: 14 August 2022 Revised: 13 September 2022 Accepted: 19 September 2022 Published: 09 October 2022
  • MSC : 26A33, 34A08, 34A12, 47H10

  • In the framework of Caputo-Fabrizio derivatives, we study a new coupled system of fractional differential equations of higher orders supplemented with coupled nonlocal boundary conditions. The existence and uniqueness results of the solutions are proved. We consider the classical fixed-point theories due to Banach and Krasnoselskii for the main results. An example illustrating the main results is introduced.

    Citation: Shorog Aljoudi. Existence and uniqueness results for coupled system of fractional differential equations with exponential kernel derivatives[J]. AIMS Mathematics, 2023, 8(1): 590-606. doi: 10.3934/math.2023027

    Related Papers:

  • In the framework of Caputo-Fabrizio derivatives, we study a new coupled system of fractional differential equations of higher orders supplemented with coupled nonlocal boundary conditions. The existence and uniqueness results of the solutions are proved. We consider the classical fixed-point theories due to Banach and Krasnoselskii for the main results. An example illustrating the main results is introduced.



    加载中


    [1] J. Klafter, S. Lim, R. Metzler, Fractional dynamics: Recent advances, World Scientific, 2011. https://doi.org/10.1142/8087
    [2] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 204. Elsevier, 2006. https://dx.doi.org/10.1016/S0304-0208(06)80001-0
    [4] D. Valério, M. D. Ortigueira, A. M. Lopes, How many fractional derivatives are there, Mathematics, 10 (2022), 737. https://doi.org/10.3390/math10050737 doi: 10.3390/math10050737
    [5] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2010.
    [6] X. J. Yang, General fractional derivatives: Theory, methods and applications, Chapman and Hall/CRC, 2019. https://doi.org/10.1201/9780429284083
    [7] D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional dynamics and control, Springer Science Business Media, 2012.
    [8] A. O. Akdemir, H. Dutta, A. Atangana, Fractional order analysis: Theory, methods and applications, John Wiley Sons, 2020.
    [9] S. Ahmad, A. Ullah, K. Shah, S. Salahshour, A. Ahmadian, T. Ciano, Fuzzy fractional-order model of the novel coronavirus, Adv. Differ. Equ., 2020 (2020), 1–17. https://doi.org/10.1186/s13662-020-02934-0 doi: 10.1186/s13662-020-02934-0
    [10] M. R. Shahriyar, F. Ismail, S. Aghabeigi, A. Ahmadian, S. Salahshour, An eigenvalue-eigenvector method for solving a system of fractional differential equations with uncertainty, Math. Probl. Eng., 2013 (2013). https://doi.org/10.1155/2013/579761 doi: 10.1155/2013/579761
    [11] H. Baghani, J. Alzabut, J. Farokhi-Ostad, J. J. Nieto, Existence and uniqueness of solutions for a coupled system of sequential fractional differential equations with initial conditions, J. Pseudo-Differ. Oper. Appl., 11(2020), 1731–1741. https://doi.org/10.1007/s11868-020-00359-7 doi: 10.1007/s11868-020-00359-7
    [12] M. M. Matar, J. Alzabut, J. M. Jonnalagadda, A coupled system of nonlinear Caputo-Hadamard Langevin equations associated with nonperiodic boundary conditions, Math. Methods Appl. Sci., 44 (2021), 2650–2670. https://doi.org/10.1002/mma.6711 doi: 10.1002/mma.6711
    [13] J. Alzabut, B. Ahmad, S. Etemad, S. Rezapour, A. Zada, Novel existence techniques on the generalized $ {\varphi}$-Caputo fractional inclusion boundary problem, Adv. Differ. Equ., 2021 (2021), 1–18. https://doi.org/10.1186/s13662-021-03301-3 doi: 10.1186/s13662-021-03301-3
    [14] H. Afshari, H. R. Marasi, J. Alzabut, Applications of new contraction mappings on existence and uniqueness results for implicit $\phi$-Hilfer fractional pantograph differential equations, J. Inequal. Appl., 2021 (2021), 1–14. https://doi.org/10.1186/s13660-021-02711-x doi: 10.1186/s13660-021-02711-x
    [15] B. Ahmad, M. Alghanmi, A. Alsaedi, J. J. Nieto, Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions, Appl. Math. Lett., 116 (2021), 107018. https://doi.org/10.1016/j.aml.2021.107018 doi: 10.1016/j.aml.2021.107018
    [16] J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Therm. Sci., 20 (2016), 757–762. https://doi.org/10.2298/TSCI160112019H doi: 10.2298/TSCI160112019H
    [17] J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative from Cattaneo concept with Jeffreys Kernel and analytical solutions, Therm. Sci., 21 (2017), 827–839. https://doi.org/10.2298/TSCI160229115H doi: 10.2298/TSCI160229115H
    [18] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [19] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci. 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [20] S. Ahmad, A. Ullah, M. Arfan, K. Shah, On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative, Chaos Solition. Fract., 140 (2020), 110233. https://doi.org/10.1016/j.chaos.2020.110233 doi: 10.1016/j.chaos.2020.110233
    [21] O. J. J. Algahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solition. Fract., 89 (2016), 552–559. https://doi.org/10.1016/j.chaos.2016.03.026 doi: 10.1016/j.chaos.2016.03.026
    [22] N. Sheikh, F. Ali, M. Saqib, I. Khan, S. Jan, A. Alshomrani, M. Alghamdi, Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results Phys., 7 (2017), 789–800. https://doi.org/10.1016/j.rinp.2017.01.025 doi: 10.1016/j.rinp.2017.01.025
    [23] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. https://doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202
    [24] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 1–11. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0
    [25] J. Hristov, Frontiers in fractional calculus, Bentham Science Publishers, 2017. https://doi.org/10.2174/9781681085999118010013
    [26] T. M. Atanacković, S. Pillipović, D. Zorica, Properties of the Caputo-Fabrizio fractional derivative and its distributional settings, Fract. Calc. Appl. Anal., 21 (2018), 29–44. https://doi.org/10.1515/fca-2018-0003 doi: 10.1515/fca-2018-0003
    [27] D. Baleanu, A. Mousalou, S. Rezapour, The extended fractional Caputo-Fabrizio derivative of order $ 0\leq\sigma< 1$ on $ C_ {\mathbb {R}}[0, 1] $ and the existence of solutions for two higher-order series-type differential equations, Adv. Differ. Equ., 2018 (2018), 1–11. https://doi.org/10.1186/s13662-018-1696-6 doi: 10.1186/s13662-018-1696-6
    [28] M. Higazy, M. Alyami, New Caputo-Fabrizio fractional order SEIASqEqHR model for COVID-19 epidemic transmission with genetic algorithm based control strategy, Alex. Eng. J., 59 (2020), 4719–4736. https://doi.org/10.1016/j.aej.2020.08.034 doi: 10.1016/j.aej.2020.08.034
    [29] S. Ahmad, A. Ullah, M. Partohaghighi, S. Saifullah, A. Akgül, F. Jarad, Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model, AIMS. Math., 7 (2021), 4778–4792. https://doi.org/ 10.3934/math.2022265 doi: 10.3934/math.2022265
    [30] Y. M. Chu, M. F. Khan, S. Ullah, S. A. A. Shah, M. Farooq, M. bin Mamat, Mathematical assessment of a fractional-order vector–host disease model with the Caputo-Fabrizio derivative, Math. Methods Appl. Sci., 2022. https://doi.org/10.1002/mma.8507 doi: 10.1002/mma.8507
    [31] D. Baleanu, H. Mohammadi, S. Rezapour, A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative, Adv. Differ. Equ., 2020 (2020), 1–27. https://doi.org/10.1186/s13662-020-02762-2 doi: 10.1186/s13662-020-02762-2
    [32] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solition. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [33] M. A. Dokuyucu, E. Celik, H. Bulut, H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, Eur. Phys. J. Plus, 133 (2018), 1–6. https://doi.org/10.1140/epjp/i2018-11950-y doi: 10.1140/epjp/i2018-11950-y
    [34] M. M. Bekkouche, I. Mansouri, A. Ahmed, Numerical solution of fractional boundary value problem with Caputo-Fabrizio and its fractional integral, J. Appl. Math. Comput., 133 (2022), 1–12. https://doi.org/10.1007/s12190-022-01708-z doi: 10.1007/s12190-022-01708-z
    [35] F. Youbi, S. Momani, S. Hasan, M. A. Smadi, Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space, Alex. Eng. J., 61 (2022), 1778–1786. https://doi.org/10.1016/j.aej.2021.06.086 doi: 10.1016/j.aej.2021.06.086
    [36] S. Qureshi, N. A. Rangaig, D. Baleanu, New numerical aspects of Caputo-Fabrizio fractional derivative operator, Math., 7 (2019), 374. https://doi.org/10.3390/math7040374 doi: 10.3390/math7040374
    [37] A. Atangana, K. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), https://doi.org/10.1051/mmnp/2018010 doi: 10.1051/mmnp/2018010
    [38] Y. Liu, E. Fan, B. Yin, H. Li, Fast algorithm based on the novel approximation formula for the Caputo-Fabrizio fractional derivative, AIMS. Math., 5(2020), 1729–1744. https://doi.org/10.3934/math.2020117 doi: 10.3934/math.2020117
    [39] A. Shaikh, A. Tassaddiq, K. S. Nisar, D. Baleanu, Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations, Adv. Differ. Equ., 2019 (2019), 1–14. https://doi.org/10.1186/s13662-019-2115-3 doi: 10.1186/s13662-019-2115-3
    [40] K. Liu, M. Fečkan, D. O'Regan, J. Wang, Hyers-Ulam stability and existence of solutions for differential equations with Caputo-Fabrizio fractional derivative, Math., 7 (2019), 333. https://doi.org/10.1016/j.csfx.2020.100040 doi: 10.1016/j.csfx.2020.100040
    [41] S. Abbas, M. Benchohra, J. Henderson, Random Caputo-Fabrizio fractional differential inclusions, Math. Model. Control, 1 (2021), 102–111. https://doi.org/10.3934/mmc.2021008 doi: 10.3934/mmc.2021008
    [42] S. Wang, The Ulam stability of fractional differential equation with the Caputo-Fabrizio derivative, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/7268518 doi: 10.1155/2022/7268518
    [43] T. Sitthiwirattham, R. Gul, K. Shah, I. Mahariq, J. Soontharanon, K. J. Ansari, Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative, AIMS. Math., 7 (2022), 4017–4037. https://doi.org/10.3934/math.2022222 doi: 10.3934/math.2022222
    [44] K. Maazouz, R. R. López, Differential equations of arbitrary order under Caputo-Fabrizio derivative: Some existence results and study of stability, Math. Biosci. Eng., 19 (2022), 6234–6251. https://doi.org/10.3934/mbe.2022291 doi: 10.3934/mbe.2022291
    [45] K. Shah, M. Sarwar, D. Baleanu, Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations, Adv. Differ. Equ., 2020 (2020), 1–9. https://doi.org/10.1186/s13662-020-02624-x doi: 10.1186/s13662-020-02624-x
    [46] R. Gul, M. Sarwar, K. Shah, T. Abdeljawad, F. Jarad, Qualitative analysis of implicit dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations, J. Funct. Spaces, 2020 (2020). https://doi.org/10.1155/2020/4714032 doi: 10.1155/2020/4714032
    [47] A. Alsaedi, D. Baleanu, S. Etemad, S. Rezapour, On coupled systems of time-fractional differential problems by using a new fractional derivative, J. Funct. Spaces, 2016 (2016), 8. https://doi.org/10.1155/2016/4626940 doi: 10.1155/2016/4626940
    [48] S. Abbas, M. Benchohra, J. Henderson, Coupled Caputo-Fabrizio fractional differential systems in generalized Banach spaces, Malaya J. Mat., 9 (2021), 20–25. https://doi.org/10.26637/MJM0901/0003 doi: 10.26637/MJM0901/0003
    [49] M. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mate. Nauk, 10 (1955), 123–127.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1496) PDF downloads(181) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog