Research article Special Issues

Assessing the impact of human behavior towards preventative measures on COVID-19 dynamics for Gauteng, South Africa: a simulation and forecasting approach

  • Received: 07 January 2024 Revised: 25 February 2024 Accepted: 05 March 2024 Published: 18 March 2024
  • MSC : 34A08, 92B05

  • Globally, the COVID-19 pandemic has claimed millions of lives. In this study, we develop a mathematical model to investigate the impact of human behavior on the dynamics of COVID-19 infection in South Africa. Specifically, our model examined the effects of positive versus negative human behavior. We parameterize the model using data from the COVID-19 fifth wave of Gauteng province, South Africa, from May 01, 2022, to July 23, 2022. To forecast new cases of COVID-19 infections, we compared three forecasting methods: exponential smoothing (ETS), long short-term memory (LSTM), and gated recurrent units (GRUs), using the dataset. Results from the time series analysis showed that the LSTM model has better performance and is well-suited for predicting the dynamics of COVID-19 compared to the other models. Sensitivity analysis and numerical simulations were also performed, revealing that noncompliant infected individuals contribute more to new infections than those who comply. It is envisaged that the insights from this work can better inform public health policy and enable better projections of disease spread.

    Citation: CW Chukwu, S. Y. Tchoumi, Z. Chazuka, M. L. Juga, G. Obaido. Assessing the impact of human behavior towards preventative measures on COVID-19 dynamics for Gauteng, South Africa: a simulation and forecasting approach[J]. AIMS Mathematics, 2024, 9(5): 10511-10535. doi: 10.3934/math.2024514

    Related Papers:

  • Globally, the COVID-19 pandemic has claimed millions of lives. In this study, we develop a mathematical model to investigate the impact of human behavior on the dynamics of COVID-19 infection in South Africa. Specifically, our model examined the effects of positive versus negative human behavior. We parameterize the model using data from the COVID-19 fifth wave of Gauteng province, South Africa, from May 01, 2022, to July 23, 2022. To forecast new cases of COVID-19 infections, we compared three forecasting methods: exponential smoothing (ETS), long short-term memory (LSTM), and gated recurrent units (GRUs), using the dataset. Results from the time series analysis showed that the LSTM model has better performance and is well-suited for predicting the dynamics of COVID-19 compared to the other models. Sensitivity analysis and numerical simulations were also performed, revealing that noncompliant infected individuals contribute more to new infections than those who comply. It is envisaged that the insights from this work can better inform public health policy and enable better projections of disease spread.



    加载中


    [1] Coronavirus Disease 2019 (COVID-19) Situation Report-40, World Health Organization, 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200229-sitrep-40-covid-19.
    [2] Coronavirus Disease (COVID-19): How is it Transmitted? World Health Organization, 2021. Available from: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted.
    [3] S. Funk, M. Salathé, V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. Royal Soc. Interf., 7 (2010), 1247–1256. http://dx.doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
    [4] COVID-19 Vaccine: What You Need to Know, Johns Hopkins Medicine, 2022. Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/covid-19-vaccines-myth-versus-fact.
    [5] Bringing Traditional Healing Under the Microscope in South Africa, Medscape, 2020. Available from: https://www.medscape.com/viewarticle/943429.
    [6] S. L. Canham, P. M. Mauro, C. N. Kaufmann, A. Sixsmith, Association of alcohol use and loneliness frequency among middle-aged and older adult drinkers, J. Aging Health, 28 (2016), 267–284. https://doi.org/10.1177/0898264315589579 doi: 10.1177/0898264315589579
    [7] Advice for the Public: Coronavirus Disease (COVID-19), World Health Organization, 2022. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public.
    [8] Y. Li, D. Ji, W. Cai, Y. Hu, Y. Bai, J. Wu, et al., Clinical characteristics, cause analysis and infectivity of COVID-19 nucleic acid repositive patients: a literature review, J. Med. Virol., 93 (2021), 1288–1295. http://dx.doi.org/10.1002/jmv.26491 doi: 10.1002/jmv.26491
    [9] W. McNeill, Plagues and Peoples, New York: Anchor Press, 2010.
    [10] S. Funk, S. Bansal, C. T. Bauch, K. T. D. Eames, W. John Edmunds, A. P. Galvani, et al., Nine challenges in incorporating the dynamics of behaviour in infectious diseases models, Epidemics, 10 (2015), 21–25. https://doi.org/10.1016/j.epidem.2014.09.005 doi: 10.1016/j.epidem.2014.09.005
    [11] M. Salathé, S. Bonhoeffer, The effect of opinion clustering on disease outbreaks, J. Royal Soc. Interf., 5 (2008), 1505–1508. http://dx.doi.org/10.1098/rsif.2008.0271 doi: 10.1098/rsif.2008.0271
    [12] J. M. Epstein, J. Parker, D. Cummings, R. A. Hammond, Coupled contagion dynamics of fear and disease: mathematical and computational explorations, PloS One, 16 (2008), e3955. http://dx.doi.org/10.1371/journal.pone.0003955 doi: 10.1371/journal.pone.0003955
    [13] D. H. Zanette, S. Risau-Gusmán, Infection spreading in a population with evolving contacts, J. Biol. Phys., 34 (2008), 135–148. http://dx.doi.org/10.1007/s10867-008-9060-9 doi: 10.1007/s10867-008-9060-9
    [14] T. Gross, C. J. Dommar D'Lima, B. Blasius, Epidemic dynamics on an adaptive network, Phys. Rev. Lett., 96 (2006), 208701. https://doi.org/10.1103/PhysRevLett.96.208701 doi: 10.1103/PhysRevLett.96.208701
    [15] L. B. Shaw, I. B. Schwartz, Fluctuating epidemics on adaptive networks, Phys. Rev. E, 77 (2008), 066101. https://doi.org/10.1103/PhysRevE.77.066101 doi: 10.1103/PhysRevE.77.066101
    [16] C. T. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. Royal Soc. B Biol. Sci., 272 (2005), 1669–1675. https://doi.org/10.1098/rspb.2005.3153 doi: 10.1098/rspb.2005.3153
    [17] M. Juga, F. Nyabadza, F. Chirove, An Ebola virus disease model with fear and environmental transmission dynamics, Infect. Disease Model., 6 (2021), 545–559. https://doi.org/10.1016/j.idm.2021.03.002 doi: 10.1016/j.idm.2021.03.002
    [18] N. Zhang, W. Jia, H. Lei, P. Wang, P. Zhao, Y. Guo, et al., Effects of human behavior changes during the coronavirus disease 2019 (COVID-19) pandemic on influenza spread in Hong Kong, Clin. Infect. Dis., 73 (2021), e1142–e1150. https://doi.org/10.1093/cid/ciaa1818 doi: 10.1093/cid/ciaa1818
    [19] U. Kollamparambil, A.Oyenubi, Behavioural response to the Covid-19 pandemic in South Africa, PloS One, 16 (2021), e0250269. https://doi.org/10.1371/journal.pone.0250269 doi: 10.1371/journal.pone.0250269
    [20] F. Nyabadza, F. Chirove, C. Chukwu, M. V. Visaya, Modelling the potential impact of social distancing on the COVID-19 epidemic in South Africa, Comput. Math. Meth. Medic., 2020 (2020), 5379278. https://doi.org/10.1155/2020/5379278 doi: 10.1155/2020/5379278
    [21] S. P. Gatyeni, C. W. Chukwu, F. Chirove, Fatmawati, F. Nyabadza, Application of optimal control to the dynamics of COVID-19 disease in South Africa, Sci. Afr., 16 (2022), e01268. https://doi.org/10.1016/j.sciaf.2022.e01268 doi: 10.1016/j.sciaf.2022.e01268
    [22] C. J. Edholm, B. Levy, L. Spence, F. B. Agusto, F. Chirove, C. W. Chukwu, et al., A vaccination model for COVID-19 in Gauteng, South Africa, Infect. Disease Model., 7 (2022), 333–345. https://doi.org/10.1016/j.idm.2022.06.002 doi: 10.1016/j.idm.2022.06.002
    [23] C. W. Chukwu, Fatmawati, Modelling fractional-order dynamics of COVID-19 with environmental transmission and vaccination: a case study of Indonesia, AIMS Math., 7 (2022), 4416–4438. https://doi.org/10.3934/math.2022246 doi: 10.3934/math.2022246
    [24] J. Mushanyu, W. Chukwu, F. Nyabadza, G. Muchatibaya, Modelling the potential role of super spreaders on COVID-19 transmission dynamics, Int. J. Math. Model. Numer. Optim., 12 (2022), 191–209. https://dx.doi.org/10.1504/IJMMNO.2022.122123 doi: 10.1504/IJMMNO.2022.122123
    [25] J. Mushanyu, C. W. Chukwu, C. E. Madubueze, Z. Chazuka, C. P. Ogbogbo, A deterministic compartmental model for investigating the impact of escapees on the transmission dynamics of COVID-19, Healthc. Anal., 4 (2023), 100275. https://doi.org/10.1016/j.health.2023.100275 doi: 10.1016/j.health.2023.100275
    [26] S. Gao, P. Binod, C. W. Chukwu, T. Kwofie, S. Safdar, L. Newman, et al., A mathematical model to assess the impact of testing and isolation compliance on the transmission of COVID-19, Infect. Disease Model., 8 (2023), 427–444. https://doi.org/10.1016/j.idm.2023.04.005 doi: 10.1016/j.idm.2023.04.005
    [27] S. M. Simelane, P. G. Dlamini, F. J. Osaye, G. Obaido, B. Ogbukiri, K. Aruleba, et al., Modeling the impact of public health education on tungiasis dynamics with saturated treatment: Insight through the Caputo fractional derivative, Math. Biosci. Eng., 20 (2023), 7696–7720. http://dx.doi.org/10.3934/mbe.2023332 doi: 10.3934/mbe.2023332
    [28] C. Chukwu, R. Alqahtani, C. Alfiniyah, F. Herdicho, Tasmi, A Pontryagin's maximum principle and optimal control model with cost-effectiveness analysis of the COVID-19 epidemic, Decis. Anal. J., 8 (2023), 100273. https://doi.org/10.1016/j.dajour.2023.100273 doi: 10.1016/j.dajour.2023.100273
    [29] Fatmawati, E. Yuliani, C. Alfiniyah, M. L. Juga, C. W. Chukwu, On the modeling of COVID-19 transmission dynamics with two strains: insight through caputo fractional derivative, Fractal Fract., 6 (2022), 346. https://doi.org/10.3390/fractalfract6070346 doi: 10.3390/fractalfract6070346
    [30] E. Bonyah, M. Juga, L. Matsebula, C. Chukwu, On the modeling of COVID-19 spread via fractional derivative: a stochastic approach, Math. Models Comput. Simul., 15 (2023), 338–356. https://doi.org/10.1134/S2070048223020023 doi: 10.1134/S2070048223020023
    [31] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Solitons Fract., 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [32] Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283
    [33] G. Perone, Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy, Eur. J. Health Econ., 23 (2022), 917–940. https://doi.org/10.1007/s10198-021-01347-4 doi: 10.1007/s10198-021-01347-4
    [34] A. A. Ismail, T. Wood, H. C. Bravo, Improving long-horizon forecasts with expectation-biased LSTM networks, preprint paper, 2018. https://doi.org/10.48550/arXiv.1804.06776
    [35] Z. Tarek, M. Y. Shams, S. K. Towfek, H. K. Alkahtani, A. Ibrahim, A. A. Abdelhamid, et al., An optimized model based on deep learning and gated recurrent unit for COVID-19 death prediction, Biomimetics, 8 (2023), 552. https://doi.org/10.3390/biomimetics8070552 doi: 10.3390/biomimetics8070552
    [36] O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/bf00178324 doi: 10.1007/bf00178324
    [37] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [38] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [39] R. Gupta, S. K. Pal, Trend analysis and forecasting of COVID-19 outbreak in India, MedRxiv, 2020. https://doi.org/10.1101/2020.03.26.20044511
    [40] P. Wang, X. Zheng, G. Ai, D. Liu, B. Zhu, Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: case studies in Russia, Peru and Iran, Chaos Solitons Fract., 140 (2020), 110214. https://doi.org/10.1016/j.chaos.2020.110214 doi: 10.1016/j.chaos.2020.110214
    [41] S. Dash, C. Chakraborty, S. K. Giri, S. K. Pani, Intelligent computing on time-series data analysis and prediction of COVID-19 pandemics, Pattern Recogn. Lett., 151 (2021), 69–75. https://doi.org/10.1016/j.patrec.2021.07.027 doi: 10.1016/j.patrec.2021.07.027
    [42] COVID-19 ZA South Africa Dashboard, Department of health, South Africa, 2022. Available from: https://dsfsi.github.io/covid19za-dash/.
    [43] R. T. Aruleba, T. A. Adekiya, N. Ayawei, G. Obaido, K. Aruleba, I. D. Mienye, et al., COVID-19 diagnosis: a review of rapid antigen, RT-PCR and artificial intelligence methods, Bioeng., 9 (2022), 153. https://doi.org/10.3390/bioengineering9040153 doi: 10.3390/bioengineering9040153
    [44] E. Esenogho, I. D. Mienye, T. G. Swart, K. Aruleba, G. Obaido, A neural network ensemble with feature engineering for improved credit card fraud detection, IEEE Access, 10 (2022), 16400–16407. https://doi.org/10.1109/ACCESS.2022.3148298 doi: 10.1109/ACCESS.2022.3148298
    [45] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, preprint paper, 2014. https://doi.org/10.48550/arXiv.1406.1078
    [46] R. Dey, F. M. Salem, Gate-variants of gated recurrent unit (GRU) neural networks, In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, 2017, 1597–1600. https://doi.org/10.1109/MWSCAS.2017.8053243
    [47] M. Diagne, H. Rwezaura, S. Tchoumi, J. Tchuenche, A mathematical model of COVID-19 with vaccination and treatment, Comput. Math. Meth. Medic., 2021 (2021), 1250129. https://doi.org/10.1155/2021/1250129 doi: 10.1155/2021/1250129
    [48] M. O. Adewole, A. A. Onifade, F. A. Abdullah, F. Kasali, A. I. Ismail, Modeling the dynamics of COVID-19 in Nigeria, Int. J. Appl. Comput. Math., 7 (2021), 67. https://doi.org/10.1007/s40819-021-01014-5 doi: 10.1007/s40819-021-01014-5
    [49] A. Babaei, H. Jafari, S. Banihashemi, M. Ahmadi, Mathematical analysis of a stochastic model for spread of Coronavirus, Chaos Solitons Fract., 145 (2021), 110788. https://doi.org/10.1016/j.chaos.2021.110788 doi: 10.1016/j.chaos.2021.110788
    [50] C. T. Deressa, Y. O. Mussa, G. F. Duressa, Optimal control and sensitivity analysis for transmission dynamics of Coronavirus, Res. Phys., 19 (2020), 103642. https://doi.org/10.1016/j.rinp.2020.103642 doi: 10.1016/j.rinp.2020.103642
    [51] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Medic., 9 (2020), 462. https://doi.org/10.3390/jcm9020462 doi: 10.3390/jcm9020462
    [52] S. M. Garba, L. M. S. Lubuma, B. Tsanou, Modeling the transmission dynamics of the COVID-19 Pandemic in South Africa, Math. Biosci., 328 (2020), 108441. https://doi.org/10.1016/j.mbs.2020.108441 doi: 10.1016/j.mbs.2020.108441
    [53] South Africa Life Expectancy 1950–2023, Macrotrends, 2023. Available from: https://www.macrotrends.net/countries/ZAF/south-africa/life-expectancy
    [54] M. Q. Shakhany, K. Salimifard, Predicting the dynamical behavior of COVID-19 epidemic and the effect of control strategies, Chaos Solitons Fract., 146 (2021), 110823. https://doi.org/10.1016/j.chaos.2021.110823 doi: 10.1016/j.chaos.2021.110823
    [55] S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Statist. Rev., 62 (1994), 229–243. https://doi.org/10.2307/1403510 doi: 10.2307/1403510
    [56] L. M. Bogart, B. O. Ojikutu, K. Tyagi, D. J. Klein, M. G. Mutchler, L. Dong, et al., COVID-19 related medical mistrust, health impacts, and potential vaccine hesitancy among Black Americans living with HIV, J. Acq. Imm. Def. Synd., 86 (2021), 200–207. https://doi.org/10.1097/QAI.0000000000002570 doi: 10.1097/QAI.0000000000002570
    [57] J. Mphahlele, Conspiracy theories on COVID-19 vaccine can be as deadly as virus itself, South African Med. Res. Council: Cape Town, 2021.
    [58] C. Jacob, P. Hausemer, A. Zagoni-bogsch, A. Diers-lawson, The effect of communication and disinformation during the Covid-19 pandemic, European Parliament, 2023. https://doi.org/10.2861/501274 doi: 10.2861/501274
    [59] O. F. Norheim, J. M. Abi-Rached, L. K. Bright, K. Bærøe, O. L. Ferraz, S. Gloppen, et al., Difficult tradeoffs in response to COVID-19: the case for open and inclusive decision making, Nature Medic., 27 (2021), 10–13. https://doi.org/10.1038/s41591-020-01204-6 doi: 10.1038/s41591-020-01204-6
    [60] Infodemic, World Health Organization, 2024. Available from: https://www.who.int/health-topics/infodemic#tab = tab_1.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(942) PDF downloads(89) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog