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Abstract: In this study, the COVID-19 epidemic model is established by incorporating quarantine
and isolation compartments with Mittag-Leffler kernel. The existence and uniqueness of the solutions
for the proposed fractional model are obtained. The basic reproduction number, equilibrium points, and
stability analysis of the COVID-19 model are derived. Sensitivity analysis is carried out to elaborate
the influential parameters upon basic reproduction number. It is obtained that the disease transmission
parameter is the most dominant parameter upon basic reproduction number. A convergent iterative
scheme is taken into account to simulate the dynamical behavior of the system. We estimate the values
of variables with the help of the least square curve fitting tool for the COVID-19 cases in Pakistan from
04 March to May 10, 2020, by using MATLAB.
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1. Introduction

COVID-19 which is an infectious respiratory illness spreads in China in 2019 and affects the
whole world in the shape of human and economic loss. It is known that 11 to 14 days are its latency
period while old age people and comorbid patient are their favorite prey. Similar to the symptoms of
common flu and cold it is advisable to do the test at a first glance. It is also reported that people have


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022872

15940

no symptoms even though they are infected. The basic reproduction number for COVID-19 stays
between 2.2 and 3.58, which shows that the disease transmission rate is very high. Hence, it disperse
throughout the world in the blink of an eye and disturbed 213 nations. Keeping this in mind, the
World Health Organization (WHO) officially announced that COVID-19 is one of the global
pandemics. At first, there were no proper vaccine/antiviral strategies to control the COVID-19 disease
hence most the countries have adopted non-pharmaceutical interventions (NPIs), which are
quarantining of exposed individuals, travel restrictions, closure of educational institutes, avoiding
mass gatherings, and isolation of infected individuals.

Daily a lot of people die due to Infectious diseases and hence it is considered to be the 2nd biggest
reason for death throughout the world. In Mathematics,modeling is considered to be the best tool to
elaborate on the dynamic phenomena of infectious diseases. In this regard, researchers and
mathematician try their best to explore infectious diseases by using mathematical modeling. The
stability analysis of an SVEIR model with continuous age structure in the exposed and infection
classes is discussed in [1]. The dynamics of covid-19 via the stochastic epidemic model are explained
in [2]. The dynamics of dengue infection through fractal-fractional operator with real statistical data
is shown in [3]. The stability analysis and optimal vaccination of a SIR epidemic model are proven
in [4]. The global stability of the COVID-19 model involving the quarantine strategy and media
coverage effects are depicted in [5]. Fractional COVID-19 transmission is formulated by using the
Caputo fractional derivative in [6].

Fractional derivatives received much applause during the last few years as their involvement in
science and engineering is much more than expected. Fractional derivatives split into Local and
nonlocal theories in which the nonlocal definitions received much more attraction due to their
interesting applications [7-14]. According to singularity, fractional derivatives have two kinds i.e
singular and nonsingular kernel. The Caputo, the Grnwald, and the RiemannLiouville belong to the
first kind while the AtanganaBaleanu and the CaputoFabrizio belong to the second kind. The
Atangana-Baleanu which is based upon the Mittag-Leffler function answered the queries raised by the
Caputo-Fabrizio definition. The classical queries of complex analysis have been easily addressed by
the Mittag-Leffler function as can be seen from the power-law series analytic continuation which is
convergent outside the disc. A dynamicalprocess based on fractional-order derivatives carries its past
and present state information [15-19]. Thus, in epidemiological compartmental models, utilizing a
fractional-order system is more reasonable to work the transmission dynamics of infectious diseases.

Section 2 is devoted to some basic definitions regarding fractal fractional operators. In Section 3
the model is reformulated with the help of the Atangana-Baleanu-Caputo fractional derivative. The
real data comparison is shown in Section 4. Section 5 deals with the equilibrium points and basic
reproduction number and local stability. Existence and uniqueness are carried out in Section 6.
Section 7 deals with the Ulam-Hyers stability of the proposed model. The sensitivity of different
parameters corresponding to basic reproduction is discussed in Section 8. Some plots are given to
conclude the simplicity and reliability of the algorithm in Section 9. Section 10 deals with the
conclusion of our work.

2. Preliminaries

The study presents basic definitions to set the tone for the mathematical derivation of the model.
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Definition 2.1. The Riemann-Liouville integral as [20]:

JoglfD] = f @& -6 f()ds, 9> 0. 2.1)

(a)
Definition 2.2. The definition of Caputo derivative as [21]:

Dol f ] = ¢ el f)ds, 9 >0, (2.2)

wheren — 1 < @ < n,n € N. Note that if « — 1 then CDgﬁ f () approaches to f'(19).
Definition 2.3. The Caputo-Fabrizio operator of order { > 0 is defined as follows [22]:

¢

Definition 2.4. Suppose that f(9) € H'(0,T),T > 0, and A €]0, 1[; then, the Atangana-Baleanu
operator of order A in the Caputo sense can be represented by [23]:

BA) (7
D] = fo FOE,;

DY L] = @ f (e Xp[ {—]dd 9> 0. (2.3)

/1 A
—= (- 0) ] ds. 2.4)

Definition 2.5. The integral operator under the Atangana-Baleanu-Caputo sense is defined by the
following expression [24]:

ABC /l A-1
)] = %( ﬂ)f(ﬁ) S m = f £ =5y ds. 2.5)

3. The model with the classical derivative

In this section, we consider the highly nonlinear epidemiological model for the transmission of
the newly raised COVID-19 infection. In this model the total population is categorized into six time
dependent classes namely: Recovered R; Hospitalized infected J, infected I; Quarantine Q, Exposed E,
and Susceptible S. The model is expressed as [25]:

ds
dcp =I'-p(01 -x)W(S,E)—uS +r0Q,
dE
o =B -W(S,E) - (y1 +y2 + WE,
d
d_Q =yiE—(q1+r+wo,

¢

dl (3.1
Jo =E+qQ—-(a+nrn+d +ul,
("
dJ

=al - (I"3+d2+/l).]

dy
dR
— =1l +rJ—uR.
dy
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with
S,E,Q,1,J,R > 0.
The description of the parameters are as stated in Table 1.

Table 1. Descriptions and values of the parameters.

Symbols Descriptions Values  References
B Coeflicient of transmission 0.10700 [25]
ot Rate at which infected individuals are being isolated 0.08910 Fitted
r} Rate at which quarantined become again susceptible 0.04093 Fitted
r} Recovery rate of infected individuals 0.00734 Fitted
rg Recovery rate of isolated individuals 0.00974 Fitted
df Disease-induced mortality rate of infected individuals 0.00020 [25]
d; Disease-induced mortality rate of isolated individuals 0.00326 Fitted
q; Rate at which quarantined individuals become infected 0.00427 Fitted
i Rate at which exposed are reduced due to being quarantined 0.06718 Fitted
Y5 Rate at which exposed are reduced due to being infected 0.08176 Fitted
K Parameter related to lockdown 0.00026 Fitted

In addition, W(S, E) is a feature known as the uptake function. The incidence of susceptible with
exposed class is related to this feature. In this article, we provide the susceptible and exposed
interaction, as in [26], which has the form:

2SE

In addition, the function described in (3.2) displaysthe susceptible and exposed harmonic mean. For
several studies, the W(S, E) uptake function is considered to be the product of susceptible and exposed,
known as the [25] bi-linear incidence rate. The dynamics of the COVID-19 model were addressed by
the writers of [25] when considering the uptake feature to be the product of S and E. Apart from these,
it is very interesting to consider W(S, E) := % as the uptake function. Since it is understood that if
there aretwo quantities S and E in the sense that S, E > 0, then the following relation is true:

2SE < SESS+E.
S+F 2

In fact, the average of two values is a measure of the centrality of a data set. In addition, the
geometric mean is mainly used to reach average data change ratios or rates. As far as harmonic means
are concerned, as opposed to arithmetic or geometric means, it is less susceptible to a few broad values.
It is used for highly skewed variables often [27]. The readers are referred to [28] for the biological
interpretation to the harmonic mean.

Remark 3.1. The system (3.1) satisfies

N
dN =1 —dN, (3.3)
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where N(¢) = S(p) + E(¢) + Q(p) + I(¢) + J(¢) + R(p) at any time with t. Eq. (3.3) has the exact
solution as:

N( )—A+(N A) de
Qo_d 0 de s

with
S0)>0, EO0)>=0, Q0O)>=0, 1(0)>0, J@O)=0, R(O)=>0.
We have
N(0) = S(0) + E(0) + Q(0) + I(0) + R(0).
Therefore, we get
S() >0, E(@=0, 0O =>0, Ig)=0,, Jg >0, R >0.

Remark 3.2. It should be noticed that V(S) = Ssﬁ where V : [0, 00) — [0, 00) is referred as the uptake

function and satisfies some of the features defined as [27]:
1)V0)=0, V(S)>0, forS >0,

2) hl’l’l[:v_)oo % =L, 0<L|<oo where Ly =1,
3) V(S) is continuously differentiable,

av _ E
4 U T BtE? > 0.

3.1. Model with the Atangana-Baleanu derivative

In this subsection, We reformulate the fractional variant of the model (3.1), as:

28Y(1 - K)SE
D IS (@] = T - TS s o,
28'(1 = WS E

PDYIEW] = T~ 1 + 72 +1OE,

ABDE L0 = YE — (¢} + 1 + uhH0, 3.4)

ARCDU@] = E + q{Q — (@' + 15 + df + '),

ABCDY (@] = a'T = (r5 + dy + ),

ABCDG[R(@)] = i3 + 13 — 'R
with

S(p), Ep), Qp). I(g), J(p). R =0.
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4. Real data comparison

The key and significant step for the problem validity is the comparison of real statistics which
is helpful for achieving numerical values for the model validation. We consider here to obtain the
nonlinear least square fitting method to fit the data to proposed model (3.4), we have thirteen parameters
in which nine will be fitted, while the rest of the parameters must be assumed. Estimated parameters
value given in Table 1. The parameters assumption techniques under the least-square fit via MATLAB
software were used. We use the data of infected cases of COVID-19 in Pakistan from 04 March to
May 10, 2020, the result is given in Figure 1. The associated mean relative error of the fitted data are

real approximate
-x,

X

real
X

obtained by formula % >

3 =104

Model fit
Real data

COVID-19 Infected Cases in Pakistan

<104

COVID-19 Infected Cases in Pakistan
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Figure 1. Conformed COVID-19 cumulative cases time series in Pakistan [29].
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5. Equilibrium points and Basic reproductive number

5.1. Steady States

The disease free equilibrium (DFE) of the model system (3.4) can be computed by putting
ARCDEE@)] = 02%CDg [0(p)] = 0,°°°Dy [I(p)] = 0,A°°Dy [J(@)] = 0 and denoted by

E° = (5°,0,0,0,0,R°), where §° = & and R” = 0.

5.2. Basic Reproductive Number R

By using the next generation method [28], we have

281 —«kHut 0 0 0
0 00O
F= 0 0 0O0F¢| CRY
0 00O
where the elements in matrix F constitute the new infection terms, and
yf + yg + 0 0 0
2 A A, A
B -y q,+r+u 0 0
V= -5 -4, di+r}+at+ ! 0 (52)
0 0 —at ds + rg + ut
Also,
1
e . 0 0
vl = | Of+gi+riapnt)  gqieriopt 1 (5.3)
%3 —4; prr—— 0
ot 1
0 0 (@ +ry+at+pd)dy+ri+pt)  dy+r+pd
Now, R, is dominant eigenvalue of p(FV~!), and is given by;
2 A 1 - A
Ry = '8(—K) (5.4)

(v + 4 +ut)

5.2.1. Existence of endemic equilibrium

The existence of endemic equilibrium (EE) of (3.4) is established in terms of Ry herein. B, =
yi+vi+u By=ql+ri+p',Bs=d +ry+a' +pu',and By = dj + r§ + p'.
Let an arbitrary EE point of (3.4) be depicted by E} = (S, E*, Q*, I", J*, R*). Then, we get
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A _ 28'1-0S*E* AQ* o Ay —
r —W—/JS +r1Q =0,

28Y(1-Kk)S*E*

S +E* _BIE* :09

ny* -B,0" =0,
(5.5
)/gE* + qu* — B3I" =0,

a'l* = B4J* =0,
réll* + rg.]* —uR* = 0.
Solving (5.5), one reaches

B\ B3B3 Byr'T" + BiBoT (Boyd + viql) (Ba (1! + rd) + o'rf)

S* = :
4! | B1ByB3 By (BiBy - yirt) (Ro — 1) + B B3B3 Byt + By By (Byy} + vq1) (Bs (u + 1) + ar3)|

B, ’ B, B; ’ - B>B3By ’ By B3 B ’
S ut (B'(1 = &%) (Bs + a'r}) (Byyi +¥{q}) - B1B.B3Bs)
B\ByB3Buyt + By (Byyy + v147) (Ba (! + 1) + a'rf)
_ S*uB1ByB3B, (Ry — 1)
BB, B3Byu + By (Byys + v141) (34 W+ 1)+ aﬂrﬁ)

- ne (Bovi +vla}) E° @Bt N E (Bovd + ria?) (giy1 + By E°

(5.6)
since BB, — y|ri = (yg + ,u/l) (qf +rl+ ,u”) +y) (qf + /ﬂ) > 0, it is clear that the model system (3.4)
has a unique endemic equilibrium when R, > 1 and no endemic equilibrium when Ry < 1.

5.3. Local stability of DFE

Theorem 5.1. Let m > 0 and n > 0 are the integers such that ged(m,n) = 1 for A = % and M = n,

then the DFE E° of the model in fractional derivative is locally asymptotically stable if | arg(1#)| > o
for all roots ¥ of the associated characteristic equation,
det(diag[9* 99" 999 99"] — Jgo) = 0. (5.7
Proof. The Jacobian matrix of model (3.4) at E° is given by
281 =)+ =281 - x) i 0 0 0
Zﬁl(l - K) ar 0 0 0 0
0 4 —(gt+rt+put) O 0 0
Jpo = 71 G TH ) , (5.8
0 po) q; —A44 0 0
0 0 0 o —(d+ri+pt) 0
0 0 0 r r —ut
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where ay, = 281 — k) — (¥} —y4 — p*) and au = (df +r)—at - u”). The three eigenvalues of the

matrix (5.8) have negatine real part, i.e., 3¢ = —u', 95 = — (d; +r+ /ﬂ), 94 = - (df +r)+at + /ﬂ).
Moreover, for last three eigenvalues we use the following reduce matrix.
~(2B' (1 =) + ") =281 - %) 7!
RJg, = 28(1 = k) 2811 = k) = (v +v; + 1Y) 0 : (5.9)
0 ﬁ - (qf + rf + /ﬂ)

The characteristic equation of RJgo (5.9) is given by
C®) =9 + a9 + a\9 + a, (5.10)
where
a =(28'(1 =) + ") = (28'(1 =0 = 0} + 4 + ) + (g1 + 7} + 1)
= (2ﬁﬂ(1 —K) +,u/l) + ()/f +v) +,uﬂ)(l - Ro) + (q{l + 7] +,Lﬂ),
a1 == (28" (1= 1) = (f + 75 + 1) (g1 +r{ + ') + 28 (1 = x)28'(1 - ),
— (280 =) = + 73 + 1) 2B A = 1) + 2B (1 - 0) (g + 7 + 1),
=(yi +73 + 1) (1 =Ro) (qf + r{ + p) + 28" (1 — 0)2B'(1 - K),
(1= Ro) (¥ +73 +1') 2B (1 = 0) + 2B'(1 = 0) (g1 + r{ + 1),
ay=—(28'A0 =00 = 0 +73 + 1) @B A =10 (g + i + ') + (g + i + 1),
2B'(1 = k)28 (1 = 1) + ¥12B8'(1 = x),
=(1=Ro) (vl + 74 + ") @B (1 = 1) (g + r{ + ") + (g + 7} + ")
2811 — 128 (1 — k) + y128*(1 - «).

(5.11)

Clearly, a,, a; and q, are all positive, if Ry < 1. The argument of the root of equations
(ﬂ? +,u/l) =0, (03 + (dﬁ +7; +M)) =0,

and

(ﬁg’ + (df +75 +a +,u”)) =0,
are similar, that is:

[larg(ﬂk)l -2 +k%ﬂ > 2> %]
where k = 0,1,2,3,...,(m — 1). Then, we get

(& + ax” + a9 + ag) = 0, (5.12)

are all greater than 5} if Ry < 1, having an argument less than 53 for Ry > 1. Thus the DFE is locally
asymptotically stable for Ry < 1.
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6. Existence and uniqueness

Assume that a continuous real-valued function denoted by B(J) containing the sup norm property
is a Banach space on J = [0,b] and P = B(J) x B(J) X B(J) X B(J) x B(J) X B(J) with norm

IS, E, Q. LLRN = WISIl + IEIl + [IQIl + [l + /]l + [IRIl, where (S| = sup,c,IS(@)IEIl =
SUp;e; |E((P)|’ ”QH = Sup¢eJ |Q(90)|’ ”I“ = SUP¢€j |I(‘10)|a ”J” = supwel |J(()0)|, ||R|| = supwel |R("0)| We get
28M1 - k)SE
S -5 =2 (s@{r - ZUZBE gy ol
S+E

_ABC 1
E(p) — E(0) =""" Dy [E(<p)]{ ST B

~i+rt u‘)E} :
O(p) - Q(0) =** D IO (VE - (¢] + r{ + )0}, 6.0

I(p) = 1(0) =**° DY@ {NE + ¢{Q - (' + r§ +df + )i},

J(p) = J(O0) =" DY _[J@ 'l = (] + dj + T},

R(¢) = R(O0) =""C Dy [R(@)1 {31 + 4] — 'R }.

Now using the Definition 2.5 on each of the above equations, one obtains

—A4 A i -1
S(@) - S(0) = WKIWS(@H S fo (0= 6Y" K1 (4,6, S (6))do,

1-1
E(SD)—E(O)—B(/D K>(4, ¢, E(9)) + m f(so )" K> (4, 6, E(5))ds,

0(p) — 0(0) =

-4 A-1
B(/l) K3(4, ¢, O(9)) + m f (@ —0)" K3(4, 6, Q(6))do,

(6.2)

I(p) - 1(0) =

-4 A-1
B(/l) Ky(A, 0, 1(9)) + —B(/I)F(/l) f (¢ = 6)" K4(4,6,1(5))do,

1-24
J(p) = J(0) = BOD = Ks(4, 0, J(9) + W f (0 = )" K5(, 6, J(6))ds,

-2 1 ¢
R(¢) = R(0) = Ke(4, 0, R(@)) + BT < j(: (¢ = )" Ke(A, 6, R(6))ds,

1
B(1)
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where

Thus, we reach

Taking into account

one reaches

Then, we acquire

Where

Then, we reach

AIMS Mathematics

28'(1 —k)SE
A T S+E
Kol Bl = ZLIBE sty
K3 (4,0, 0(9) = ViE = (g1 + r{ + )0,
Ki(A,0,1(9)) = ViE + q{Q — (@' + 15 +d{ + )],
Ks (4,0, J(p) = &'I = (15 + dy + ),

Ke(A, 0, R(p)) = 131 + ryJ — u'R.

Ki(4,9,S(p)) =T - - 'S +rQ,

A(]—x .
IKi(L 6,8) = Ki (L, S| = || (225 - s ) s - 5.
28'(1-K)SE
A= |- | B
1 H ( ST E O

IKi(4,¢,5) = K1 (4,0, SO < Qi IS = S7I.

1K2(A, 0, E) = K3 (4, 0, EV)|| < L ||E - E*||,
1K3 (4,0, Q) = K3 (4,0, )| < Q3 [|Q — 07,
1Ks (4,0, 1) = Ky (4,0, )| < Qu |l = I,
I1Ks (4, ¢, 1) = K5 (4, 0, J)|| < Qs ||/ = J7|,

1K6(A, 0, R) = K5 (A, 0, R)|| < Qg [|IR — R7Y|.

Ao =||- (v + v+ i)

A == (gt + i+ 1)

Ay = —(a”‘+r§+df+y”‘)”,
As = —(r§l+d§l+,u/l)H,

Ag = —(,uﬂ)H.

(6.3)

(6.4)

(6.5)

Volume 7, Issue 9, 15939-15964.
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1-
Sa(p) = S8(0) =

A
— s K¢, S i) + f (0 = 6)' " Ki(4, 6,5 ,-1(6))ds,

B(1) B(/l)F(/l)
-2
E.(p) - E) = B( D K4, ¢, E,_1(p) + B /l)F( D fw (¢ — 0" ' Kx(A, 6, E,-1(6))d5,
_yl
On(p) — 0(0) = K3(4, ¢, Qn-1(p)) + f (¢ — 0)"'K3(A, 6, Q,-1(6))d0,
B(ﬁ; B(/l)F(/l) 6.6)
L,(¢) - 1(0) = B Ky(A, 0, 1,-1(p)) + B A)F( D f (¢ — )" " Ku(A, 6, 1,-1(8))do,
1-2
() = J(0) = B Ks(A, ¢, Jo1(9)) + B A)F( D f (¢ — )" 7' K5(A, 8, J,-1(6))d6,
]
R,(¢) — R(0) = B) Ke(A, 0, R, 1(9)) + B A)F( D f (¢ — )" ' Ko(A, 6, R,-1(6))d6,

together with So(¢) = S(0), Eo(¢) = E(0), Qo(¢) = Q(0), Io(¢) = 1(0), Jo(p) = J(0),Ro(¢) = R(0).

Thus, we get

HS n(‘p)

E:E,n (QO)

EQ,n (‘;0)

E:I,n (()0)

Ef,n (()D)

ER,n (‘)0)

AIMS Mathematics

1 -
=L,(p) = -1 (p) = —(K4(/1 @, 1h1(9) = Ka(A, @, 1h-2()))

1-
=S.(p) = Sn-i(p) = T/D(K](/l 0,8 n-1(9) = Ki(4, 0, S 1-2(9)))

N A-1
Bm)r(ﬂ)f (p—0)" (K1 (4,06,5,-1(0)) —K; (4,6, ,-2(9))) dd,

1 -
=En(¢) = Epi(p) = M(Kz(ﬂ 0 En1(9) = Ka(4, ¢, Ey2()))

N -1
B( /l)F( ) f (=0 (K2(4,06,E,_1(6)) —K> (4,6, E,5(0))) db,

=01n(9) = On-1(9) = —(K3(/1 @, On-1(9)) = K3(4, ¢, O0n2()))

B(1)

-1
Bu)ru)f (=0 (K3 (4,6, 01-1(6)) ~K;3 (4,6, 0,-2(6)) 6, o

B(1)

-1
B /l)F( ) f (¢ —6)" (K4 (4,6, 1,-1(6)) —K4 (4,6, 1,-2(5))) d6,

1-
=Ju(p) = Ju-1(p) = (K5(/l @, Ju-1(9) = Ks(A, ¢, Ju2()))

B(1)

J— A-1
B(/l)l"(/l)f (‘10 5) (KS (/l 0, Ju- 1((5)) —K5 (/1 0, Jn- 2(5))) do,

1-
=Ru(@) = Ry-1(p) = (Kc,(/1 @, Ry-1(9)) = K5(4, 0, Ry—2(9)))

B()

- A-1
B(/I)F( 2 f (o —0)" (Ko (,06,R,-1(0)) —K5(4,6,R,-»(0))) dé.
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n n n

Su@) = Y Esie)  E@)= D Epie).  0u@) =Y Eoie),
i=0 i=0 i=0

L) = D E@), @) = D Ze), Ral@) = > Erilo).
i=0 i=0 i=0

Additionally, by using Eqgs (6.4) and (6.5) and considering that

ES,n—l(SO) =8-1(p) = S 2(), EE,n—1(90) = E,_1(p) — E,-2(p), EQ,n—l(QO) = Qn-1(p) — Qna(e),
Ern1(@) = Lii(@) — Lia(@),  Eju-1(@) = Ju1(@) = Ju2(@),  Egp-1(9) = Rym1(9) — Ra(e),

we reach

|Esa@)] < 521 [|Esa1@)]| g @1 X fy (@ = ) ||Es.ue1(8)]| 6,
|IZEn(@)]| < 32 [Braa1(@)]| 7o Q2 X [y (@ = 6)* || Epan1(8)]| d6,

1Z0n@)]| < 3225 |Eon19)|| 5 X [ (0 = ' ||Egn-1(6)|| 4o,

ool < 0o @ s F- o folas.
Bl < 5595 [Ern1 @) 7 s x [ (0 = 0 |0 9] o,
[Erate)]| < B(/UQ6 [Era-1 0] T2 X fo (¢ =)' ||Era-1(6)]| do.
Now, we are in position to prove the following theorem.
Theorem 6.1. If
-4 Q< 1,i=1,2,...,5. (6.9)

—Qi [ —
B(A) B(D)I'(A)

Then, (3.4) has a unique solution for t € [0, b].

Proof. 1t is observed S, E, Q, I, J, R are bounded functions. In Addition, as can be seen from Eqgs (6.4)
and (6.5), the symbols K, K;, K3, K4, K5, and K¢ hold for Lipchitz condition. Therefore, utilizing
Eq (6.8) together with a recursive hypothesis, we arrive at
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|Es.(0)|| < IS0l (B_/l B(/l)r(/l)Q )n ’
|Eea(@] < IE@) (520 + 7).

|E0n(@)]] < 100 (52 + 523"
(6.10)

2 @) < @l (A0 + s,
|25 < Mol (52025 + 522035’

R (@)]] < IR (A2 + 522—0)
Then, we get
[Esatoll = 0. [Eeat@l] = 0. [Eoutel] = 0. [Era@)] = 0. [Em@] = 0. [l -
0

as n — oo. Thus, we reach

Zn+l _Zn+k+1

IS wer(p) = S @Il < T,y Z] = F—,

Zn+| _Zn+k+1

IEwii(9) — Ei@)| < XK, 23 = Z—,

n . Zn+l _Zn+k+1

1Qnail) = Qu(Il < X2k, 24 = 25—,
(6.11)

Zn+1_Zn+k+1

IL0k(9) = L@l < XHin,) Z) = 25—,

Zn+] _Zn+k+1

1 sk(@) = Tu(@Il < Tn,) 24 = 25—,
n Zn+| Zn+k+1
IRwi(@) = Ru(@I < Ti%,, 20 = 22—,

with Z; = 24Q, +

B B(/l)F(/l) b/lQ < 1 by hypothesis.

7. Hyers-Ulam stability

Definition 7.1. [23] The model (3.4) is Hyers-Ulam stable if there exist a real number y > 0, such
that for every € > 0 and for any solution Y € C'(G,R) of the following inequality:

DY () - V(. Y(p) <€, ¢€G,
there is a unique solution W € C'(G, R) of the model (3.4), such that

Y () - W(p)| <ve, ¢e€G.
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Definition 7.2. The ABC fractional integral system given by Eq (6.2) is said to be Hyers-Ulam stable
if exist constants A; > 0,i € N° fulfilling: For everyy; > 0,i € N®, for

]
Ki(4,0,5(p)) +

560~ B() B(/l)F(/l)

\f@ &' K1(4, 6,5 (0)dd| < yi,

-A
IE(QD)——Kz(/l ¢, E(p)) +

A-1
B(1) B(/l)r(/l) f (¢ —0)" Ky(4,06, E(6))dd| < ya,

- A
|0(0)——7—=-K3(4, ¢, Q@) +

-1
B(/l) B( ﬂ)r( ) f (¢ — 6) ' K3(4,6, Q(6))dd| < s,

(7.1)

|I(t)— /1K4(/l t,1(1)) +

_ s\l
B(1) B(ﬂ)r( ) f (t—06) " Ky(A,6,1(6))dd| < 4,

yl
Ks(4, ¢, 1(p)) +

005 B() B(/l)F(/l)

f (¢ = )" K5(4, 6, 1(6))ds| < s,

-2
Ks(A, o, R(p)) +

o)~ B(1) B(xl)l“(/l)

f (¢ = 6" Ko(4, 6, R(6))dé] < ys.

there exist (S (@), E(¢), Q(p), 1(¢), J(p), R(¢)) which are satisfying

1
S(@) 2K (L ¢, S () +

A-1
B(1) B( /1)F(/l) f (¢ — 6)' 7' K1(4, 6,5 (6))ds,

_yl
K>(4, ¢, E(p)) +

Ep) = B(/l) B(/I)F(/l)

Lf@éVWM6mmw

-4 -1
O(p) = B( D K3(4, ¢, Q(p)) + B /1)1"( D fw (p = 6" K3(4, 6, Q(6))ds,
(7.2)

- A
Ky, ¢, 1(9)) +

@)M@ mmw

f (¢ = 6)' "' Ka(4, 6, 1(6))ds,

. 1-2
J(p) = Ks(4, ¢, J(9)) +

A-1
B(A) B ﬂ)r( D f (o — 6" K5(A, 8, J(8))ds,

. 1-4
R(1) = BOD — 5 Ko(4, 0, R(p)) + B(/l)l"(/l)

f (¢ = 6" Ko(, 6, R(5))do.
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Such that

IS (@) = S (@) < &y, [E(9) = E(@)| < &ayas

10(¢) = Q(P)| < L3y, () = H()| < Ly,

[7(¢) = J(@)| < Lsys, IR(9) = R(@)] < Lo (7.3)
Theorem 7.1. With assumption J, the suggested model of fractional order (3.4) is Hyers-Ulam stable.

Proof. With the help of theorem (6.1), the given ABC fractional model (3.4) has a unique solution
(S (@), E(p), O(p), (), J(¢), R(¢p)) satisfying equations of system (6.2). Then, we acquire

IS (@) = S (@)l < ||K1u ¢.5(@) - Ki(L e, S|

B(/l)
-~ ol B .
* B(ﬂ)m) fow (9" |Ki( 0. S (@) - Ki(4, ¢, S (9))]| db (7.4)

[1 -1 A
< +
B()  BI(A)

]ans ~ 38,
: 1-
1E) - @l < 5 ) L k(g E@) - Ka( o, E@))|
Bu)n > f (¢ = Y [Kah, ¢, E(@)) = Ki(A, 0, E(@))]| d6 75

[1 -2 P
< +
B()  BT(A)

]QzﬂE—EH,
10(¢) — O(p)ll < B( ﬂ) L2 ks, 0600 - K, 00|
_ s\a-1 _ .
+ B@)r( D f (0 - )" |Ks(A, ¢, Q) — Ks(A, 0, O(9))| 5 (7.6)

[1 - A A
< +
B(1) BWWI')

]Q3||Q -0l

1(p) - [Pl < |Ka(, 0, 1(9)) — Ka(A, 0, 1(9))||

B(/l) |

_ -1 _ ,
B A)rw f: (¢ — 0" ||Ka(A, ¢, 1)) = Ka(A, 0, I())|| d6 a7

[1 -4 A
< +
B(A) B

]94”1— 1ll,
. 1-
V(@) = J@Il £ —— B(/l) ||K5(/l 0, J(@) — Ks5(, 0, J (@)
B(/l)l"(/l) fw(w " 1”KS(/1 @, J(@)) — Ks(4, ¢, J(QD))Hd(S (7.8)

ll -4 A
< +
| B B

]Qsllf— J,
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IR@) ~ R < v 4) ||K6u . R()) — Ke(1, ¢, R(9))
+ BT M( 5 f (¢ — )" ||Ks(A, 0, R(p)) = Ko(A, 0, R(p))|| d6 (7.9)
= [13(_5 * B(/l;ll"(/l)] IR = .
Taking, y; = Q;, A; = 24 + 4 this implies

B(/l) B(/I)F(/l) ’

IS (@) = S (@Il < 7AL

Thus, we get

IE(p) = E@)I| < y24
19(p) = Q@I < ¥3A3
() = [Pl < yaAs
IV(p) = J(p)ll < ysAs
IR(p) = R(PI < v6hs

(7.10)

(7.11)

With the help of Eqs (7.10) and (7.11), the ABC fractional integral system (6.2) is Hyers-Ulam and

consequently the ABC-fractional order model (3.4) is Hyers-Ulam stable.

8. Sensitivity analysis

To know the influence of various parameters upon the basic reproduction number, we use sensitivity
analysis. To calculate the sensitivity index we used the direct differentiation method. The sensitivity

dRy T

index TX° of a parameter 7 is calculated by TX° = o R

. Sensitivity indices of different parameters for

our proposed model are given in Figures 1-3. The effect of different parameters over basic reproduction

number are shown grap hically in Figures 4-9.

1 T
0.8 q
0.6
0.4
o)
TEJ 0.2 -
> —
=
2
S -0.2
w
-0.4
-0.6 -
-0.8
1 . . . .
1 2 3 a 5
" B Y1 Vs I

Figure 2. Sensitivity analysis of different parameters with fractional parameter A = 0.1.
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Sensitivity Index

1 2 3 4 5
Iz B 1 Y ”~

Sensitivity Index

. . . . .
1 2 3 4 5
H B Y1 Yo ~

Figure 4. Sensitivity analysis of different parameters with fractional parameter A = 0.9.

Figure 5. Sensitivity analysis of Ry vs x and 5 for 4 = 0.1.
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Figure 6. Sensitivity analysis of Ry vs x and 8 for 4 = 0.5.
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Figure 8. Sensitivity analysis of Ry vs y; and y, for 4 = 0.1.
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V2 o o Yy

Figure 9. Sensitivity analysis of Ry vs y; and y, for 4 = 0.5.

9. Numerical dynamics

In the present section, we have simulated the proposed scholastic epidemiological system for the
ABC. While simulating the system, convergent iterative scheme is employed. Fractional-order chaotic
system via bifurcation is studied in [30] and through Caputo operator is discussed in [31]. Consider a
general Cauchy problem of fractional order having autonomous nature

*D;,(v(@) = 8(3(@)). 1 € (0. 1), ¢ € [0, T], 3(0) = yo, ©.1)

where y = (a, b, c,w) € Ri being a continuous function (real-valued) fulfills the Lipchitz condition as:

llg(r1(e)) = (2Dl < Mllyi(g) = y2(o)l; 9.2)

where M > 0 is said to be Lipchitz constant.

Y(®) = yo + J3,800(9)), ¢ € [0, T, 9.3)

where J&D denotes the fractional integral operator. Consider an equispaced integration intervals over
[0, T] with the fixed step size (= 1072 for simulation) = %, n € N. Suppose that y, is the approximation

AIMS Mathematics Volume 7, Issue 9, 15939-15964.
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of y(¢) at t = t, for g = 0, 1, n. Consequently, our model becomes

1-2 28(1 — k)S ,E
ABC qLyq
S =9 -
= oer AB(@( S, +E,

—,LlSq'Frqu)

" q 4 1 Zﬁ(l - K)S  Ey
+m;(("‘k+ D =lg=h )(F_W_ﬂsk'i'rle),

1= 281 - S E
ABCE 1 = Ep+ AB(/l)( S qu ! — (1 +v» +,u)Eq)
M5 ) 2280~ KIS E;
T ABOOTQY Z (@-k+ ' -0 5o 0+ v+ wE)
b
ABCO =00 + AB(/l)(% s~ (q1+ 1 +,u)Qq)

+ ABOTD) Z ((q —k+1)'-(g- k)ﬂ)(ylEk —(q1+n+ u)Qk), »
A .
ABC]q+1 =1y + AB(A)(72 ¢t 10, —(@+nr+d +M)Iq)

h/l
+ A—B(/l)F(/l) kZ::O ((q —k+ 1)/1 -(qg— k)ﬁ)(')/zEk +q10r — (@ + 1y +d +,u)1k)7

ABCJ

e+1 =Jot+ al, — (r3 +d + ) Jq)

- A
AB(/l)(
h/l q
gy 2@+ 0 g0k s g 1),

AB(D) (2

h/l q
* ABOTD ; ((g = k+ 1Y = (q = ") (radic + r3Ji — uRy)-

ABCR

g+1 = Ro + Iq+r3Jq—/,(Rq)

10. Discussions

Figures 2—4 shows the sensitivity indices of all the parameters corresponding to different values
of fractional parameter A. From Figures 2—4 it is noted that the largest positive parameter is 8 which
means that by increasing the transmission rate 5, the basic reproduction number will increase and hence
B is the most sensitivity parameter upon Ry. While on the other hand, the smallest negative parameter is
© which means that by increasing the natural death rate u, the basic reproduction number will decrease
and hence u is most senseless parameter upon Ry. From Figures 2—4, it is obtained that by increasing
the fractional parameter A the positive sensitive parameter is increasing while the negative sensitive
parameters are decreasing. Figures 5-7 depicts the sensitivity analysis of Ry vs x and g for different
values of 4 = 0.1,0.5,0.9. It is depicted that transmission rate 3 is directly proportional to R, while
the lockdown parameter « is inversely proportional to R,. Figures 8—10 shows the sensitivity analysis
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of Ry vs y; and 7y, for different values of 4 = 0.1,0.5,0.9. It is shown that the transmission rate from
exposed class to quarantined class y; and the transmission rate from exposed class to infected class y,
both are inversely proportional to Ry. Figure 11 shows the impact of fractional parameter A on the
first three classes S, E, and Q, while Figure 12 shows the impact of fractional parameter A on the other
three classes 1, J, and R.

14
12
1

N M O ©O O

[y

7 4
1.3395 £ : : : : : : . 0 .
A=1
- 1.9 A=0.9
1.339 ¢ 8|7 2=0.8
. L A=0.7
18 2=0.6
1.3385 -
171 N~
\\~ —y
1.338 166 § ~~ -
- —
0 w N . — oy
L A Y N - e S -~ -
13375 8 NSNS Y- = -
-y — -~
14F ~ ~ =
1337} ~ -~ -
~y —~— ~—
13 ~ -
-~y - -
1.3365 |
1.2 - Sy
1.336 ' ! ' - ' ! : ' 11
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
time (days) time (days)

2.06

2.04

2.02

1.98 -

O 1.96

1.94

192

19

1.88

1.86 "

time (days)

Figure 11. The behavior of the first three state variables for the COVID-19.
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Figure 12. The behavior of the other three state variables for the COVID-19.

11. Conclusions

The fractional operator is convenient in the literature for working the transmission dynamics of
COVID-19 disease. Many valuable properties of the given fractional version of the model have been
presented, such as the model formation, the existence and uniqueness of the solution through the fixed
point theorem, invariant region, stability analysis, the sensitivity analysis and, most importantly, the
basic number of reproductions. It should be noted that the most sensitive variable to the basic
reproduction number is S which is the disease transmission rate from infected to susceptible people.
Also, the least sensitive parameters are u and 7,, which are the natural mortality rate and Recovery
rate of isolated individuals. Also, the effect of fractional parameter on the sensitivity indices is very
high, as the fractional parameter increasing the indices of all the parameters also increases.
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