Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator

  • In this study, the COVID-19 epidemic model is established by incorporating quarantine and isolation compartments with Mittag-Leffler kernel. The existence and uniqueness of the solutions for the proposed fractional model are obtained. The basic reproduction number, equilibrium points, and stability analysis of the COVID-19 model are derived. Sensitivity analysis is carried out to elaborate the influential parameters upon basic reproduction number. It is obtained that the disease transmission parameter is the most dominant parameter upon basic reproduction number. A convergent iterative scheme is taken into account to simulate the dynamical behavior of the system. We estimate the values of variables with the help of the least square curve fitting tool for the COVID-19 cases in Pakistan from 04 March to May 10, 2020, by using MATLAB.

    Citation: Rahat Zarin, Amir Khan, Aurangzeb, Ali Akgül, Esra Karatas Akgül, Usa Wannasingha Humphries. Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator[J]. AIMS Mathematics, 2022, 7(9): 15939-15964. doi: 10.3934/math.2022872

    Related Papers:

    [1] Xiaoying Pan, Longkun Tang . A new model for COVID-19 in the post-pandemic era. AIMS Mathematics, 2024, 9(8): 21255-21272. doi: 10.3934/math.20241032
    [2] Iqbal M. Batiha, Abeer A. Al-Nana, Ramzi B. Albadarneh, Adel Ouannas, Ahmad Al-Khasawneh, Shaher Momani . Fractional-order coronavirus models with vaccination strategies impacted on Saudi Arabia's infections. AIMS Mathematics, 2022, 7(7): 12842-12858. doi: 10.3934/math.2022711
    [3] Maryam Amin, Muhammad Farman, Ali Akgül, Mohammad Partohaghighi, Fahd Jarad . Computational analysis of COVID-19 model outbreak with singular and nonlocal operator. AIMS Mathematics, 2022, 7(9): 16741-16759. doi: 10.3934/math.2022919
    [4] CW Chukwu, S. Y. Tchoumi, Z. Chazuka, M. L. Juga, G. Obaido . Assessing the impact of human behavior towards preventative measures on COVID-19 dynamics for Gauteng, South Africa: a simulation and forecasting approach. AIMS Mathematics, 2024, 9(5): 10511-10535. doi: 10.3934/math.2024514
    [5] Shao-Wen Yao, Muhammad Farman, Maryam Amin, Mustafa Inc, Ali Akgül, Aqeel Ahmad . Fractional order COVID-19 model with transmission rout infected through environment. AIMS Mathematics, 2022, 7(4): 5156-5174. doi: 10.3934/math.2022288
    [6] Peter Joseph Witbooi, Sibaliwe Maku Vyambwera, Mozart Umba Nsuami . Control and elimination in an SEIR model for the disease dynamics of COVID-19 with vaccination. AIMS Mathematics, 2023, 8(4): 8144-8161. doi: 10.3934/math.2023411
    [7] Shakeel Muhammad, Obaid J. Algahtani, Sayed Saifullah, Amir Ali . Theoretical and numerical aspects of the Malaria transmission model with piecewise technique. AIMS Mathematics, 2023, 8(12): 28353-28375. doi: 10.3934/math.20231451
    [8] Nadiyah Hussain Alharthi, Mdi Begum Jeelani . Analyzing a SEIR-Type mathematical model of SARS-COVID-19 using piecewise fractional order operators. AIMS Mathematics, 2023, 8(11): 27009-27032. doi: 10.3934/math.20231382
    [9] Weerawat Sudsutad, Chatthai Thaiprayoon, Jutarat Kongson, Weerapan Sae-dan . A mathematical model for fractal-fractional monkeypox disease and its application to real data. AIMS Mathematics, 2024, 9(4): 8516-8563. doi: 10.3934/math.2024414
    [10] Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058
  • In this study, the COVID-19 epidemic model is established by incorporating quarantine and isolation compartments with Mittag-Leffler kernel. The existence and uniqueness of the solutions for the proposed fractional model are obtained. The basic reproduction number, equilibrium points, and stability analysis of the COVID-19 model are derived. Sensitivity analysis is carried out to elaborate the influential parameters upon basic reproduction number. It is obtained that the disease transmission parameter is the most dominant parameter upon basic reproduction number. A convergent iterative scheme is taken into account to simulate the dynamical behavior of the system. We estimate the values of variables with the help of the least square curve fitting tool for the COVID-19 cases in Pakistan from 04 March to May 10, 2020, by using MATLAB.



    COVID-19 which is an infectious respiratory illness spreads in China in 2019 and affects the whole world in the shape of human and economic loss. It is known that 11 to 14 days are its latency period while old age people and comorbid patient are their favorite prey. Similar to the symptoms of common flu and cold it is advisable to do the test at a first glance. It is also reported that people have no symptoms even though they are infected. The basic reproduction number for COVID-19 stays between 2.2 and 3.58, which shows that the disease transmission rate is very high. Hence, it disperse throughout the world in the blink of an eye and disturbed 213 nations. Keeping this in mind, the World Health Organization (WHO) officially announced that COVID-19 is one of the global pandemics. At first, there were no proper vaccine/antiviral strategies to control the COVID-19 disease hence most the countries have adopted non-pharmaceutical interventions (NPIs), which are quarantining of exposed individuals, travel restrictions, closure of educational institutes, avoiding mass gatherings, and isolation of infected individuals.

    Daily a lot of people die due to Infectious diseases and hence it is considered to be the 2nd biggest reason for death throughout the world. In Mathematics, modeling is considered to be the best tool to elaborate on the dynamic phenomena of infectious diseases. In this regard, researchers and mathematician try their best to explore infectious diseases by using mathematical modeling. The stability analysis of an SVEIR model with continuous age structure in the exposed and infection classes is discussed in [1]. The dynamics of covid-19 via the stochastic epidemic model are explained in [2]. The dynamics of dengue infection through fractal-fractional operator with real statistical data is shown in [3]. The stability analysis and optimal vaccination of a SIR epidemic model are proven in [4]. The global stability of the COVID-19 model involving the quarantine strategy and media coverage effects are depicted in [5]. Fractional COVID-19 transmission is formulated by using the Caputo fractional derivative in [6].

    Fractional derivatives received much applause during the last few years as their involvement in science and engineering is much more than expected. Fractional derivatives split into Local and nonlocal theories in which the nonlocal definitions received much more attraction due to their interesting applications [7,8,9,10,11,12,13,14]. According to singularity, fractional derivatives have two kinds i.e singular and nonsingular kernel. The Caputo, the Grünwald, and the Riemann–Liouville belong to the first kind while the Atangana–Baleanu and the Caputo–Fabrizio belong to the second kind. The Atangana-Baleanu which is based upon the Mittag-Leffler function answered the queries raised by the Caputo-Fabrizio definition. The classical queries of complex analysis have been easily addressed by the Mittag-Leffler function as can be seen from the power-law series analytic continuation which is convergent outside the disc. A dynamical process based on fractional-order derivatives carries its past and present state information [15,16,17,18,19]. Thus, in epidemiological compartmental models, utilizing a fractional-order system is more reasonable to work the transmission dynamics of infectious diseases.

    Section 2 is devoted to some basic definitions regarding fractal fractional operators. In Section 3 the model is reformulated with the help of the Atangana-Baleanu-Caputo fractional derivative. The real data comparison is shown in Section 4. Section 5 deals with the equilibrium points and basic reproduction number and local stability. Existence and uniqueness are carried out in Section 6. Section 7 deals with the Ulam-Hyers stability of the proposed model. The sensitivity of different parameters corresponding to basic reproduction is discussed in Section 8. Some plots are given to conclude the simplicity and reliability of the algorithm in Section 9. Section 10 deals with the conclusion of our work.

    The study presents basic definitions to set the tone for the mathematical derivation of the model.

    Definition 2.1. The Riemann-Liouville integral as [20]:

    Jα0,ϑ[f(ϑ)]=1Γ(α)ϑ0(ϑδ)α1f(δ)dδ,ϑ>0. (2.1)

    Definition 2.2. The definition of Caputo derivative as [21]:

    cDα0,ϑ[f(ϑ)]=1Γ(nα)ϑ0(ϑδ)nα1f(n)(δ)dδ,ϑ>0, (2.2)

    where n1<αn,nN. Note that if α1 then CDα0,ϑf(ϑ) approaches to f(ϑ).

    Definition 2.3. The Caputo-Fabrizio operator of order ζ>0 is defined as follows [22]:

    CFDζ0,ϑ[f(ϑ)]=M(ζ)1ζϑ0f(δ)exp[ζϑs1ζ]dδ,ϑ>0. (2.3)

    Definition 2.4. Suppose that f(ϑ)H1(0,T),T>0, and λ]0, 1[; then, the Atangana-Baleanu operator of order λ in the Caputo sense can be represented by [23]:

    ABCDλ0,ϑ[f(ϑ)]=B(λ)1λϑ0f(δ)Eλ[λ1λ(ϑδ)λ]dδ. (2.4)

    Definition 2.5. The integral operator under the Atangana-Baleanu-Caputo sense is defined by the following expression [24]:

    ABCIλ0,ϑ[f(ϑ)]=1λB(λ)f(ϑ)+λB(λ)Γ(λ)ϑ0f(δ)(ϑδ)λ1dδ. (2.5)

    In this section, we consider the highly nonlinear epidemiological model for the transmission of the newly raised COVID-19 infection. In this model the total population is categorized into six time dependent classes namely: Recovered R; Hospitalized infected J, infected I; Quarantine Q, Exposed E, and Susceptible S. The model is expressed as [25]:

    {dSdφ=Γβ(1κ)W(S,E)μS+r1Q,dEdφ=β(1κ)W(S,E)(γ1+γ2+μ)E,dQdφ=γ1E(q1+r1+μ)Q,dIdφ=γ2E+q1Q(α+r2+d1+μ)I,dJdφ=αI(r3+d2+μ)J,dRdφ=r2I+r3JμR. (3.1)

    with

    S,E,Q,I,J,R0.

    The description of the parameters are as stated in Table 1.

    Table 1.  Descriptions and values of the parameters.
    Symbols Descriptions Values References
    βλ Coefficient of transmission 0.10700 [25]
    αλ Rate at which infected individuals are being isolated 0.08910 Fitted
    rλ1 Rate at which quarantined become again susceptible 0.04093 Fitted
    rλ2 Recovery rate of infected individuals 0.00734 Fitted
    rλ3 Recovery rate of isolated individuals 0.00974 Fitted
    dλ1 Disease-induced mortality rate of infected individuals 0.00020 [25]
    dλ2 Disease-induced mortality rate of isolated individuals 0.00326 Fitted
    qλ1 Rate at which quarantined individuals become infected 0.00427 Fitted
    γλ1 Rate at which exposed are reduced due to being quarantined 0.06718 Fitted
    γλ2 Rate at which exposed are reduced due to being infected 0.08176 Fitted
    κλ Parameter related to lockdown 0.00026 Fitted

     | Show Table
    DownLoad: CSV

    In addition, W(S,E) is a feature known as the uptake function. The incidence of susceptible with exposed class is related to this feature. In this article, we provide the susceptible and exposed interaction, as in [26], which has the form:

    W(S,E):=2SES+E. (3.2)

    In addition, the function described in (3.2) displays the susceptible and exposed harmonic mean. For several studies, the W(S,E) uptake function is considered to be the product of susceptible and exposed, known as the [25] bi-linear incidence rate. The dynamics of the COVID-19 model were addressed by the writers of [25] when considering the uptake feature to be the product of S and E. Apart from these, it is very interesting to consider W(S,E):=2SES+E as the uptake function. Since it is understood that if there are two quantities S and E in the sense that S,E0, then the following relation is true:

    2SES+ESES+E2.

    In fact, the average of two values is a measure of the centrality of a data set. In addition, the geometric mean is mainly used to reach average data change ratios or rates. As far as harmonic means are concerned, as opposed to arithmetic or geometric means, it is less susceptible to a few broad values. It is used for highly skewed variables often[27]. The readers are referred to [28] for the biological interpretation to the harmonic mean.

    Remark 3.1. The system (3.1) satisfies

    dNdφ=ΓdN, (3.3)

    where N(φ)=S(φ)+E(φ)+Q(φ)+I(φ)+J(φ)+R(φ) at any time with t. Eq. (3.3) has the exact solution as:

    N(φ)=Ad+(N0Ad)edφ,

    with

    S(0)0,E(0)0,Q(0)0,I(0)0,J(0)0,R(0)0.

    We have

    N(0)=S(0)+E(0)+Q(0)+I(0)+R(0).

    Therefore, we get

    S(φ)0,E(φ)0,Q(φ)0,I(φ)0,,J(φ)0,R(φ)0.

    Remark 3.2. It should be noticed that V(S):=SS+E where V:[0,)[0,) is referred as the uptake function and satisfies some of the features defined as [27]:

    1) V(0)=0,V(S)>0, for S>0,

    2) limPS(φ)S(φ)+E(φ)=L1,0<L1<; where L1=1,

    3) V(S) is continuously differentiable,

    4) dVdt=E(S+E)2>0.

    In this subsection, We reformulate the fractional variant of the model (3.1), as:

    {ABCDλ0,φ[S(φ)]=Γλ2βλ(1κ)SES+EμλS+rλ1Q,ABCDλ0,φ[E(φ)]=2βλ(1κ)SES+E(γλ1+γλ2+μλ)E,ABCDλ0,φ[Q(φ)]=γλ1E(qλ1+rλ1+μλ)Q,ABCDλ0,φ[I(φ)]=γλ2E+qλ1Q(αλ+rλ2+dλ1+μλ)I,ABCDλ0,φ[J(φ)]=αλI(rλ3+dλ2+μλ)J,ABCDλ0,φ[R(φ)]=rλ2I+rλ3JμλR. (3.4)

    with

    S(φ),E(φ),Q(φ),I(φ),J(φ),R(φ)0.

    The key and significant step for the problem validity is the comparison of real statistics which is helpful for achieving numerical values for the model validation. We consider here to obtain the nonlinear least square fitting method to fit the data to proposed model (3.4), we have thirteen parameters in which nine will be fitted, while the rest of the parameters must be assumed. Estimated parameters value given in Table 1. The parameters assumption techniques under the least-square fit via MATLAB software were used. We use the data of infected cases of COVID-19 in Pakistan from 04 March to May 10, 2020, the result is given in Figure 1. The associated mean relative error of the fitted data are obtained by formula 166k=1|xrealkxapproximatekxrealk     |.

    Figure 1.  Conformed COVID-19 cumulative cases time series in Pakistan [29].

    The disease free equilibrium (DFE) of the model system (3.4) can be computed by putting ABCDλ0,φ[E(φ)]=0,ABCDλ0,φ[Q(φ)]=0,ABCDλ0,φ[I(φ)]=0,ABCDλ0,φ[J(φ)]=0 and denoted by E0=(S0,0,0,0,0,R0), where S0=Γλuλ and R0=0.

    By using the next generation method [28], we have

    F=(2βλ(1κλ)μλ000000000000000), (5.1)

    where the elements in matrix F constitute the new infection terms, and

    V=(γλ1+γλ2+μλ000γλ1qλ1+rλ1+μλ00γλ2qλ2dλ1+rλ2+αλ+μλ000αλdλ2+rλ3+μλ). (5.2)

    Also,

    V1=(1γλ1+γλ2+μλ000γλ1(γλ1+γλ2+μλ)(qλ1+rλ1+μλ)1qλ1+rλ1+μλ00γλ2qλ21dλ1+rλ2+αλ+μλ000αλ(dλ1+rλ2+αλ+μλ)(dλ2+rλ3+μλ)1dλ2+rλ3+μλ). (5.3)

    Now, R0 is dominant eigenvalue of ρ(FV1), and is given by;

    R0=2βλ(1κλ)(γλ1+γλ2+μλ). (5.4)

    The existence of endemic equilibrium (EE) of (3.4) is established in terms of R0 herein. B1=γλ1+γλ2+μλ,B2=qλ1+rλ1+μλ,B3=dλ1+rλ2+αλ+μλ, and B4=dλ2+rλ3+μλ.

    Let an arbitrary EE point of (3.4) be depicted by E1=(S,E,Q,I,J,R). Then, we get

    Γλ2βλ(1κ)SES+EμλS+rλ1Q=0,2βλ(1κ)SES+EB1E=0,γλ1EB2Q=0,γλ2E+qλ1QB3I=0,αλIB4J=0,rλ2I+rλ3JμR=0. (5.5)

    Solving (5.5), one reaches

    S=B1B22B3B4μλΓλ+B1B2Γλ(B2γλ2+γλ1qλ1)(B4(μλ+rλ2)+αλrλ3)μλ[B1B2B3B4(B1B2γλ1rλ1)(R01)+B1B22B3B4μ+B1B2(B2γλ2+γλ1q1)(B4(μ+r2)+αr3)],Q=γλ1EB2,I=(B2γλ2+γλ1qλ1)EB2B3,J=α(B2γ2+γ1q1)EB2B3B4,R=(B4γλ2+rλ3αλ)(q1γ1+B2γ2)EB2B3B4μ,E=Sμλ(βλ(1κλ)(B4+αλrλI)(B2γλ2+γλ1qλ1)B1B2B3B4)B1B2B3B4μ+B1(B2γ2+γ1qλ1)(B4(μλ+rλ2)+αλrλ3)=SμB1B2B3B4(R01)B1B2B3B4μ+B1(B2γ2+γ1q1)(B4(μ+r2)+αλrλ3), (5.6)

    since B1B2γλ1rλ1=(γλ2+μλ)(qλ1+rλ1+μλ)+γλ1(qλ1+μλ)>0, it is clear that the model system (3.4) has a unique endemic equilibrium when R0>1 and no endemic equilibrium when R0<1.

    Theorem 5.1. Let m>0 and n>0 are the integers such that gcd(m,n)= 1 for λ=mn and M=n, then the DFE E0 of the model in fractional derivative is locally asymptotically stable if |arg(ϑ)|>π2M for all roots ϑ of the associated characteristic equation,

    det(diag[ϑaϑaϑaϑaϑaϑaϑaϑa]JE0)=0. (5.7)

    Proof. The Jacobian matrix of model (3.4) at E0 is given by

    JE0=((2βλ(1κ)+μλ)2βλ(1κ)γλ10002βλ(1κ)a2200000γλ1(qλ1+rλ1+μλ)0000γλ2qλ1a4400000αλ(dλ2+rλ3+μλ)0000rλ2rλ3μλ), (5.8)

    where a22=2βλ(1κ)(γλ1γλ2μλ) and a44=(dλ1+rλ2αλμλ). The three eigenvalues of the matrix (5.8) have negatine real part, i.e., ϑa1=μλ, ϑa2=(dλ2+rλ3+μλ), ϑa3=(dλ1+rλ2+αλ+μλ). Moreover, for last three eigenvalues we use the following reduce matrix.

    RJE0=((2βλ(1κ)+μλ)2βλ(1κ)γλ12βλ(1κ)2βλ(1κ)(γλ1+γλ2+μλ)00γλ1(qλ1+rλ1+μλ)). (5.9)

    The characteristic equation of RJE0 (5.9) is given by

    C(ϑ)=ϑ3+a2ϑ2+a1ϑ+a0, (5.10)

    where

    a2=(2βλ(1κ)+μλ)(2βλ(1κ)(γλ1+γλ2+μλ))+(qλ1+rλ1+μλ)=(2βλ(1κ)+μλ)+(γλ1+γλ2+μλ)(1R0)+(qλ1+rλ1+μλ),a1=(2βλ(1κ)(γλ1+γλ2+μλ))(qλ1+rλ1+μλ)+2βλ(1κ)2βλ(1κ),(2βλ(1κ)(γλ1+γλ2+μλ))(2βλ(1κ)+(2βλ(1κ)(qλ1+rλ1+μλ),=(γλ1+γλ2+μλ)(1R0)(qλ1+rλ1+μλ)+2βλ(1κ)2βλ(1κ),(1R0)(γλ1+γλ2+μλ)(2βλ(1κ)+(2βλ(1κ)(qλ1+rλ1+μλ),a0=(2βλ(1κ)(γλ1+γλ2+μλ))(2βλ(1κ)(qλ1+rλ1+μλ)+(qλ1+rλ1+μλ),2βλ(1κ)2βλ(1κ)+γ212βλ(1κ),=(1R0)(γλ1+γλ2+μλ)(2βλ(1κ)(qλ1+rλ1+μλ)+(qλ1+rλ1+μλ)2βλ(1κ)2βλ(1κ)+γ212βλ(1κ). (5.11)

    Clearly, a2,a1 and a0 are all positive, if R0<1. The argument of the root of equations

    (ϑa1+μλ)=0,(ϑa2+(dλ2+rλ3+μλ))=0,

    and

    (ϑa3+(dλ1+rλ2+αλ+μλ))=0,

    are similar, that is:

    [|arg(ϑk)|>πm+k2πm>πM>π2M,]

    where k=0,1,2,3,...,(m1). Then, we get

    (ϑ3+a2ϑ2+a1ϑ+a0)=0, (5.12)

    are all greater than π2M if R0<1, having an argument less than π2M for R0>1. Thus the DFE is locally asymptotically stable for R0<1.

    Assume that a continuous real-valued function denoted by B(J) containing the sup norm property is a Banach space on J=[0,b] and P=B(J)×B(J)×B(J) ×B(J)×B(J)×B(J) with norm = \|S\|+\|E\| +\left\|Q\right\|+\left\|I\right\| +\left\|J\right\|+\|R\| , where \|S\| = \sup _{\varphi \in J}|S(\varphi)|, \|E\| = \sup _{t \in J}|E(\varphi)|, \left\|Q\right\| = \sup _{\varphi \in J}|Q(\varphi)|, \left\|I\right\| = \sup _{\varphi \in J}|I(\varphi)|, \left\|J\right\| = \sup_{\varphi \in J}|J(\varphi)|, \left\|R\right\| = \sup _{\varphi \in J}|R(\varphi)|. We get

    \begin{equation} \left\{\begin{split}& S(\varphi)-S(0) = ^{\mathrm{ABC}} \mathbb{D}_{0, \varphi}^{\lambda}[S(\varphi)] \left\{\Gamma^{\lambda} - \frac{2\beta^{\lambda}(1-\kappa)S E}{S+E} - \mu^{\lambda}{S} + r_1^{\lambda}Q\right\}, \\\\& E(\varphi)-E(0) = ^{\mathrm{ABC}} \mathbb{D}_{0, \varphi}^{\lambda}[E(\varphi)] \left\{\frac{2\beta^{\lambda}(1-\kappa)S E}{S+E} - (\gamma_1^{\lambda} + \gamma_2^{\lambda} + \mu^{\lambda})E\right\}, \\\\& Q(\varphi)-Q(0) = ^{\mathrm{ABC}} \mathbb{D}_{0, \varphi}^{\lambda}[Q(\varphi)] \left\{\gamma_1^{\lambda}{E} - (q_1^{\lambda} + r_1^{\lambda} + \mu^{\lambda})Q\right\}, \\\\& I(\varphi)-I(0) = ^{\mathrm{ABC}} \mathbb{D}_{0, \varphi}^{\lambda}[I(\varphi)] \left\{\gamma_2^{\lambda}{E}+q_1^{\lambda}Q - (\alpha^{\lambda} + r_2^{\lambda} + d_1^{\lambda} + \mu^{\lambda})I\right\} , \\\\& J(\varphi)-J(0) = ^{\mathrm{ABC}} \mathbb{D}_{0, \varphi}^{\lambda}[J(\varphi)] \left\{\alpha^{\lambda}{I} - (r_3^{\lambda} + d_2^{\lambda} + \mu^{\lambda})J \right\}, \\\\& R(\varphi)-R(0) = ^{\mathrm{ABC}} \mathbb{D}_{0, \varphi}^{\lambda}[R(\varphi)] \left\{r_2^{\lambda}I + r_3^{\lambda}J - \mu^{\lambda}{R}.\right\}. \end{split}\right. \end{equation} (6.1)

    Now using the Definition 2.5 on each of the above equations, one obtains

    \begin{equation} \begin{aligned} S(\varphi)-S(0) = & \frac{1-\lambda}{B(\lambda)} K_{1}(\lambda, t, S(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{1}(\lambda, \delta, S(\delta)) d \delta , \\\\ E(\varphi)-E(0) = & \frac{1-\lambda}{B(\lambda)} K_{2}(\lambda, \varphi, E(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{2}(\lambda, \delta, E(\delta)) d \delta , \\\\ Q(\varphi)-Q(0) = & \frac{1-\lambda}{B(\lambda)} K_{3}(\lambda, \varphi, Q(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{3}(\lambda, \delta, Q(\delta)) d \delta , \\\\ I(\varphi)-I(0) = & \frac{1-\lambda}{B(\lambda)} K_{4}(\lambda, \varphi, I(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{4}(\lambda, \delta, I(\delta)) d \delta , \\\\ J(\varphi)-J(0) = & \frac{1-\lambda}{B(\lambda)} K_{5}(\lambda, \varphi, J(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{5}(\lambda, \delta, J(\delta)) d \delta , \\\\ R(\varphi)-R(0) = & \frac{1-\lambda}{B(\lambda)} K_{6}(\lambda, \varphi, R(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{6}(\lambda, \delta, R(\delta)) d \delta , \\ \end{aligned} \end{equation} (6.2)

    where

    \begin{eqnarray*} \label{eq1.3} &&K_{1}(\lambda, \varphi, S(\varphi)) = \Gamma^{\lambda} - \frac{2\beta^{\lambda}(1-\kappa)S E}{S+E} - \mu^{\lambda}{S} + r_1^{\lambda}Q, \nonumber\\ &&K_{2}(\lambda, \varphi, E(\varphi)) = \frac{2\beta^{\lambda}(1-\kappa)S E}{S+E} - (\gamma_1^{\lambda} + \gamma_2^{\lambda} + \mu^{\lambda})E, \nonumber\\ &&K_{3}\left(\lambda, \varphi, Q(\varphi)\right) = \gamma_1^{\lambda}{E} - (q_1^{\lambda} + r_1^{\lambda} + \mu^{\lambda})Q, \\ &&K_{4}\left(\lambda, \varphi, I(\varphi)\right) = \gamma_2^{\lambda}{E}+q_1^{\lambda}Q - (\alpha^{\lambda} + r_2^{\lambda} + d_1^{\lambda} + \mu^{\lambda})I , \nonumber\\ &&K_{5}\left(\lambda, \varphi, J(\varphi)\right) = \alpha^{\lambda}{I} - (r_3^{\lambda} + d_2^{\lambda} + \mu^{\lambda})J , \nonumber\\ &&K_{6}(\lambda, \varphi, R(\varphi)) = r_2^{\lambda}I + r_3^{\lambda}J - \mu^{\lambda}{R}.\nonumber \end{eqnarray*}

    Thus, we reach

    \begin{equation} \begin{array}{l} \left\|K_{1}(\lambda, \varphi, S)-K_{1}\left(\lambda, \varphi, S^{*}\right)\right\| = \left\|-\left(\frac{2\beta^{\lambda}(1-\kappa)S E}{S+E} - \mu^{\lambda}{S}\right)\left(S-S^{*}\right)\right\|. \end{array} \end{equation} (6.3)

    Taking into account

    \begin{eqnarray*} \lambda_{1}: = \left\|-\left(\frac{2\beta^{\lambda}(1-\kappa)S E}{S+E} + \mu^{\lambda})\right)\right\|, \end{eqnarray*}

    one reaches

    \begin{equation} \left\|K_{1}(\lambda, \varphi, S)-K_{1}\left(\lambda, \varphi, S^{*}\right)\right\| \leq\Omega_{1}\left\|S-S^{*}\right\|. \end{equation} (6.4)

    Then, we acquire

    \begin{equation} \begin{array}{l} \left\|K_{2}(\lambda, \varphi, E)-K_{2}\left(\lambda, \varphi, E^{*}\right)\right\| \leq\Omega_{2}\left\|E-E^{*}\right\|, \\\\ \left\|K_{3}\left(\lambda, \varphi, Q\right)-K_{3}\left(\lambda, \varphi, Q^{*}\right)\right\| \leq\Omega_{3}\left\|Q-Q^{*}\right\|, \\\\ \left\|K_{4}\left(\lambda, \varphi, I\right)-K_{4}\left(\lambda, \varphi, I^{*}\right)\right\| \leq\Omega_{4}\left\|I-I^{*}\right\|, \\\\ \left\|K_{5}\left(\lambda, \varphi, J\right)-K_{5}\left(\lambda, \varphi, J^{*}\right)\right\| \leq\Omega_{5}\left\|J-J^{*}\right\|, \\\\ \left\|K_{6}(\lambda, \varphi, R)-K_{5}\left(\lambda, \varphi, R^{*}\right)\right\| \leq\Omega_{6}\left\|R-R^{*}\right\|. \end{array} \end{equation} (6.5)

    Where

    \begin{eqnarray*} \begin{split} \lambda_{2} = &\left\| -\left(\gamma_1^{\lambda} + \gamma_2^{\lambda} + \mu^{\lambda}\right)\right\|, \\ \lambda_{3} = &\left\| -\left(q_1^{\lambda} + r_1^{\lambda} + \mu^{\lambda}\right)\right\|, \\ \lambda_{4} = &\left\| -\left(\alpha^{\lambda} + r_2^{\lambda} + d_1^{\lambda} + \mu^{\lambda}\right)\right\|, \\ \lambda_{5} = &\left\| -\left(r_3^{\lambda} + d_2^{\lambda} + \mu^{\lambda}\right)\right\|, \\ \lambda_{6} = &\left\| -\left(\mu^{\lambda}\right)\right\|. \end{split} \end{eqnarray*}

    Then, we reach

    \begin{equation} \begin{aligned} S_{n}(\varphi)-S(0) = & \frac{1-\lambda}{B(\lambda)} K_{1}(\lambda, \varphi, S_{n-1}(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{1}(\lambda, \delta, S_{n-1}(\delta)) d \delta , \\ E_{n}(\varphi)-E(0) = & \frac{1-\lambda}{B(\lambda)} K_{2}(\lambda, \varphi, E_{n-1}(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{2}(\lambda, \delta, E_{n-1}(\delta)) d \delta , \\ Q_{n}(\varphi)-Q(0) = & \frac{1-\lambda}{B(\lambda)} K_{3}(\lambda, \varphi, Q_{n-1}(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{3}(\lambda, \delta, Q_{n-1}(\delta)) d \delta , \\ I_{n}(\varphi)-I(0) = & \frac{1-\lambda}{B(\lambda)} K_{4}(\lambda, \varphi, I_{n-1}(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{4}(\lambda, \delta, I_{n-1}(\delta)) d \delta , \\ J_{n}(\varphi)-J(0) = & \frac{1-\lambda}{B(\lambda)} K_{5}(\lambda, \varphi, J_{n-1}(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{5}(\lambda, \delta, J_{n-1}(\delta)) d \delta , \\ R_{n}(\varphi)-R(0) = & \frac{1-\lambda}{B(\lambda)} K_{6}(\lambda, \varphi, R_{n-1}(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{6}(\lambda, \delta, R_{n-1}(\delta)) d \delta , \\ \end{aligned} \end{equation} (6.6)

    together with S_{0}(\varphi) = S(0), E_{0}(\varphi) = E(0), Q_{0}(\varphi) = Q(0), I_{0}(\varphi) = I(0), J_{0}(\varphi) = J(0), R_{0}(\varphi) = R(0) . Thus, we get

    \begin{equation} \begin{aligned} \Xi_{S, n}(\varphi) = & S_{n}(\varphi)-S_{n-1}(\varphi) = \frac{1-\lambda}{B(\lambda)} (K_{1}(\lambda, \varphi, S_{n-1}(\varphi))-K_{1}(\lambda, \varphi, S_{n-2}(\varphi)))\\ +&\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left(K_{1}\left(\lambda, \delta, S_{n-1}(\delta)\right)\right.\left.-K_{1}\left(\lambda, \delta, S_{n-2}(\delta)\right)\right) d \delta, \\ \Xi_{E, n}(\varphi) = & E_{n}(\varphi)-E_{n-1}(\varphi) = \frac{1-\lambda}{B(\lambda)} (K_{2}(\lambda, \varphi, E_{n-1}(\varphi))-K_{2}(\lambda, \varphi, E_{n-2}(\varphi)))\\ +&\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{l}(\varphi-\delta)^{\lambda-1}\left(K_{2}\left(\lambda, \delta, E_{n-1}(\delta)\right)\right.\left.-K_{2}\left(\lambda, \delta, E_{n-2}(\delta)\right)\right) d \delta, \\ \Xi_{Q, n}(\varphi) = & Q_{1 n}(\varphi)-Q_{n-1}(\varphi) = \frac{1-\lambda}{B(\lambda)} (K_{3}(\lambda, \varphi, Q_{n-1}(\varphi))-K_{3}(\lambda, \varphi, Q_{n-2}(\varphi)))\\ +&\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left(K_{3}\left(\lambda, \delta, Q_{n-1}(\delta)\right)\right.\left.-K_{3}\left(\lambda, \delta, Q_{n-2}(\delta)\right)\right) d \delta, \\ \Xi_{I, n}(\varphi) = & I_{n}(\varphi)-I_{n-1}(\varphi) = \frac{1-\lambda}{B(\lambda)} (K_{4}(\lambda, \varphi, I_{n-1}(\varphi))-K_{4}(\lambda, \varphi, I_{n-2}(\varphi)))\\ +&\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left(K_{4}\left(\lambda, \delta, I_{n-1}(\delta)\right)\right.\left.-K_{4}\left(\lambda, \delta, I_{n-2}(\delta)\right)\right) d \delta, \\ \Xi_{J, n}(\varphi) = & J_{n}(\varphi)-J_{n-1}(\varphi) = \frac{1-\lambda}{B(\lambda)} (K_{5}(\lambda, \varphi, J_{n-1}(\varphi))-K_{5}(\lambda, \varphi, J_{n-2}(\varphi)))\\ +&\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left(K_{5}\left(\lambda, \delta, J_{n-1}(\delta)\right)\right.\left.-K_{5}\left(\lambda, \delta, J_{n-2}(\delta)\right)\right) d \delta, \\ \Xi_{R, n}(\varphi) = & R_{n}(\varphi)-R_{n-1}(\varphi) = \frac{1-\lambda}{B(\lambda)} (K_{6}(\lambda, \varphi, R_{n-1}(\varphi))-K_{5}(\lambda, \varphi, R_{n-2}(\varphi)))\\ +&\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left(K_{6}\left(\lambda, \delta, R_{n-1}(\delta)\right)\right.\left.-K_{5}\left(\lambda, \delta, R_{n-2}(\delta)\right)\right) d \delta. \end{aligned} \end{equation} (6.7)
    \begin{equation*} \begin{split} &S_{n}(\varphi) = \sum\limits_{i = 0}^{n} \Xi_{S, i}(\varphi), \quad E_{n}(\varphi) = \sum\limits_{i = 0}^{n} \Xi_{E, i}(\varphi), \quad Q_{n}(\varphi) = \sum\limits_{i = 0}^{n} \Xi_{Q, i}(\varphi), \\ &I_{n}(\varphi) = \sum\limits_{i = 0}^{n} \Xi_{I, i}(\varphi), \quad J_{n}(\varphi) = \sum\limits_{i = 0}^{n} \Xi_{J, i}(\varphi), \quad R_{n}(\varphi) = \sum\limits_{i = 0}^{n} \Xi_{R, i}(\varphi). \end{split} \end{equation*}

    Additionally, by using Eqs (6.4) and (6.5) and considering that

    \Xi_{S, n-1}(\varphi) = S_{n-1}(\varphi)-S_{n-2}(\varphi), \quad \Xi_{E, n-1}(\varphi) = E_{n-1}(\varphi)-E_{n-2}(\varphi), \\ \Xi_{Q, n-1}(\varphi) = Q_{n-1}(\varphi)-Q_{n-2}(\varphi), \\ \Xi_{I, n-1}(\varphi) = I_{n-1}(\varphi)-I_{n-2}(\varphi), \quad \Xi_{J, n-1}(\varphi) = J_{n-1}(\varphi)-J_{n-2}(\varphi), \\ \Xi_{R, n-1}(\varphi) = R_{n-1}(\varphi)-R_{n-2}(\varphi),

    we reach

    \begin{equation} \begin{array}{l} \left\|\Xi_{S, n}(\varphi)\right\| \leq \frac{1-\lambda}{B(\lambda)}\Omega_{1} \left\|\Xi_{S, n-1}(\varphi)\right\| \frac{\lambda}{B(\lambda) \Gamma(\lambda)}\Omega_{1} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left\|\Xi_{S, n-1}(\delta)\right\| d \delta, \\\\ \left\|\Xi_{E, n}(\varphi)\right\| \leq \frac{1-\lambda}{B(\lambda)}\Omega_{2} \left\|\Xi_{E, n-1}(\varphi)\right\| \frac{\lambda}{B(\lambda) \Gamma(\lambda)}\Omega_{2} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left\|\Xi_{E, n-1}(\delta)\right\| d \delta, \\\\ \left\|\Xi_{Q, n}(\varphi)\right\| \leq \frac{1-\lambda}{B(\lambda)}\Omega_{3} \left\|\Xi_{Q, n-1}(\varphi)\right\| \frac{\lambda}{B(\lambda) \Gamma(\lambda)}\Omega_{3} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left\|\Xi_{Q, n-1}(\delta)\right\| d \delta, \\\\ \left\|\Xi_{I, n}(\varphi)\right\| \leq \frac{1-\lambda}{B(\lambda)}\Omega_{4} \left\|\Xi_{I, n-1}(\varphi)\right\| \frac{\lambda}{B(\lambda) \Gamma(\lambda)}\Omega_{4} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left\|\Xi_{I, n-1}(\delta)\right\| d \delta, \\\\ \left\|\Xi_{J, n}(\varphi)\right\| \leq \frac{1-\lambda}{B(\lambda)}\Omega_{5} \left\|\Xi_{J, n-1}(\varphi)\right\| \frac{\lambda}{B(\lambda) \Gamma(\lambda)}\Omega_{5} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left\|\Xi_{J, n-1}(\delta)\right\| d \delta, \\\\ \left\|\Xi_{R, n}(\varphi)\right\| \leq \frac{1-\lambda}{B(\lambda)}\Omega_{6} \left\|\Xi_{R, n-1}(\varphi)\right\| \frac{\lambda}{B(\lambda) \Gamma(\lambda)}\Omega_{6} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1}\left\|\Xi_{R, n-1}(\delta)\right\| d \delta. \end{array} \end{equation} (6.8)

    Now, we are in position to prove the following theorem.

    Theorem 6.1. If

    \begin{equation} \frac{1-\lambda}{B(\lambda)}\Omega_{i} + \frac{\lambda}{B(\lambda) \Gamma(\lambda)} b^{\lambda}\Omega_{i} < 1, i = 1, 2, \ldots, 5. \end{equation} (6.9)

    Then, (3.4) has a unique solution for t \in [0, b] .

    Proof. It is observed S, E, Q, I, J, R are bounded functions. In Addition, as can be seen from Eqs (6.4) and (6.5), the symbols K_{1}, K_{2}, K_{3}, K_{4}, K_5 , and K_{6} hold for Lipchitz condition. Therefore, utilizing Eq (6.8) together with a recursive hypothesis, we arrive at

    \begin{equation} \begin{array}{l} \left\|\Xi_{S, n}(\varphi)\right\| \leq\left\|S_{0}(\varphi)\right\|\left(\frac{1-\lambda}{B(\lambda)}\Omega_{1} + \frac{\lambda b^{\lambda}}{B(\lambda) \Gamma(\lambda)} \Omega_{1}\right)^{n}, \\\\ \left\|\Xi_{E, n}(\varphi)\right\| \leq\left\|E_{0}(\varphi)\right\|\left(\frac{1-\lambda}{B(\lambda)}\Omega_{3} + \frac{\lambda b^{\lambda}}{B(\lambda) \Gamma(\lambda)} \Omega_{2}\right)^{n}, \\\\ \left\|\Xi_{Q, n}(\varphi)\right\| \leq\left\|Q_{0}(\varphi)\right\|\left(\frac{1-\lambda}{B(\lambda)}\Omega_{3} + \frac{\lambda b^{\lambda}}{B(\lambda) \Gamma(\lambda)} \Omega_{3}\right)^{n}, \\\\ \left\|\Xi_{I, n}(\varphi)\right\| \leq\left\|I_{0}(\varphi)\right\|\left(\frac{1-\lambda}{B(\lambda)}\Omega_{4} + \frac{\lambda b^{\lambda}}{B(\lambda) \Gamma(\lambda)} \Omega_{4}\right)^{n}, \\\\ \left\|\Xi_{J, n}(\varphi)\right\| \leq\left\|J_{0}(\varphi)\right\|\left(\frac{1-\lambda}{B(\lambda)}\Omega_{5} + \frac{\lambda b^{\lambda}}{B(\lambda) \Gamma(\lambda)} \Omega_{5}\right)^{n}, \\\\ \left\|\Xi_{R, n}(\varphi)\right\| \leq\left\|R_{0}(\varphi)\right\|\left(\frac{1-\lambda}{B(\lambda)}\Omega_{6} + \frac{\lambda b^{\lambda}}{B(\lambda) \Gamma(\lambda)} \Omega_{6}\right)^{n}. \end{array} \end{equation} (6.10)

    Then, we get

    \left\|\Xi_{S, n}(\varphi)\right\| \rightarrow 0, \left\|\Xi_{E, n}(\varphi)\right\| \rightarrow 0, \left\|\Xi_{Q, n}(\varphi)\right\| \rightarrow 0, \left\|\Xi_{I, n}(\varphi)\right\| \rightarrow 0, \left\|\Xi_{J, n}(\varphi)\right\| \rightarrow 0, \left\|\Xi_{R, n}(\varphi)\right\| \rightarrow 0

    as n \rightarrow \infty . Thus, we reach

    \begin{equation} \begin{array}{l} \left\|S_{n+k}(\varphi)-S_{n}(\varphi)\right\| \leq \sum _{j = n+1}^{n+k} Z_{1}^{j} = \frac{Z_{1}^{n+1}-Z_{1}^{n+k+1}}{1-Z_{1}}, \\\\ \left\|E_{n+k}(\varphi)-E_{n}(\varphi)\right\| \leq \sum _{j = n+1}^{n+k} Z_{2}^{j} = \frac{Z_{2}^{n+1}-Z_{2}^{n+k+1}}{1-Z_{2}}, \\\\ \left\|Q_{n+k}(\varphi)-Q_{n}(t)\right\| \leq \sum _{j = n+1}^{n+k} Z_{3}^{j} = \frac{Z_{3}^{n+1}-Z_{3}^{n+k+1}}{1-Z_{3}}, \\\\ \left\|I_{n+k}(\varphi)-I_{n}(\varphi)\right\| \leq \sum _{j = n+1}^{n+k} Z_{4}^{j} = \frac{Z_{4}^{n+1}-Z_{4}^{n+k+1}}{1-Z_{4}}, \\\\ \left\|J_{n+k}(\varphi)-J_{n}(\varphi)\right\| \leq \sum _{j = n+1}^{n+k} Z_{5}^{j} = \frac{Z_{5}^{n+1}-Z_{5}^{n+k+1}}{1-Z_{5}}, \\\\ \left\|R_{n+k}(\varphi)-R_{n}(\varphi)\right\| \leq \sum _{i = n+1}^{n+k} Z_{6}^{j} = \frac{Z_{6}^{n+1}-Z_{6}^{n+k+1}}{1-Z_{6}}, \end{array} \end{equation} (6.11)

    with Z_{i} = \frac{1-\lambda}{B(\lambda)}\Omega_{i} + \frac{\lambda}{B(\lambda) \Gamma(\lambda)} b^{\lambda}\Omega_{i} < 1 by hypothesis.

    Definition 7.1. [23] The model (3.4) is Hyers-Ulam stable if there exist a real number \gamma \geq 0 , such that for every \epsilon > 0 and for any solution \mathcal{Y} \in C^{1}(\mathcal{G}, \mathbb{R}) of the following inequality:

    \left.\right|^{\mathrm{ABC}} \bf{D}^{\mathrm{\lambda}} \mathcal{Y}(\varphi)-\Psi(\varphi, \mathcal{Y}(\varphi)) \mid \leq \epsilon, \quad \varphi \in \mathcal{G},

    there is a unique solution \mathfrak{W} \in C^{1}(\mathcal{G}, \mathbb{R}) of the model (3.4), such that

    |\mathcal{Y}(\varphi)-\mathfrak{W}(\varphi)| \leq \gamma \epsilon, \quad \varphi \in \mathcal{G}.

    Definition 7.2. The ABC fractional integral system given by Eq (6.2) is said to be Hyers-Ulam stable if exist constants \Delta_i > 0, i \in \textbf{N}^6 fulfilling: For every \gamma_i > 0, i \in \textbf{N}^6 , for

    \begin{equation} \begin{aligned} |S(\varphi)-& \frac{1-\lambda}{B(\lambda)} K_{1}(\lambda, \varphi, S(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{1}(\lambda, \delta, S(\delta)) d \delta| \leq \gamma_1, \\\\ |E(\varphi)-& \frac{1-\lambda}{B(\lambda)} K_{2}(\lambda, \varphi, E(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{2}(\lambda, \delta, E(\delta)) d \delta | \leq \gamma_2 , \\\\ |Q(\varphi)-& \frac{1-\lambda}{B(\lambda)} K_{3}(\lambda, \varphi, Q(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{3}(\lambda, \delta, Q(\delta)) d \delta | \leq \gamma_3 , \\\\ |I(t)-& \frac{1-\lambda}{B(\lambda)} K_{4}(\lambda, t, I(t))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{t}(t-\delta)^{\lambda-1} K_{4}(\lambda, \delta, I(\delta)) d \delta | \leq \gamma_4 , \\\\ |J(\varphi)-& \frac{1-\lambda}{B(\lambda)} K_{5}(\lambda, \varphi, I(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{5}(\lambda, \delta, I(\delta)) d \delta | \leq \gamma_5 , \\\\ |R(\varphi)-& \frac{1-\lambda}{B(\lambda)} K_{6}(\lambda, \varphi, R(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{6}(\lambda, \delta, R(\delta)) d \delta | \leq \gamma_6 . \end{aligned} \end{equation} (7.1)

    there exist (\dot{S}(\varphi), \dot{E}(\varphi), \dot{Q}(\varphi), \dot{I}(\varphi), \dot{J}(\varphi), \dot{R}(\varphi)) which are satisfying

    \begin{equation} \begin{aligned} \dot{S}(\varphi) = & \frac{1-\lambda}{B(\lambda)} K_{1}(\lambda, \varphi, S(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{1}(\lambda, \delta, \dot{S}(\delta)) d \delta, \\\\ \dot{E}(\varphi) = & \frac{1-\lambda}{B(\lambda)} K_{2}(\lambda, \varphi, E(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{2}(\lambda, \delta, \dot{E}(\delta)) d \delta , \\\\ \dot{Q}(\varphi) = & \frac{1-\lambda}{B(\lambda)} K_{3}(\lambda, \varphi, Q(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{3}(\lambda, \delta, \dot{Q}(\delta)) d \delta , \\\\ \dot{I}(\varphi) = & \frac{1-\lambda}{B(\lambda)} K_{4}(\lambda, \varphi, I(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{4}(\lambda, \delta, \dot{I}(\delta)) d \delta , \\\\ \dot{J}(\varphi) = & \frac{1-\lambda}{B(\lambda)} K_{5}(\lambda, \varphi, J(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{5}(\lambda, \delta, \dot{J}(\delta)) d \delta , \\\\ \dot{R}(t) = & \frac{1-\lambda}{B(\lambda)} K_{6}(\lambda, \varphi, R(\varphi))+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \times \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} K_{6}(\lambda, \delta, \dot{R}(\delta)) d \delta . \end{aligned} \end{equation} (7.2)

    Such that

    \begin{eqnarray} &&|S(\varphi)-\dot{S}(\varphi)| \leq \zeta_{1} \gamma_{1}, |E(\varphi)-\dot{E}(\varphi)| \leq \zeta_{2} \gamma_{2}, \\ &&|Q(\varphi)-\dot{Q}(\varphi)| \leq \zeta_{3} \gamma_{3}, |I(\varphi)-\dot{I}(\varphi)| \leq \zeta_{4} \gamma_{4}, \\ &&|J(\varphi)-\dot{J}(\varphi)| \leq \zeta_{5} \gamma_{5}, |R(\varphi)-\dot{R}(\varphi)| \leq \zeta_{6} \gamma_{6}. \end{eqnarray} (7.3)

    Theorem 7.1. With assumption J , the suggested model of fractional order (3.4) is Hyers-Ulam stable.

    Proof. With the help of theorem (6.1), the given ABC fractional model (3.4) has a unique solution ({S}(\varphi), {E}(\varphi), {Q}(\varphi), {I}(\varphi), {J}(\varphi), {R}(\varphi)) satisfying equations of system (6.2). Then, we acquire

    \begin{equation} \begin{split} \|S(\varphi)-\dot{S}(\varphi)\| &\leq \frac{1-\lambda}{B(\lambda)}\left\|K_{1}(\lambda, \varphi, S(\varphi))-K_{1}(\lambda, \varphi, \dot{S}(\varphi))\right\| \\ &+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} \left\|K_{1}(\lambda, \varphi, S(\varphi))-K_{1}(\lambda, \varphi, \dot{S}(\varphi))\right\| d \delta \\ &\leq\left[\frac{1-\lambda}{B(\lambda)}+\frac{\lambda}{B(\lambda) \Gamma(\lambda)}\right]\Omega_{1}\|S-\dot{S}\|, \end{split} \end{equation} (7.4)
    \begin{equation} \begin{split} \|E(\varphi)-\dot{E}(\varphi)\| &\leq \frac{1-\lambda}{B(\lambda)}\left\|K_{2}(\lambda, \varphi, E(\varphi))-K_{2}(\lambda, \varphi, \dot{E}(\varphi))\right\| \\ &+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} \left\|K_{2}(\lambda, \varphi, E(\varphi))-K_{1}(\lambda, \varphi, \dot{E}(\varphi))\right\| d \delta \\ &\leq\left[\frac{1-\lambda}{B(\lambda)}+\frac{\lambda}{B(\lambda) \Gamma(\lambda)}\right]\Omega_{2}\|E-\dot{E}\|, \end{split} \end{equation} (7.5)
    \begin{equation} \begin{split} \|Q(\varphi)-\dot{Q}(\varphi)\| &\leq \frac{1-\lambda}{B(\lambda)}\left\|K_{3}(\lambda, \varphi, Q(\varphi))-K_{3}(\lambda, \varphi, \dot{Q}(\varphi))\right\| \\ &+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} \left\|K_{3}(\lambda, \varphi, Q(\varphi))-K_{3}(\lambda, \varphi, \dot{Q}(\varphi))\right\| d \delta \\ &\leq\left[\frac{1-\lambda}{B(\lambda)}+\frac{\lambda}{B(\lambda) \Gamma(\lambda)}\right]\Omega_{3}\|Q-\dot{Q}\|, \end{split} \end{equation} (7.6)
    \begin{equation} \begin{split} \|I(\varphi)-\dot{I}(\varphi)\| &\leq \frac{1-\lambda}{B(\lambda)}\left\|K_{4}(\lambda, \varphi, I(\varphi))-K_{4}(\lambda, \varphi, \dot{I}(\varphi))\right\| \\ &+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} \left\|K_{4}(\lambda, \varphi, I(\varphi))-K_{4}(\lambda, \varphi, \dot{I}(\varphi))\right\| d \delta \\ &\leq\left[\frac{1-\lambda}{B(\lambda)}+\frac{\lambda}{B(\lambda) \Gamma(\lambda)}\right]\Omega_{4}\|I-\dot{I}\|, \end{split} \end{equation} (7.7)
    \begin{equation} \begin{split} \|J(\varphi)-\dot{J}(\varphi)\| &\leq \frac{1-\lambda}{B(\lambda)}\left\|K_{5}(\lambda, \varphi, J(\varphi))-K_{5}(\lambda, \varphi, \dot{J}(\varphi))\right\| \\ &+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} \left\|K_{5}(\lambda, \varphi, J(\varphi))-K_{5}(\lambda, \varphi, \dot{J}(\varphi))\right\| d \delta \\ &\leq\left[\frac{1-\lambda}{B(\lambda)}+\frac{\lambda}{B(\lambda) \Gamma(\lambda)}\right]\Omega_{5}\|J-\dot{J}\|, \end{split} \end{equation} (7.8)
    \begin{equation} \begin{split} \|R(\varphi)-\dot{R}(\varphi)\| &\leq \frac{1-\lambda}{B(\lambda)}\left\|K_{6}(\lambda, \varphi, R(\varphi))-K_{6}(\lambda, \varphi, \dot{R}(\varphi))\right\| \\ &+\frac{\lambda}{B(\lambda) \Gamma(\lambda)} \int_{0}^{\varphi}(\varphi-\delta)^{\lambda-1} \left\|K_{6}(\lambda, \varphi, R(\varphi))-K_{6}(\lambda, \varphi, \dot{R}(\varphi))\right\| d \delta \\ &\leq\left[\frac{1-\lambda}{B(\lambda)}+\frac{\lambda}{B(\lambda) \Gamma(\lambda)}\right]\Omega_{6}\|R-\dot{R}\|. \end{split} \end{equation} (7.9)

    Taking, \gamma_i = \Omega_i, \Delta_i = \frac{1-\lambda}{B(\lambda)}+\frac{\lambda}{B(\lambda) \Gamma(\lambda)}, this implies

    \begin{equation} \|S(\varphi)-\dot{S}(\varphi)\| \leq \gamma_1 \Delta_1. \end{equation} (7.10)

    Thus, we get

    \begin{equation} \left\{\begin{array}{l} \|E(\varphi)-\dot{E}(\varphi)\| \leq \gamma_{2} \Delta_{2} \\ \|Q(\varphi)-\dot{Q}(\varphi)\| \leq \gamma_{3} \Delta_{3} \\ \|I(\varphi)-\dot{I}(\varphi)\| \leq \gamma_{4} \Delta_{4} \\ \|J(\varphi)-\dot{J}(\varphi)\| \leq \gamma_{5} \Delta_{5} \\ \|R(\varphi)-\dot{R}(\varphi)\| \leq \gamma_{6} \Delta_{6} \\ \end{array}\right. \end{equation} (7.11)

    With the help of Eqs (7.10) and (7.11), the ABC fractional integral system (6.2) is Hyers-Ulam and consequently the ABC-fractional order model (3.4) is Hyers-Ulam stable.

    To know the influence of various parameters upon the basic reproduction number, we use sensitivity analysis. To calculate the sensitivity index we used the direct differentiation method. The sensitivity index \Upsilon^{R_0}_\tau of a parameter \tau is calculated by \Upsilon^{R_0}_\tau = \frac{dR_0}{d\tau}\frac{\tau}{R_0} . Sensitivity indices of different parameters for our proposed model are given in Figures 13. The effect of different parameters over basic reproduction number are shown grap hically in Figures 49.

    Figure 2.  Sensitivity analysis of different parameters with fractional parameter \lambda = 0.1 .
    Figure 3.  Sensitivity analysis of different parameters with fractional parameter \lambda = 0.5 .
    Figure 4.  Sensitivity analysis of different parameters with fractional parameter \lambda = 0.9 .
    Figure 5.  Sensitivity analysis of R_0 vs \kappa and \beta for \lambda = 0.1 .
    Figure 6.  Sensitivity analysis of R_0 vs \kappa and \beta for \lambda = 0.5 .
    Figure 7.  Sensitivity analysis of R_0 vs \kappa and \beta for \lambda = 0.9 .
    Figure 8.  Sensitivity analysis of R_0 vs \gamma_1 and \gamma_2 for \lambda = 0.1 .
    Figure 9.  Sensitivity analysis of R_0 vs \gamma_1 and \gamma_2 for \lambda = 0.5 .

    In the present section, we have simulated the proposed scholastic epidemiological system for the ABC. While simulating the system, convergent iterative scheme is employed. Fractional-order chaotic system via bifurcation is studied in [30] and through Caputo operator is discussed in [31]. Consider a general Cauchy problem of fractional order having autonomous nature

    \begin{equation} ^{\star}D^{\lambda}_{0, \varphi} \Big(y(\varphi) \Big) = g\Big(y(\varphi) \Big), \lambda \in (0, 1), \varphi\in [0, T], y(0) = y_0, \end{equation} (9.1)

    where y = (a, b, c, w) \in \mathbb{R}^{4}_{+} being a continuous function (real-valued) fulfills the Lipchitz condition as:

    \begin{equation} || g(y_1(\varphi))-g(y_2(\varphi))|| \leq M ||y_1(\varphi)-y_2(\varphi)||, \end{equation} (9.2)

    where M > 0 is said to be Lipchitz constant.

    \begin{equation} y(\varphi) = y_0+J^{\lambda}_{0, \varphi} g(y(\varphi)), \, \varphi \in [0, T], \end{equation} (9.3)

    where J^{\lambda}_{0, \varphi} denotes the fractional integral operator. Consider an equispaced integration intervals over [0, T] with the fixed step size h( = 10^{-2} for simulation) = \frac{T}{n} , n \in N . Suppose that y_q is the approximation of y(\varphi) at t = t_q for q = 0, 1, … n. Consequently, our model becomes

    \begin{equation} \begin{split} &^{ \rm {ABC}}S_{q+1} = S_0+\dfrac{1-\lambda}{AB(\lambda)}\Big(\Gamma - \frac{2\beta (1-\kappa)S_q E_q}{S_q+E_q} - \mu{S_q} + r_1 Q_q\Big)\\ &+\dfrac{h^{\lambda}}{AB(\lambda) \Gamma(\lambda)} \sum\limits_{k = 0}^{q}\Big((q-k+1)^{\lambda}-(q-k)^{\lambda} \Big) \Big(\Gamma - \frac{2\beta (1-\kappa)S_k E_k}{S_k+E_k} - \mu{S_k} + r_1 Q_k \Big), \\ &^{ \rm {ABC}}E_{q+1} = E_0+\dfrac{1-\lambda}{AB(\lambda)}\Big(\frac{2\beta (1-\kappa)S_q E_q}{S_q+E_q} - (\gamma_1 + \gamma_2 + \mu)E_q \Big)\\ &+\dfrac{h^{\lambda}}{AB(\lambda) \Gamma(\lambda)} \sum\limits_{k = 0}^{q}\Big((q-k+1)^{\lambda}-(q-k)^{\lambda} \Big) \Big(\frac{2\beta (1-\kappa)S_k E_k}{S_k+E_k} - (\gamma_1 + \gamma_2 + \mu)E_k\Big), \\ &^{ \rm {ABC}}Q_{q+1} = Q_0+\dfrac{1-\lambda}{AB(\lambda)}\Big(\gamma_1 {E_q} - (q_1 + r_1 + \mu)Q_q\Big)\\ &+\dfrac{h^{\lambda}}{AB(\lambda) \Gamma(\lambda)} \sum\limits_{k = 0}^{q}\Big((q-k+1)^{\lambda}-(q-k)^{\lambda} \Big) \Big(\gamma_1 {E_k} - (q_1 + r_1 + \mu)Q_k \Big), \\ &^{ \rm {ABC}}I_{q+1} = I_0+\dfrac{1-\lambda}{AB(\lambda)}\Big( \gamma_{2} E_q+q_{1} Q_q-\left(\alpha+r_{2}+d_{1}+\mu\right) I_q \Big)\\ &+\dfrac{h^{\lambda}}{AB(\lambda) \Gamma(\lambda)} \sum\limits_{k = 0}^{q}\Big((q-k+1)^{\lambda}-(q-k)^{\lambda} \Big) \Big( \gamma_{2} E_k+q_{1} Q_k-\left(\alpha+r_{2}+d_{1}+\mu\right) I_k \Big), \\ &^{ \rm {ABC}}J_{q+1} = J_0+\dfrac{1-\lambda}{AB(\lambda)}\Big(\alpha I_q-\left(r_{3}+d_{2}+\mu\right) J_q \Big)\\ &+\dfrac{h^{\lambda}}{AB(\lambda) \Gamma(\lambda)} \sum\limits_{k = 0}^{q}\Big((q-k+1)^{\lambda}-(q-k)^{\lambda} \Big) \Big(\alpha I_k-\left(r_{3}+d_{2}+\mu\right) J_k \Big), \\ &^{ \rm {ABC}}R_{q+1} = R_0+\dfrac{1-\lambda}{AB(\lambda)}\Big(r_{2} I_q+r_{3} J_q-\mu R_q \Big)\\ &+\dfrac{h^{\lambda}}{AB(\lambda) \Gamma(\lambda)} \sum\limits_{k = 0}^{q}\Big((q-k+1)^{\lambda}-(q-k)^{\lambda} \Big) \Big(r_{2} I_k+r_{3} J_k-\mu R_k\Big). \end{split} \end{equation} (9.4)

    Figures 24 shows the sensitivity indices of all the parameters corresponding to different values of fractional parameter \lambda . From Figures 24 it is noted that the largest positive parameter is \beta which means that by increasing the transmission rate \beta , the basic reproduction number will increase and hence \beta is the most sensitivity parameter upon R_0 . While on the other hand, the smallest negative parameter is \mu which means that by increasing the natural death rate \mu , the basic reproduction number will decrease and hence \mu is most senseless parameter upon R_0 . From Figures 24, it is obtained that by increasing the fractional parameter \lambda the positive sensitive parameter is increasing while the negative sensitive parameters are decreasing. Figures 57 depicts the sensitivity analysis of R_0 vs \kappa and \beta for different values of \lambda = 0.1, 0.5, 0.9 . It is depicted that transmission rate \beta is directly proportional to R_0 while the lockdown parameter \kappa is inversely proportional to R_0 . Figures 810 shows the sensitivity analysis of R_0 vs \gamma_1 and \gamma_2 for different values of \lambda = 0.1, 0.5, 0.9 . It is shown that the transmission rate from exposed class to quarantined class \gamma_1 and the transmission rate from exposed class to infected class \gamma_2 both are inversely proportional to R_0 . Figure 11 shows the impact of fractional parameter \lambda on the first three classes S, E, and Q , while Figure 12 shows the impact of fractional parameter \lambda on the other three classes I, J , and R .

    Figure 10.  Sensitivity analysis of R_0 vs \gamma_1 and \gamma_2 for \lambda = 0.9 .
    Figure 11.  The behavior of the first three state variables for the COVID-19.
    Figure 12.  The behavior of the other three state variables for the COVID-19.

    The fractional operator is convenient in the literature for working the transmission dynamics of COVID-19 disease. Many valuable properties of the given fractional version of the model have been presented, such as the model formation, the existence and uniqueness of the solution through the fixed point theorem, invariant region, stability analysis, the sensitivity analysis and, most importantly, the basic number of reproductions. It should be noted that the most sensitive variable to the basic reproduction number is \beta which is the disease transmission rate from infected to susceptible people. Also, the least sensitive parameters are \mu and \gamma_2 , which are the natural mortality rate and Recovery rate of isolated individuals. Also, the effect of fractional parameter on the sensitivity indices is very high, as the fractional parameter increasing the indices of all the parameters also increases.

    This research project was supported by Thailand Science Research and Innovation (TSRI). Basic Research Fund: Fiscal year 2022 under project number FRB650048/0164.

    The authors declare no conflict of interest.



    [1] J. Wang, R. Zhang, T. Kuniya, The stability anaylsis of an SVEIR model with continuous age-structure in the exposed and infection classes, J. Biol. Dynam., 9 (2015), 73–101. https://doi.org/10.1080/17513758.2015.1006696 doi: 10.1080/17513758.2015.1006696
    [2] G. Hussain, T. Khan, A. Khan, M. Inc, G. Zaman, K. S. Nisar, et al. Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Alex. Eng. J., 60 (2021), 4121–4130. https://doi.org/10.1016/j.aej.2021.02.036 doi: 10.1016/j.aej.2021.02.036
    [3] M. A. Khan, The dynamics of dengue infection through fractal-fractional operator with real statistical data, Alex. Eng. J., 60 (2021), 321–336. https://doi.org/10.1016/j.aej.2020.08.018 doi: 10.1016/j.aej.2020.08.018
    [4] Z. Gul, Y. H. Kang, I. H. Jung, Stability analysis and optimal vaccination of an SIR epidemic model, Biosystems, 93 (2008), 240–249. https://doi.org/10.1016/j.biosystems.2008.05.004 doi: 10.1016/j.biosystems.2008.05.004
    [5] A. A. Mohsen, H. F. Al-Husseiny, X. Zhou, K. Hattaf, Global stability of COVID-19 model involving the quarantine strategy and media coverage effects, AIMS public Health, 7 (2020), 587–605. https://doi.org/10.3934/publichealth.2020047 doi: 10.3934/publichealth.2020047
    [6] T. N. Huy, H. Mohammadi, S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Soliton. Fract., 140 (2020), 110107. https://doi.org/10.1016/j.chaos.2020.110107 doi: 10.1016/j.chaos.2020.110107
    [7] Z. Liu, H. Shao, D. Alahmadi, Numerical calculation and study of differential equations of muscle movement velocity based on martial articulation body ligament tension, Appl. Math. Nonlinear Sci., 2021. https://doi.org/10.2478/amns.2021.1.00051
    [8] Y. Zhao, A. Khan, U. W Humphries, R. Zarin, M. Khan, A. Yusuf, Dynamics of Visceral Leishmania Epidemic Model with Non-Singular Kernel, Fractals, 2022. https://doi.org/10.1142/S0218348X22401351
    [9] W. Beibei, A. Al-Barakati, H. Hasan, Characteristics of mathematical statistics model of student emotion in college physical education, Appl. Math. Nonlinear Sci., 2021. https://doi.org/10.2478/amns.2021.2.00023
    [10] J. Zhou, L. Li, Z. Yu, The transfer of stylised artistic images in eye movement experiments based on fuzzy differential equations, Appl. Math. Nonlinear Sci., 2021. https://doi.org/10.2478/amns.2021.1.00048
    [11] L. Yali, C. Chen, R. Alotaibi, S. M. Shorman, Study on audio-visual family restoration of children with mental disorders based on the mathematical model of fuzzy comprehensive evaluation of differential equation, Appl. Math. Nonlinear Sci., 2021. https://doi.org/10.2478/amns.2021.1.00090
    [12] A. Khan, R. Zarin, G. Hussain, A. H. Usman, U. W. Humphries, J. F. Gomez-Aguilard, Modeling and sensitivity analysis of HBV epidemic model with convex incidence rate, Results Phys., 22 (2021), 103836. https://doi.org/10.1016/j.rinp.2021.103836 doi: 10.1016/j.rinp.2021.103836
    [13] X. Li, X. Yang, K. H. Alyoubi, R. E. Omer, Educational research on mathematics differential equation to simulate the model of children's mental health prevention and control system, Appl. Math. Nonlinear Sci., 2021. https://doi.org/10.2478/amns.2021.2.00068
    [14] Z. Licong, F. S. Alotaibi, College students' mental health climbing consumption model based on nonlinear differential equations, Appl. Math. Nonlinear Sci., 2021. https://doi.org/10.2478/amns.2021.2.00080
    [15] O. Fatma, M. Yavuz, Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey, Comput. biol. med., 141 (2022), 105044. https://doi.org/10.1016/j.compbiomed.2021.105044 doi: 10.1016/j.compbiomed.2021.105044
    [16] P. N. Ahmad, J. Zu, M. B. Ghori, M. Naik, Modeling the effects of the contaminated environments on COVID-19 transmission in India, Results Phys., 29 (2021), 104774. https://doi.org/10.1016/j.rinp.2021.104774 doi: 10.1016/j.rinp.2021.104774
    [17] P. N. Naik, K. M. Owolabi, J. Zu, M. D. Naik, Modeling the transmission dynamics of COVID-19 pandemic in caputo type fractional derivative, J. Multiscale Model., 12 (2021), 2150006. https://doi.org/10.1142/S1756973721500062 doi: 10.1142/S1756973721500062
    [18] P. A. Naik, M. Yavuz, S. Qureshi, J. Zu, S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, Eur. Phys. J. Plus, 135 (2020), 795. https://doi.org/10.1140/epjp/s13360-020-00819-5 doi: 10.1140/epjp/s13360-020-00819-5
    [19] R. Zarin, I. Ahmed, P. Kumam, A. Zeb, A. Din, Fractional modeling and optimal control analysis of rabies virus under the convex incidence rate, Results Phys., 28 (2021), 104665. https://doi.org/10.1016/j.rinp.2021.104665 doi: 10.1016/j.rinp.2021.104665
    [20] A. Khan, R. Zarin, U. W. Humphries, A. Akgul, A. Saeed, T. Gul, Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function, Adv. Differ. Equ., 2021 (2021). 387. https://doi.org/10.1186/s13662-021-03546-y
    [21] M. Al-Smadi, O. A. Arqub, D. Zeidan, Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applications, Chaos Soliton. Fract., 146 (2021), 110891. https://doi.org/10.1016/j.chaos.2021.110891 doi: 10.1016/j.chaos.2021.110891
    [22] M. Al-Smadi, O. A. Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294. https://doi.org/10.1016/j.amc.2018.09.020 doi: 10.1016/j.amc.2018.09.020
    [23] R. Zarin, A. Khan, M. Inc, U. W. Humphries, T. Karite, Dynamics of five grade leishmania epidemic model using fractional operator with Mittag-Leffler kernel, Chaos Soliton. Fract., 147 (2021), 110985. https://doi.org/10.1016/j.chaos.2021.110985 doi: 10.1016/j.chaos.2021.110985
    [24] G. M. Mittag-Leffler, Sur la nouvelle fontion E_{\alpha} (x), C. R. Acad. Sci., 137 (1903), 554–558.
    [25] V. P. Bajiya, S. Bugalia, J. P. Tripathi, Mathematical modeling of COVID-19: Impact of non-pharmaceutical interventions in India, Chaos, 30 (2020), 113143. https://doi.org/10.1063/5.0021353 doi: 10.1063/5.0021353
    [26] A. Khan, R. Zarin, M. Inc, G. Zaman, B. Almohsen, Stability analysis of leishmania epidemic model with harmonic mean type incidence rate, Eur. Phys. J. Plus, 135 (2020), 528. https://doi:10.1140/epjp/s13360-020-00535-0 doi: 10.1140/epjp/s13360-020-00535-0
    [27] J. Sowwanee, R. Zarin, A. Khan, A. Yusuf, G. Zaman, T. A. Sulaiman, Fractional modeling of COVID-19 epidemic model with harmonic mean type incidence rate, Open Phys., 19 (2021), 693–709. https://doi.org/10.1515/phys-2021-0062 doi: 10.1515/phys-2021-0062
    [28] K. Khan, R. Zarin, A. Khan, A. Yusuf, M. Al-Shomrani, A. Ullah, Stability analysis of five-grade Leishmania epidemic model with harmonic mean-type incidence rate, Adv. Differ. Equ., 2021 (2021), 86. https://doi.org/10.1186/s13662-021-03249-4 doi: 10.1186/s13662-021-03249-4
    [29] Pakistan Population (1950–2020), 2020. Available from: https://www.worldometers.info/world-population/pakistan-population/
    [30] N. Sene, Qualitative analysis of class of fractional-order chaotic system via bifurcation and Lyapunov exponents notions, J. Math., 2021 (2021), 5548569. https://doi.org/10.1155/2021/5548569 doi: 10.1155/2021/5548569
    [31] R. Zarin, A. Khan, A. Yusuf, S. Abdel-Khalek, M. Inc, Analysis of fractional COVID-19 epidemic model under Caputo operator, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7294
  • This article has been cited by:

    1. Rahat Zarin, Modeling and numerical analysis of fractional order hepatitis B virus model with harmonic mean type incidence rate, 2022, 1025-5842, 1, 10.1080/10255842.2022.2103371
    2. Victoria May P. Mendoza, Renier Mendoza, Youngsuk Ko, Jongmin Lee, Eunok Jung, Managing bed capacity and timing of interventions: a COVID-19 model considering behavior and underreporting, 2022, 8, 2473-6988, 2201, 10.3934/math.2023114
    3. Rahat Zarin, Amir Khan, Ramashis Banerjee, Qualitative analysis and numerical simulation of fractal-fractional COVID-19 epidemic model with real data from Pakistan, 2022, 1745-5030, 1, 10.1080/17455030.2022.2143932
    4. Yu Gu, Mohabat Khan, Rahat Zarin, Amir Khan, Abdullahi Yusuf, Usa Wannasingha Humphries, Mathematical analysis of a new nonlinear dengue epidemic model via deterministic and fractional approach, 2023, 67, 11100168, 1, 10.1016/j.aej.2022.10.057
    5. Peijiang Liu, Xiangxiang Huang, Rahat Zarin, Ting Cui, Anwarud Din, Modeling and numerical analysis of a fractional order model for dual variants of SARS-CoV-2, 2023, 65, 11100168, 427, 10.1016/j.aej.2022.10.025
    6. Rahat Zarin, Numerical study of a nonlinear COVID-19 pandemic model by finite difference and meshless methods, 2022, 6, 26668181, 100460, 10.1016/j.padiff.2022.100460
    7. Parvaiz Ahmad Naik, Muhammad Farman, Khadija Jamil, Kottakkaran Sooppy Nisar, Muntazim Abbas Hashmi, Zhengxin Huang, Modeling and analysis using piecewise hybrid fractional operator in time scale measure for ebola virus epidemics under Mittag–Leffler kernel, 2024, 14, 2045-2322, 10.1038/s41598-024-75644-2
    8. Mutum Zico Meetei, Shahbaz Zafar, Abdullah A. Zaagan, Ali M. Mahnashi, Muhammad Idrees, Dengue Transmission Dynamics: A Fractional-Order Approach with Compartmental Modeling, 2024, 8, 2504-3110, 207, 10.3390/fractalfract8040207
    9. A. Santanu Biswas, B. Humaira Aslam, Pankaj Kumar Tiwari, Mathematical modeling of a novel fractional-order monkeypox model using the Atangana–Baleanu derivative, 2023, 35, 1070-6631, 10.1063/5.0174767
    10. Rahat Zarin, Usa Wannasingha Humphries, Teerapol Saleewong, Advanced mathematical modeling of hepatitis B transmission dynamics with and without diffusion effect using real data from Thailand, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05154-7
    11. Parvaiz Ahmad Naik, Bijal M. Yeolekar, Sania Qureshi, Mahesh Yeolekar, Anotida Madzvamuse, Modeling and analysis of the fractional-order epidemic model to investigate mutual influence in HIV/HCV co-infection, 2024, 112, 0924-090X, 11679, 10.1007/s11071-024-09653-1
    12. Md. Rezaul Islam, Forhad Mahmud, M. Ali Akbar, Insights into the Ebola epidemic model and vaccination strategies: An analytical approximate approach, 2024, 11, 26668181, 100799, 10.1016/j.padiff.2024.100799
    13. Khushbu Agrawal, Sunil Kumar, Badr Saad T. Alkahtani, Sara Salem Alzaid, A vitamin intervention study on the tumour and immune cells via TIV dynamical system-revisited, 2024, 32, 2769-0911, 10.1080/27690911.2024.2404585
    14. Rahat Zarin, Niamat Ullah, Amir Khan, Usa Wannasingha Humphries, A numerical study of a new non-linear fractal fractional mathematical model of malicious codes propagation in wireless sensor networks, 2023, 135, 01674048, 103484, 10.1016/j.cose.2023.103484
    15. Kottakkaran Sooppy Nisar, Muhammad Owais Kulachi, Aqeel Ahmad, Muhammad Farman, Muhammad Saqib, Muhammad Umer Saleem, Fractional order cancer model infection in human with CD8+ T cells and anti-PD-L1 therapy: simulations and control strategy, 2024, 14, 2045-2322, 10.1038/s41598-024-66593-x
    16. Mudassar Rafique, Muhammad Aziz Ur Rehamn, Muhammad Rafiq, Zafar Iqbal, Nauman Ahmed, Hadil Alhazmi, Shafiullah Niazai, Ilyas Khan, Time delayed fractional diabetes mellitus model and consistent numerical algorithm, 2024, 14, 2045-2322, 10.1038/s41598-024-74767-w
    17. Aqeel Ahmad, Muhammad Ali, Ali Hasan Ali, Magda Abd El-Rahman, Evren Hincal, Husam A. Neamah, Mathematical analysis with control of liver cirrhosis causing from HBV by taking early detection measures and chemotherapy treatment, 2024, 14, 2045-2322, 10.1038/s41598-024-79597-4
    18. Kamel Guedri, Rahat Zarin, Aurang Zeb, Basim M. Makhdoum, Hatoon A. Niyazi, Amir Khan, A numerical study of HIV/AIDS transmission dynamics and the onset of long-term disability in chronic infection, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05881-x
    19. Muhammad Farman, Evren Hincal, Saba Jamil, Nezihal Gokbulut, Kottakkaran Sooppy Nisar, Aceng Sambas, Sensitivity analysis and dynamics of brucellosis infection disease in cattle with control incident rate by using fractional derivative, 2025, 15, 2045-2322, 10.1038/s41598-024-83523-z
    20. Muhammad Farman, Saba Jamil, Evren Hincal, Dumitru Baleanu, Aceng Sambas, Kottakkaran Sooppy Nisar, Ulam-hyres stability analysis and fractional operator implications on the Covid-19 virus dynamics with long-term vaccination effects, 2025, 1598-5865, 10.1007/s12190-024-02357-0
    21. Kamel Guedri, Rahat Zarin, Basim M. Makhdoum, Hatoon A. Niyazi, Hamiden Abd El-Wahed Khalifa, Advanced mathematical modeling of syphilis transmission dynamics and disability outcomes in sex-structured populations, 2025, 11, 2363-6203, 10.1007/s40808-024-02218-6
    22. Saima Rashid, Abdul Bariq, Ilyas Ali, Sobia Sultana, Ayesha Siddiqa, Sayed K. Elagan, Dynamic analysis and optimal control of a hybrid fractional monkeypox disease model in terms of external factors, 2025, 15, 2045-2322, 10.1038/s41598-024-83691-y
    23. Mudassar Rafique, Muhammad Aziz Ur Rehamn, Aisha M. Alqahtani, Muhammad Rafiq, A. F. Aljohani, Zafar Iqbal, Nauman Ahmed, Shafiullah Niazai, Ilyas Khan, A new epidemic model of sexually transmittable diseases: a fractional numerical approach, 2025, 15, 2045-2322, 10.1038/s41598-025-87385-x
    24. G. M. Vijayalakshmi, M. Ariyanatchi, Vediyappan Govindan, Mustafa Inc, Fractal-fractional modelling of thrombocytopenia influence on pregnant women in the context of dengue infection with Mittag–Leffler decay analysis, 2025, 11, 2363-6203, 10.1007/s40808-024-02278-8
    25. Rahat Zarin, Usa Wannasingha Humphries, Analyzing spatial diffusion and vaccination strategies in malaria epidemics: a numerical approach, 2025, 11, 2363-6203, 10.1007/s40808-025-02315-0
    26. Akeem Olarewaju Yunus, Morufu Oyedunsi Olayiwola, Dynamics of Ebola virus transmission with vaccination control using Caputo-Fabrizio Fractional-order derivative analysis, 2025, 11, 2363-6203, 10.1007/s40808-025-02349-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2076) PDF downloads(144) Cited by(26)

Figures and Tables

Figures(12)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog