Research article Special Issues

$ \mathcal{N} = 2 $ double graded supersymmetric quantum mechanics via dimensional reduction

  • Received: 11 January 2024 Revised: 02 March 2024 Accepted: 11 March 2024 Published: 18 March 2024
  • MSC : 81Q60, 81Q80, 81S08

  • We presented a novel $ \mathcal{N} = 2 $ $ \mathbb{Z}_2^2 $-graded supersymmetric quantum mechanics ($ {\mathbb{Z}_2^2} $-SQM) which has different features from those introduced so far. It is a two-dimensional (two-particle) system and was the first example of the quantum mechanical realization of an eight-dimensional irreducible representation (irrep) of the $ \mathcal{N} = 2 $ $ \mathbb{Z}_2^2 $-supersymmetry algebra. The $ {\mathbb{Z}_2^2} $-SQM was obtained by quantizing the one-dimensional classical system derived by dimensional reduction from the two-dimensional $ {\mathbb{Z}_2^2} $-supersymmetric Lagrangian of $ \mathcal{N} = 1 $, which we constructed in our previous work. The ground states of the $ {\mathbb{Z}_2^2} $-SQM were also investigated.

    Citation: Naruhiko Aizawa, Ren Ito, Toshiya Tanaka. $ \mathcal{N} = 2 $ double graded supersymmetric quantum mechanics via dimensional reduction[J]. AIMS Mathematics, 2024, 9(5): 10494-10510. doi: 10.3934/math.2024513

    Related Papers:

  • We presented a novel $ \mathcal{N} = 2 $ $ \mathbb{Z}_2^2 $-graded supersymmetric quantum mechanics ($ {\mathbb{Z}_2^2} $-SQM) which has different features from those introduced so far. It is a two-dimensional (two-particle) system and was the first example of the quantum mechanical realization of an eight-dimensional irreducible representation (irrep) of the $ \mathcal{N} = 2 $ $ \mathbb{Z}_2^2 $-supersymmetry algebra. The $ {\mathbb{Z}_2^2} $-SQM was obtained by quantizing the one-dimensional classical system derived by dimensional reduction from the two-dimensional $ {\mathbb{Z}_2^2} $-supersymmetric Lagrangian of $ \mathcal{N} = 1 $, which we constructed in our previous work. The ground states of the $ {\mathbb{Z}_2^2} $-SQM were also investigated.



    加载中


    [1] N. Aizawa, R. Ito, T. Tanaka, ${\mathbb{Z}_2^2}$-graded supersymmetry via superfield on minimal ${\mathbb{Z}_2^2}$-superspace, arXiv, 2023.
    [2] A. J. Bruce, On a $\mathbb{Z}_2^n$-graded version of supersymmetry, Symmetry, 11 (2019), 116. https://doi.org/10.3390/sym11010116 doi: 10.3390/sym11010116
    [3] A. J. Bruce, Is the $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded sine-Gordon equation integrable? Nucl. Phys. B, 971 (2021), 115514. https://doi.org/10.1016/j.nuclphysb.2021.115514 doi: 10.1016/j.nuclphysb.2021.115514
    [4] A. J. Bruce, S. Duplij, Double-graded supersymmetric quantum mechanics, J. Math. Phys., 61 (2020), 063503. https://doi.org/10.1063/1.5118302 doi: 10.1063/1.5118302
    [5] F. Toppan, $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded parastatics in multiparticle quantum Hamiltonians, J. Phys. A, 54 (2021), 115203. https://doi.org/10.1088/1751-8121/abe2f2 doi: 10.1088/1751-8121/abe2f2
    [6] F. Toppan, Inequivalent quantizations from gradings and $ \mathbb{Z}_2 \times \mathbb{Z}_2$ parabosons, J. Phys. A, 54 (2021), 355202. https://doi.org/10.1088/1751-8121/ac17a5 doi: 10.1088/1751-8121/ac17a5
    [7] N. Aizawa, K. Amakawa, S. Doi, $\mathcal{N}$-extension of double-graded supersymmetric and superconformal quantum mechanics, J. Phys. A, 53 (2020), 065205. https://doi.org/10.1088/1751-8121/ab661c doi: 10.1088/1751-8121/ab661c
    [8] N. Aizawa, K. Amakawa, S. Doi, $\mathbb{Z}_2^n$-graded extensions of supersymmetric quantum mechanics via Clifford algebras, J. Math. Phys., 61 (2020), 052105. https://doi.org/10.1063/1.5144325 doi: 10.1063/1.5144325
    [9] S. Doi, N. Aizawa, $\mathbb{Z}_2^3$-Graded extensions of Lie superalgebras and superconformal quantum mechanics, Symmetry Integr. Geom., 17 (2021), 071. https://doi.org/10.3842/SIGMA.2021.071 doi: 10.3842/SIGMA.2021.071
    [10] N. Aizawa, Z. Kuznetsova, F. Toppan, ${\mathbb Z}_2\times {\mathbb Z}_2$-graded mechanics: the classical theory, Eur. Phys. J. C, 80 (2020), 668. https://doi.org/10.1140/epjc/s10052-020-8242-x doi: 10.1140/epjc/s10052-020-8242-x
    [11] N. Aizawa, Z. Kuznetsova, F. Toppan, ${\mathbb Z}_2\times {\mathbb Z}_2$-graded mechanics: the quantization, Nucl. Phys. B, 967 (2021), 115426. https://doi.org/10.1016/j.nuclphysb.2021.115426 doi: 10.1016/j.nuclphysb.2021.115426
    [12] N. Aizawa, S. Doi, Irreducible representations of ${\mathbb{Z}_2^2}$-graded $\mathcal{N} = 2$ supersymmetry algebra and ${\mathbb{Z}_2^2}$-graded supermechanics, J. Math. Phys., 63 (2022), 091704. https://doi.org/10.1063/5.0100182 doi: 10.1063/5.0100182
    [13] G. Junker, Supersymmetric methods in quantum and statistical mechanics, Springer, 1996. https://doi.org/10.1007/978-3-642-61194-0
    [14] B. Bagchi, Supersymmetry in quantum and classical mechanics, Chapman & Hall/CRC, 2001. https://doi.org/10.1201/9780367801670
    [15] S. H. Dong, Factorization method in quantum mechanics, Springer, 2007. https://doi.org/10.1007/978-1-4020-5796-0
    [16] J. Beckers, N. Debergh, On colour superalgebras in parasupersymmetric quantum mechanics, J. Phys. A, 24 (1991), L597. https://doi.org/10.1088/0305-4470/24/11/005 doi: 10.1088/0305-4470/24/11/005
    [17] N. Aizawa, Z. Kuznetsova, H. Tanaka, F. Toppan, ${\mathbb Z}_2\times {\mathbb Z}_2$-graded Lie symmetries of the Lévy-Leblond equations, Prog. Theor. Exp. Phys., 2016 (2016), 123A01. https://doi.org/10.1093/ptep/ptw176 doi: 10.1093/ptep/ptw176
    [18] N. Aizawa, Z. Kuznetsova, H. Tanaka, F. Toppan, Generalized supersymmetry and Lévy-Leblond equation, In: S. Duarte, J. P. Gazeau, S. Faci, T. Micklitz, R. Scherer, F. Toppan, Physical and mathematical aspects of symmetries, Springer, 2017. https://doi.org/10.1007/978-3-319-69164-0_11
    [19] M. A. Vasiliev, de Sitter supergravity with positive cosmological constant and generalised Lie superalgebras, Class. Quantum Gravity, 2 (1985), 645. https://doi.org/10.1088/0264-9381/2/5/007 doi: 10.1088/0264-9381/2/5/007
    [20] P. D. Jarvis, M. Yang, B. G. Wybourne, Generalized quasispin for supergroups, J. Math. Phys., 28 (1987), 1192–1197. https://doi.org/10.1063/1.527566 doi: 10.1063/1.527566
    [21] A. A. Zheltukhin, Para-Grassmann extension of the Neveu-Schwartz-Ramond algebra, Theor. Math. Phys., 71 (1987), 491–496. https://doi.org/10.1007/BF01028648 doi: 10.1007/BF01028648
    [22] V. N. Tolstoy, Once more on parastatistics, Phys. Part. Nuclei Lett.11 (2014), 933–937. https://doi.org/10.1134/S1547477114070449 doi: 10.1134/S1547477114070449
    [23] N. I. Stoilova, J. Van der Jeugt, The $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded Lie superalgebra $ \mathfrak{pso}(2m+1|2n) $ and new parastatistics representations, J. Phys. A, 51 (2018), 135201. https://doi.org/10.1088/1751-8121/aaae9a doi: 10.1088/1751-8121/aaae9a
    [24] N. I. Stoilova, J. van der Jeugt, Parabosons, parafermions and representations of $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded Lie superalgebras, J. Phys., 1194 (2019), 012102. https://doi.org/10.1088/1742-6596/1194/1/012102 doi: 10.1088/1742-6596/1194/1/012102
    [25] N. I. Stoilova, J. van der Jeugt, The $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded Lie superalgebras $\mathfrak{pso}(2n+1|2n)$ and $ \mathfrak{pso}(\infty|\infty)$, and parastatistics Fock spaces, J. Phys. A, 55 (2022), 045201. https://doi.org/10.1088/1751-8121/ac451d doi: 10.1088/1751-8121/ac451d
    [26] C. H. Alderete, A. M. Green, N. H. Nguyen, Y. Zhu, B. M. Rodríguez-Lara, N. M. Linke, Experimental realization of para-particle oscillators, arXiv, 2018. https://doi.org/10.48550/arXiv.2108.05471
    [27] B. L. Roy, $\mathbb{Z}_n^3$-Graded colored supersymmetry, Czech. J. Phys., 47 (1997), 47–54. https://doi.org/10.1023/A:1021491927893 doi: 10.1023/A:1021491927893
    [28] L. A. Wills-Toro, $(I, q)$-graded Lie algebraic extensions of the Poincaré algebra, constraints on $I$ and $q$, J. Math. Phys., 36 (1995), 2085–2112. https://doi.org/10.1063/1.531102 doi: 10.1063/1.531102
    [29] L. A. Wills-Toro, Trefoil symmetries Ⅰ. Clover extensions beyond Coleman-Mandula theorem, J. Math. Phys., 42 (2001), 3915–3934. https://doi.org/10.1063/1.1383561 doi: 10.1063/1.1383561
    [30] V. N. Tolstoy, Super-de Sitter and alternative super-Poincaré symmetries, In: V. Dobrev, Lie theory and its applications in physics, Tokyo: Springer, 2014. https://doi.org/10.1007/978-4-431-55285-7_26
    [31] C. Quesne, Minimal bosonization of double-graded quantum mechanics, Mod. Phys. Lett., A36 (2021), 2150238. https://doi.org/10.1142/S0217732321502382 doi: 10.1142/S0217732321502382
    [32] A. J. Bruce, $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded supersymmetry: 2-d sigma models, J. Phys. A, 53 (2020), 455201. https://doi.org/10.1088/1751-8121/abb47f doi: 10.1088/1751-8121/abb47f
    [33] M. M. Balbino, I. P. de Freitas, R. G. Rana, F. Toppan, Inequivalent $\mathbb{Z}_2^n$-graded brackets, $n$-bit parastatistics and statistical transmutations of supersymmetric quantum mechanics, arXiv, 2023. https://doi.org/10.48550/arXiv.2309.00965
    [34] S. Doi, N. Aizawa, Comments of $\mathbb{Z}_2^2$-supersymmetry in superfield formalism, Nucl. Phys. B, 974 (2022), 115641. https://doi.org/10.1016/j.nuclphysb.2021.115641 doi: 10.1016/j.nuclphysb.2021.115641
    [35] N. Aizawa, R. Ito, Z. Kuznetsova, F. Toppan, New aspects of the $\mathbb{Z}_2\times\mathbb{Z}_2$-graded 1D superspace: induced strings and 2D relativistic models, Nuclear Phys. B, 991 (2023), 116202. https://doi.org/10.1016/j.nuclphysb.2023.116202 doi: 10.1016/j.nuclphysb.2023.116202
    [36] T. Covolo, J. Grabowski, N. Poncin, The category of $\mathbb{Z}_2^n$-supermanifolds, J. Math. Phys., 57 (2016), 073503. https://doi.org/10.1063/1.4955416 doi: 10.1063/1.4955416
    [37] N. Poncin, Towards integration on colored supermanifolds, Banach Cent. Publ., 110 (2016), 201–217. https://doi.org/10.4064/bc110-0-14 doi: 10.4064/bc110-0-14
    [38] N. Poncin, S. Schouten, The geometry of supersymmetry / a concise introduction, arXiv, 2022. https://doi.org/10.48550/arXiv.2207.12974
    [39] N. Aizawa, R. Ito, Integration on minimal ${\mathbb{Z}_2^2}$-superspace and emergence of space, J. Phys. A, 56 (2023), 485201. https://doi.org/10.1088/1751-8121/ad076e doi: 10.1088/1751-8121/ad076e
    [40] V. Rittenberg, D. Wyler, Generalized superalgebras, Nucl. Phys. B, 139 (1978), 189–202. https://doi.org/10.1016/0550-3213(78)90186-4 doi: 10.1016/0550-3213(78)90186-4
    [41] V. Rittenberg, D. Wyler, Sequences of $\mathbb{Z}_2 \otimes \mathbb{Z}_2$ graded Lie algebras and superalgebras, J. Math. Phys., 19 (1978), 2193–2200. https://doi.org/10.1063/1.523552 doi: 10.1063/1.523552
    [42] R. Ree, Generalized Lie elements, Canad. J. Math., 12 (1960), 493–502. https://doi.org/10.4153/CJM-1960-044-x doi: 10.4153/CJM-1960-044-x
    [43] M. Scheunert, Generalized Lie algebras, J. Math. Phys., 20 (1979), 712–720. https://doi.org/10.1063/1.524113 doi: 10.1063/1.524113
    [44] S. Okubo, Real representations of finite Clifford algebras. Ⅰ. Classification, J. Math. Phys., 32 (1991), 1657–1668. https://doi.org/10.1063/1.529277 doi: 10.1063/1.529277
    [45] S. Okubo, Real representations of finite Clifford algebras. Ⅱ. Explicit construction and pseudo‐octonion, J. Math. Phys., 32 (1991), 1669–1673. https://doi.org/10.1063/1.529278 doi: 10.1063/1.529278
    [46] H. L. Carrion, M. Rojas, F. Toppan, Quaternionic and octonionic spinors. A classification, J. High Energy Phys., 04 (2003), 040. https://doi.org/10.1088/1126-6708/2003/04/040 doi: 10.1088/1126-6708/2003/04/040
    [47] J. Beckers, V. Hussin, Dynamical supersymmetries of the harmonic oscillator, Phys. Lett. A, 118 (1986), 319–321. https://doi.org/10.1016/0375-9601(86)90316-6 doi: 10.1016/0375-9601(86)90316-6
    [48] K. Amakawa, N. Aizawa, A classification of lowest weight irreducible modules over ${\mathbb{Z}_2^2}$-graded extension of $osp(1|2)$, J. Math. Phys., 62 (2021), 043502. https://doi.org/10.1063/5.0037493 doi: 10.1063/5.0037493
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(706) PDF downloads(74) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog